1
|
Liu YY, Cai D, Tang XP, Cheng YX. Baoslingzhines Q-X: Structurally previously undescribed trace phenolic meroterpenoids from Ganoderma lucidum and their biological activities toward renal fibrosis and cytotoxicity. PHYTOCHEMISTRY 2025; 235:114448. [PMID: 39983939 DOI: 10.1016/j.phytochem.2025.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Eight previously undescribed phenolic meroterpenoids baoslingzhines Q-X (1-8) including three enantiomeric (±)-baoslingzhines Q-S (1-3) harboring a 2-methylbenzofuran moiety, two trinormeroterpenoids baoslingzhines T and U (4 and 5) containing a 5-methylbenzyl motif as a connection point with another ring, an alkaloid baoslingzhine V (6) possessing 3-methylquinoline, were purified from Ganoderma lucidum. Their planar structures and the absolute configurations were elucidated based on spectroscopic methods and experimental electronic circular dichroism calculations. Compound 6 was capable of diminishing the expression of fibronectin and α-SMA, while compound 8 might dose-dependently attenuate fibronectin and collagen I expression. Besides, inhibition of cell viability of compounds 4-6 toward five human cancer cell lines were observed.
Collapse
Affiliation(s)
- Yun-Yun Liu
- Guangdong Provicinal Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Dan Cai
- Guangdong Provicinal Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Xin-Ping Tang
- Guangdong Provicinal Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Xian Cheng
- Guangdong Provicinal Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Liu YY, Cai D, Tang XP, Cheng YX. Ganoderma lucidum-Derived Meroterpenoids Show Anti-Inflammatory Activity In Vitro. Molecules 2024; 29:1149. [PMID: 38474661 PMCID: PMC10935275 DOI: 10.3390/molecules29051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.
Collapse
Affiliation(s)
- Yun-Yun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xin-Ping Tang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yong-Xian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
4
|
Peng YL, Wang YX, Cheng YX. Isolation and characterization of dihydropyran-ring containing meroterpenoids from Ganoderma lucidum and their inhibitory activity against renal fibrosis-related protein expression. PHYTOCHEMISTRY 2023; 214:113799. [PMID: 37499848 DOI: 10.1016/j.phytochem.2023.113799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The Ganoderma lucidum mushroom, which has been used as a traditional medicine in China for more than 2000 years, is a source of many interesting natural product. In this study, the five undescribed minor meroterpenoids baoslingzhines F-J (1-5), containing a dihydropyran moiety, were isolated as racemic mixtures from the fruiting bodies of G. lucidum. These substances were structurally and stereochemically characterized by using spectroscopic and computational methods. Chiral HPLC was employed to separate the (+)- and (-)-antipodes. A survey of the activities against kidney fibrosis showed that both enantiomers of baoslingzhines F-J inhibit expression of renal fibrosis-related proteins, including fibronectin, collagen I and ɑ-SMA in TGF-β1-induced rat kidney proximal tubular cells.
Collapse
Affiliation(s)
- Yun-Li Peng
- College of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, PR China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Yong-Xiang Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China; Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, PR China.
| |
Collapse
|
5
|
Pan Y, Zhang Y, Li J, Zhang Z, He Y, Zhao Q, Yang H, Zhou P. A proteoglycan isolated from Ganoderma lucidum attenuates diabetic kidney disease by inhibiting oxidative stress-induced renal fibrosis both in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116405. [PMID: 36966849 DOI: 10.1016/j.jep.2023.116405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) was regarded as "miraculous herb" by the Chinese and recorded detailly in the "Shen Nong Ben Cao Jing" as a tonic to improve health and prolong life. A proteoglycan (namely, FYGL) was extracted from Ganoderma lucidum, which was a water-soluble hyperbranched proteoglycan, and was found to be able to protect pancreatic tissue against oxidative stress damage. AIM OF THE STUDY Diabetic kidney disease (DKD) is a complication of diabetes, but the effective treatment is still lack. Chronic hyperglycemia in diabetic patients induce the accumulation of ROS, which injure the renal tissue and lead to the renal dysfunction. In this work, the efficacy and target mechanics of FYGL on diabetic renal function were investigated. MATERIALS AND METHODS In the present study, the mechanism of the reno-protection of FYGL was analyzed on diabetic db/db mice and rat glomerular mesangial cells (HBZY-1) induced by high glucose (HG) with palmitate (PA) (HG/PA). In vitro, the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated by commercial kits. the expressions of NOX1 and NOX4, phosphorylation of MAPK and NF-κB, and pro-fibrotic proteins were measured by Western blot. In vivo, diabetic db/db mice were gavaged with FYGL for 8 weeks, body weight and fasting blood glucose (FBG) were tested weekly. On 8th week, the serum, urine and renal tissue were collected for glucose tolerance test (OGTT), redox indicator (SOD, CAT, GSH and MDA), lipid metabolism (TC, TG, LDL and HDL), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), 8-oxo-deoxyguanosine (8-OHdG), and the changes of histopathology and expression of collagen IV and AGEs. RESULTS The results in vitro showed that FYGL significantly inhibited the HG/PA-induced HBZY-1 cells proliferation, ROS generation, MDA production, promoted SOD activity, and suppressed NOX1, NOX4, MAPK, NF-κB, and pro-fibrotic proteins expression. In addition, FYGL markedly alleviated blood glucose, antioxidant activity and lipid metabolism, improved renal functions, and relieved renal histopathological abnormalities, especially renal fibrosis. CONCLUSIONS The antioxidant activity of FYGL can reduce ROS caused by diabetes and protect renal from oxidative stress-induced dysfunction, thereby improving renal function. This study shows that FYGL has the potential to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| | - Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Fang DS, Cheng CR, Qiu MH, Peng XR. Diverse meroterpenoids with α-glucosidase inhibitory activity from Ganoderma cochlear. Fitoterapia 2023; 165:105420. [PMID: 36586625 DOI: 10.1016/j.fitote.2022.105420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Three new meroterpenoids, cochlearins J-L (1-3) and three known meroterpenoids (4-6) were isolated from the fruiting bodies of Ganoderma cochlear. NMR (1H and 13C NMR, 1H - 1H COSY, HSQC, HMBC and ROESY), and HRESIMS were employed for the structure elucidation of new compounds. The stereostructures of 1-3 were confirmed by calculated ECD and optical rotation methods. Furthermore, compounds (+)-1, (-)-1, (+)-2, (-)-2, (+)-3, (-)-3, and 4-6 were evaluated for their α-glucosidase inhibitory activity. The results showed that compounds (+)-1, (-)-1 and (+)-2 exhibited stronger inhibition against α-glucosidase with IC50 values of 24.18 ± 1.98, 26.49 ± 3.20 and 29.68 ± 2.73 μM, respectively, compared to the positive control ursolic acid (49.65 ± 2.21 μM). The molecular docking experiments reveal that (+)-2 and (-)-2 had different binding mode with α-glucosidase, leading to their different inhibition.
Collapse
Affiliation(s)
- Da-Shuang Fang
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Chun-Ru Cheng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000, Sichuan, PR China.
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|