1
|
Wang L, Geng G, Xie H, Zhou L, He Y, Li Z, Qiao F. A Transcriptomic and Metabolomic Study on the Biosynthesis of Iridoids in Phlomoides rotata from the Qinghai-Tibet Plateau. PLANTS (BASEL, SWITZERLAND) 2024; 13:1627. [PMID: 38931059 PMCID: PMC11207590 DOI: 10.3390/plants13121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Phlomoides rotata is a traditional Chinese herbal medicine that grows in the Qinghai-Tibet Plateau region at a 3100-5000 m altitude. Iridoid compounds are the main active compounds of the P. rotata used as medical ingredients and display anti-inflammatory, analgesic, and hepatoprotective properties. To better understand the biological mechanisms of iridoid compounds in this species, we performed a comprehensive analysis of the transcriptome and metabolome of P. rotata leaves from four different regions (3540-4270 m). Global metabolome profiling detected 575 metabolites, and 455 differentially accumulated metabolites (DAMs) were detected in P. rotata leaves from the four regions. Eight major DAMs related to iridoid metabolism in P. rotata leaves were investigated: shanzhiside methyl ester, 8-epideoxyloganic acid, barlerin, shanzhiside, geniposide, agnuside, feretoside, and catalpin. In addition, five soil physical and chemical indicators in P. rotata rhizosphere soils were analyzed. Four significant positive correlations were observed between alkaline nitrogen and geniposide, exchangeable calcium and geniposide, available potassium and shanzhiside, and available phosphorus and shanzhiside methyl ester. The transcriptome data showed 12 P. rotata cDNA libraries with 74.46 Gb of clean data, which formed 29,833 unigenes. Moreover, 78.91% of the unigenes were annotated using the eight public databases. Forty-one candidate genes representing 23 enzymes involved in the biosynthesis of iridoid compounds were identified in P. rotata leaves. Moreover, the DXS1, IDI1, 8-HGO1, and G10H2 genes associated with iridoid biosynthesis were specifically expressed in P. rotata. The integration of transcriptome and metabolome analyses highlights the crucial role of soil physical and chemical indicators and major gene expression related to iridoid metabolism pathways in P. rotata from different areas. Our findings provide a theoretical foundation for exploring the molecular mechanisms underlying iridoid compound accumulation in P. rotata.
Collapse
Affiliation(s)
- Luhao Wang
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China;
| | - Huichun Xie
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Lianyu Zhou
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Yujiao He
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
| | - Zuxia Li
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
| | - Feng Qiao
- Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, School of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.W.); (H.X.); (L.Z.); (Y.H.); (Z.L.)
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
2
|
Wang YY, Ni JC, Zhao YQ, Yang X, Niu ZP, Yang XZ, Dong XX, Zhao YH, Hao XJ, Ding X. Iridoid glycosides from Morinda officinalis induce lysosomal biogenesis and promote autophagic flux to attenuate oxidative stress. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:562-574. [PMID: 37897053 DOI: 10.1080/10286020.2023.2269370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Morinda officinalis is a traditional Chinese tonic herb, and have been used in the treatment of multiple diseases. Here, three iridoid glycosides isolated from M. officinalis were evaluated for their roles in the autophagy-lysosomal pathway. All three iridoid glycosides could induce TFEB/TFE3-mediated lysosomal biogenesis and trigger autophagy. Interestingly, they promoted the nuclear import of TFEB/TFE3 without affecting their nuclear export, suggesting their role in the maintenance of lysosomal homeostasis. The results from this study shed light on the identification of autophagy activators from M. officinalis and provide a basis for developing them in the treatment of oxidative stress-involved diseases.
Collapse
Affiliation(s)
- Yin-Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jian-Cheng Ni
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, Ningde Normal University, Ningde 352100, China
| | - Yue-Qin Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Peng Niu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550009, China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xian-Xiang Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Han Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
3
|
Jiang Y, Chen L, Zeng J, Wang Y, Chen Y, Chen S, Xu J, He X. Anti-inflammatory monoterpenes from morinda (Morinda officinalis How.). PHYTOCHEMISTRY 2024; 220:114034. [PMID: 38382668 DOI: 10.1016/j.phytochem.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Morinda (Morinda officinalis How.) is widely consumed as a functional food owing to its potential to promote health. This study investigated the anti-inflammatory phytochemicals of morinda and isolated 30 monoterpenes, including 6 undescribed iridoids (1, 6, 9-11 and 25), 2 undescribed acyclic monoterpenoids (28, 29), a known acyclic monoterpenoid and 21 known iridoids. Their chemical and stereo-structures were elucidated based on HR-ESI-MS, NMR, 13C-NMR calculations, ECD data and ECD calculations. Notably, compounds 11, 12 and 20 exerted pronounced inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages, with IC50 values of 28.51 ± 1.70, 25.45 ± 4.17 and 29.17 ± 3.71 μM respectively (indomethacin, IC50 of 33.68 ± 2.19 μM). The same compounds exert anti-inflammatory effects by blocking nuclear translocation of nuclear factor κ-B, and down-regulating the expression of inflammatory cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-1β and interleukin-6 at mRNA and protein levels in a dose-dependent manner. These results suggest that moderate consumption of morinda helps prevent and reduce the occurrence of inflammatory-related diseases.
Collapse
Affiliation(s)
- Yan Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Lu Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yuanyuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Siting Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Jaafar A, Zulkipli MA, Mohd Hatta FH, Jahidin AH, Abdul Nasir NA, Hazizul Hasan M. Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review. Saudi Pharm J 2024; 32:101876. [PMID: 38226349 PMCID: PMC10788517 DOI: 10.1016/j.jsps.2023.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Acute inflammation may develop into chronic, life-threatening inflammation-related diseases if left untreated or if there are persistent triggering factors. Cancer, diabetes mellitus, stroke, cardiovascular diseases, and neurodegenerative disorders are some of the inflammation-related diseases affecting millions of people worldwide. Despite that, conventional medical therapy such as non-steroidal anti-inflammatory drugs (NSAIDs) is associated with serious adverse effects; hence, there is an urgent need for a newer and safer therapeutic alternative from natural sources. Iridoids are naturally occurring heterocyclic monoterpenoids commonly found in Rubiaceae plants. Plant extracts from the Rubiaceae family were demonstrated to have medicinal benefits against neurodegeneration, inflammation, oxidative stress, hyperglycaemia, and cancer. However, the therapeutic effects of natural iridoids derived from Rubiaceae as well as their prospective impacts on inflammation in vitro and in vivo have not been thoroughly explored. The databases of PubMed, Scopus, and Web of Science were searched for pertinent articles in accordance with PRISMA-ScR guidelines. A total of 31 pertinent articles from in vitro and in vivo studies on the anti-inflammatory potentials of iridoids from Rubiaceae were identified. According to current research, genipin, geniposide, and monotropein are the most researched iridoids from Rubiaceae that reduce inflammation. These iridoids primarily act by attenuating inflammatory cytokines and mediators via inhibition of the NF-κB signalling pathway in various disease models. A comprehensive overview of the current research on the anti-inflammatory properties of iridoids from the Rubiaceae family is presented in this review, highlighting the characteristics of the experimental models used as well as the mechanisms of action of these iridoids. To develop an alternative therapeutic agent from iridoids, more studies are needed to elucidate the effects and mechanism of action of iridoids in a wide variety of experimental models as well as in clinical studies pertaining to inflammation-related diseases.
Collapse
Affiliation(s)
- Aisyah Jaafar
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Muhammad Amal Zulkipli
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Fazleen Haslinda Mohd Hatta
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Aisyah Hasyila Jahidin
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Mizaton Hazizul Hasan
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Kaweetripob W, Thongnest S, Boonsombat J, Batsomboon P, Salae AW, Prawat H, Mahidol C, Ruchirawat S. Phukettosides A-E, mono- and bis-iridoid glycosides, from the leaves of Morinda umbellata L. PHYTOCHEMISTRY 2023; 216:113890. [PMID: 37852566 DOI: 10.1016/j.phytochem.2023.113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
Four undescribed bis-iridoid glycosides, named phukettosides A-D, and one iridoid glycoside, referred to as phukettoside E, were isolated and fully characterized from the leaves of Morinda umbellata L. Phytochemical analysis also revealed the presence of eight known compounds. The structures were determined through extensive analysis of 1D and 2D-NMR spectroscopic and HRMS spectral data, and the absolute configurations of the isolates were deduced through ECD calculations. Biogenetic pathways for the bis-iridoid glycosides, phukettosides A-C, through intermolecular Diels-Alder type reactions, were proposed. The isolated compounds, with the exception of phukettosides B and D, were evaluated against a panel of cancer cell lines (MOLT-3, HuCCA-1, A549, HeLa, HepG2, and MDA-MB-231) and a non-cancerous cell line (MRC-5) for their cytotoxicity. None of the isolates had significant cytotoxic effects on the tested cell lines.
Collapse
Affiliation(s)
| | - Sanit Thongnest
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Jutatip Boonsombat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Abdul-Wahab Salae
- Laboratory of Natural Products Chemistry, Faculty of Science and Technology, Phuket Rajabhat University, Muang, Phuket 83000, Thailand
| | - Hunsa Prawat
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| | - Chulabhorn Mahidol
- Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| |
Collapse
|
6
|
Huyen LT, Thi Hien N, Viet Duy Anh N, Mai Thao V, Thi Kim Thoa N, Thi Minh Hang N. A new iridoid glucoside from the roots of Morinda officinalis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1223-1228. [PMID: 37232117 DOI: 10.1080/10286020.2023.2211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
A new iridoid glucoside, moridoside (1), and nine known compounds, asperulosidic acid (2), 6-O-epi-acetylscandoside (3), geniposidic acid (4), 2-hydroxymethylanthraquinone (5), 2-hydroxymethyl-3-hydroxyanthraquinone (6), damnacanthol (7), lucidine-ω-methyl ether (8), 2-hydroxy-1-methoxyanthraquinone (9), and 3,8-dihydroxy-1,2-dimethoxyanthraquinone (10) were isolated from the methanol extract of Morinda officinalis How. roots. Their structural identification was carried out based on the spectroscopic evidence. All compounds were evaluated for their nitric oxide (NO) production inhibitory activities in LPS-stimulated RAW264.7 macrophages. Compounds 5-7 significantly inhibited the production of NO with IC50 values of 28.4, 33.6, and 30.5 μM, respectively.
Collapse
Affiliation(s)
- Le Thi Huyen
- VNU University of Science, Vietnam National University, Thanh Xuan, Hanoi 11400, Vietnam
| | - Nguyen Thi Hien
- VNU University of Science, Vietnam National University, Thanh Xuan, Hanoi 11400, Vietnam
| | - Nguyen Viet Duy Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Vu Mai Thao
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| | - Nguyen Thi Kim Thoa
- Faculty of Basic Science, Hanoi University of Mining and Geology, Hanoi 11900, Vietnam
| | - Nguyen Thi Minh Hang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi 10072, Vietnam
| |
Collapse
|
7
|
Gao Q, Zhou LX, Huang R, Zhang SX, Chen G. Five New Glycoside Constituents from the Roots of Gentiana crassicaulis Duthie ex Burk. Chem Biodivers 2023; 20:e202300841. [PMID: 37462846 DOI: 10.1002/cbdv.202300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Three undescribed glycoside constituents, macrophyllosides E-G and a pair of iridoid glycosides genticrasides A/B, together with eleven known glycoside compounds were isolated from the roots of Gentiana crassicaulis Duthie ex Burk. Their structures were identified by means of spectra analysis and data comparison with previous literatures. Interestingly, the glucose moieties in macrophylloside E and F possess free anomeric hydroxy groups. Genticrasides A/B, identified as a pair of iridoid originated lactones, have not been reported from Gentianaceae family up to now. The anti-inflammatory effects of selected compounds were also evaluated through the nitric oxide (NO) production inhibition in lipopolysaccharides (LPS)-induced RAW264.7 macrophage cells. In which, macrophyllosides G and D showed NO inhibitory activities with rates of 76.14±4.02 % and 52.44±8.29 % at 100 μg/mL.
Collapse
Affiliation(s)
- Qiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li-Xiang Zhou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rong Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shu-Xian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Li X, Luo M, Song H, Dong Z. Whole-Genome Resource of Lasiodiplodia pseudotheobromae BaA, the Causative Agent of Black Root Rot Morinda officinalis. PLANT DISEASE 2023; 107:542-545. [PMID: 36587237 DOI: 10.1094/pdis-06-22-1507-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Xiaoyi Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, Guangdong, China
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, Guangdong, China
- Key Laboratory of Fruit and Vegetable Green Prevention and Control in South China, Ministry of Agriculture and Rural Affairs, 510225 Guangzhou, Guangdong, China
| | - Handa Song
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, Guangdong, China
- Key Laboratory of Fruit and Vegetable Green Prevention and Control in South China, Ministry of Agriculture and Rural Affairs, 510225 Guangzhou, Guangdong, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, Guangdong, China
- Key Laboratory of Fruit and Vegetable Green Prevention and Control in South China, Ministry of Agriculture and Rural Affairs, 510225 Guangzhou, Guangdong, China
- Deqing Zhongkai Agricultural Technical Innovation Research Co. Ltd., 526600 Zhaoqing, Guangdong, China
| |
Collapse
|
9
|
Wang C, Wei QH, Xin ZQ, Tian LL, Zhang JS, Zhang H. Methyl 2-naphthoates with anti-inflammatory activity from Morinda officinalis. Fitoterapia 2023; 164:105354. [PMID: 36403943 DOI: 10.1016/j.fitote.2022.105354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Chemical fractionation of the EtOH extract of the roots of a traditional Chinese herb, Morinda officinalis, afforded an array of methyl 2-naphthoate derivatives (1-9) including four pairs of enantiomers (1-4), two pimarane diterpenes and two ursane triterpenoids. Among them, eight compounds (1a/1b-3a/3b, 11 and 13) were reported in the current work for the first time. The structures of the new compounds, including their absolute configurations, were defined by spectroscopic analyses in combination with quantum chemical electronic circular dichroism (ECD) and gauge-independent atomic orbital (GIAO) NMR calculations. All the isolates were evaluated for their inhibitory effect on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, and the enantiomers 1a and 3b exhibited moderate activity with IC50 values of 41.9 and 26.2 μM. Meanwhile, compound 3b also dose-dependently inhibited the secretion of two pro-inflammatory cytokines TNF-α and IL-6 in the same cell model.
Collapse
Affiliation(s)
- Chao Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Quan-Hao Wei
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhen-Qiang Xin
- Shanghai Standard Technology Co., Ltd., Shanghai 201314, China
| | - Lin-Lin Tian
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jun-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
10
|
Zhang Y, Zhang M. Neuroprotective effects of Morinda officinalis How.: Anti-inflammatory and antioxidant roles in Alzheimer’s disease. Front Aging Neurosci 2022; 14:963041. [PMID: 36158563 PMCID: PMC9493036 DOI: 10.3389/fnagi.2022.963041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 12/08/2022] Open
Abstract
Pharmacological studies have shown that some traditional Chinese medicines (TCMs) have applications in the treatment of Alzheimer’s disease (AD). Morinda officinalis How. (MO) is a TCM with a long history and is widely used to tonify kidney Yang. In vitro and in vivo experiments have suggested that MO contains various effective pharmaceutical components and chemicals, including oligosaccharides, anthraquinones, iridoids, flavonoids, amino acids, and trace elements, conferring MO with anti-inflammatory and antioxidant properties. Neuroinflammation and oxidative stress are undoubtedly hallmarks of neurodegeneration, contributing to AD progression. In this mini-review, we summarize the molecular mechanisms, structure-activity relationships, and potential synergistic and antagonistic effects of active components in MO. This discussion highlights the roles of these active components, such as oligosaccharides, anthraquinones, and iridoid glycosides, in the treatment of AD via anti-inflammatory and antioxidant mechanisms, providing a scientific basis for further utilization of MO.
Collapse
|
11
|
Oladeji OS, Oluyori AP, Dada AO. Genus Morinda: An insight to its ethnopharmacology, phytochemistry, pharmacology and Industrial Applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
12
|
Xiao J, Cai M, Wang Y, Ding P. Antiviral Activities of Officinaloside C against Herpes Simplex Virus-1. Molecules 2022; 27:molecules27113365. [PMID: 35684303 PMCID: PMC9182280 DOI: 10.3390/molecules27113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The iridoid compounds in traditional Chinese medicine play a prominent role in their antiviral effects. We previously reported the anti-inflammatory effect of new iridoids from the aerial parts of Morinda officinalis. Nevertheless, several open questions remain to explore the other biological functions of these new iridoid compounds. Herpes simplex virus-1 (HSV-1) is one of the most prevalent pathogens in human beings worldwide and due to limited therapies, mainly with the guanosine analog aciclovir (ACV) and other analogs, the search for new drugs with different modes of action and low toxicity becomes particularly urgent for public health. This study aimed to explore the anti-HSV-1 effects of iridoids from the aerial parts of Morinda officinalis. The dried aerial parts of Morinda officinalis were extracted with 95% ethanol and systematic separation and purification were then carried out by modern column chromatography methods such as silica gel column, RP-ODS column, Sephadex LH-20 gel column, and semi-preparative liquid phase, and the structure of these compounds were identified through the physical and chemical properties and a variety of spectral techniques. The obtained seven new iridoid compounds were screened for antiviral activity on HSV-1 through CCK8 and the cytopathic effect, and then the plaque reduction assay, the anti-fluorescence reporter virus strain replication, and RT-qPCR experiments were carried out to further evaluate the antiviral effect. Seven new iridoid compounds (officinaloside A-G) were identified from the aerial parts of Morinda officinalis, and officinaloside C showed anti-HSV-1 activity. Further functional experiments confirmed that officinaloside C has a significant inhibiting effect on HSV-1 virus plaque formation, viral gene, and protein expression, and fluorescent virus replication. Our findings suggest that officinaloside C has significant inhibitory effects on viral plaque formation, genome replication, and viral protein expression of HSV-1 which implies that officinaloside C exhibits viral activity and may be a promising treatment for HSV-1 infection.
Collapse
Affiliation(s)
- Ji Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.X.); (M.C.)
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.X.); (M.C.)
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Correspondence: (Y.W.); (P.D.); Tel.: +86-020-39358233 (P.D.)
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.X.); (M.C.)
- Correspondence: (Y.W.); (P.D.); Tel.: +86-020-39358233 (P.D.)
| |
Collapse
|
13
|
Tao Q, Peng D, Li P, Lai L, Li W, Du B. Genotoxicity, acute and subchronic toxicity evaluation of fermented Morinda officinalis. Food Chem Toxicol 2022; 163:113003. [PMID: 35413384 DOI: 10.1016/j.fct.2022.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
Abstract
Morinda officinalis has diverse pharmacological effects and has the potential to be used as functional food and medicine. Fermentation is traditionally used to process Morinda officinalis. However, the toxicological profile of fermented Morinda officinalis (FMO) is not reported. In the present study, the toxicological characteristics of FMO were assessed for the first time. FMO did not show any genotoxicity based on the Ames test, mammalian erythrocyte micronucleus test, and mouse primary spermatocyte chromosome aberration test. FMO administered by gavage in mice and rats at a dose of 20 g/kg BW did not induce death or toxicity based on acute study, indicating that FMO could be regarded as non-toxic at the tested dose. In the 90-day subchronic toxicity study, rats fed with FMO at the maximum dose of 8 g/kg BW did not affect mortalities, BW, food consumption, organ weights, hematology, serum biochemistry, or urinalysis. The no observed adverse effect level of FMO in both sexes was not less than 8 g/kg BW/day based on subchronic toxicity. The obtained results support the safe use of FMO as functional food and medicine.
Collapse
Affiliation(s)
- Qian Tao
- Infinitus (China) Co., Ltd., Guangzhou, 510623, China
| | - Dong Peng
- South China Agricultural University, College of Food Science, Guangzhou, 510642, China
| | - Pan Li
- South China Agricultural University, College of Food Science, Guangzhou, 510642, China
| | - Lanyu Lai
- South China Agricultural University, College of Food Science, Guangzhou, 510642, China
| | - Wenzhi Li
- Infinitus (China) Co., Ltd., Guangzhou, 510623, China.
| | - Bing Du
- South China Agricultural University, College of Food Science, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Qiu's Neiyi Recipe Regulates the Inflammatory Action of Adenomyosis in Mice via the MAPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9791498. [PMID: 34931128 PMCID: PMC8684508 DOI: 10.1155/2021/9791498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Background The management of adenomyosis is challenging and limiting. Qiu's Neiyi recipe (Qiu) is a traditional Chinese medicine (TCM) prescription clinically used for endometriosis treatment in China, but the effect and mechanism of Qiu on adenomyosis are undefined. Methods An experimental adenomyosis model was induced in female neonatal ICR mice administrated with tamoxifen. The adenomyosis mice were divided into five groups: high-, middle-, and low-Qiu's group, danazol group, and model group. The mice just administrated with the solvent only (no tamoxifen or drugs) were served as the control group. After 28 days of administration, the body, uterine, spleen, and thymus weights of all mice were examined. Then, the myometrial infiltration and the expression of inflammatory factors were detected by histology examination, ELISA, and qRT-PCR in the uterus. In addition, the MAPK/ERK signaling pathway-related protein expression in adenomyosis mice was detected by immunohistochemical (IHC) staining, qRT-PCR, and western blotting. Results In experimental adenomyosis mice, Qiu treatment improved the symptoms of adenomyosis by reducing the myometrial infiltration and increasing the index of spleen and thymus. The elevated levels of IL-1β, IL-6, and TNF-α in serum and uterus tissues of adenomyosis model mice were also decreased after Qiu treatment. The improvement of Qiu on the adenomyosis was achieved by inhibiting the activated MAPK/ERK signaling pathway, including reducing the mRNA and protein expressions of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 in the uterus tissues. Conclusion Qiu alleviated the inflammatory reaction and uterus histological changes in mice with adenomyosis, and the potential mechanism is through the inhibition of the MAPK/ERK signaling pathway. Qiu may be a promising treatment for adenomyosis.
Collapse
|