1
|
Hernández-Rodríguez M, Jasso-de Rodríguez D, Hernández-Castillo FD, Moggio I, Arias E, Valenzuela-Soto JH, Flores-Olivas A. The Rhizobacterium Bacillus amyloliquefaciens MHR24 Has Biocontrol Ability Against Fungal Phytopathogens and Promotes Growth in Arabidopsis thaliana. Microorganisms 2024; 12:2380. [PMID: 39597768 PMCID: PMC11596665 DOI: 10.3390/microorganisms12112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
A novel rhizobacteria Bacillus was isolated from rhizosphere of soil associated with tomato (Solanum lycopersicum L.) under open field conditions. The Bacillus amyloliquefaciens strain MHR24 (MHR24) is a promising biocontrol agent against several fungal phytopathogens. In this research, MHR24 was characterized by an effective antagonistic ability against Alternaria alternata (Aa), Botrytis cinerea (Bc), Fusarium oxysporum F1 (F1), F. oxysporum F2 (F2), F. oxysporum R3 (F3), and Sclerotinia sclerotiorum (Sc). In particular, MHR24 showed a strong inhibition via airborne volatiles against Bc, F3, Aa, and F2 fungal strains. MHR24 also showed elevated saline stress tolerance at 1% and 25% to NaCl and KCl. The molecular sequence analysis of 16S rDNA confirmed the identity of the isolate as Bacillus amyloliquefaciens strain MHR24. Bioassays on Arabidopsis thaliana Col-0 inoculated with MHR24 showed in in vitro conditions that MHR24 significantly increases the foliar and root area, while in growth chamber conditions, it strongly increases the dry shoot biomass of A. thaliana. The observed results indicate that B. amyloliquefaciens MHR24 has a broad-spectrum biocontrol against fungal phytopathogens and can be used as a biofertilizer and biocontrol agent to improve horticultural crops.
Collapse
Affiliation(s)
- Mónica Hernández-Rodríguez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - Diana Jasso-de Rodríguez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| | - Francisco Daniel Hernández-Castillo
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo 25294, Coahuila, Mexico; (I.M.); (E.A.)
| | - José Humberto Valenzuela-Soto
- CONAHCyT-Centro de Investigación en Química Aplicada, Departamento de Biociencias y Agrotecnología, Saltillo 25294, Coahuila, Mexico
| | - Alberto Flores-Olivas
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico; (M.H.-R.); (D.J.-d.R.); (F.D.H.-C.)
| |
Collapse
|
2
|
Han DM, Baek JH, Choi DG, Jeon CO. Fermentative metabolic features of doenjang-meju as revealed by genome-centered metatranscriptomics. Food Chem X 2024; 23:101658. [PMID: 39139486 PMCID: PMC11321427 DOI: 10.1016/j.fochx.2024.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Fermentative features of doenjang-meju, a traditional Korean soybean brick, were investigated over 45 days via genome-centered metatranscriptomics. The pH value rapidly decreased within 10 days and successively increased after 20 days, along with an initial bacterial growth, including lactic acid bacteria, and subsequent fungal growth, suggesting their association. Polysaccharides and lipids underwent degradation, and amino acids, free sugars, and organic acids increased during the early stage. Metagenome analysis identified Aspergillus, Bacillus, Enterococcus, Staphylococcus, and Leuconostoc as major microbes, which were isolated and genome-sequenced. Metatranscriptomic analysis revealed the major roles of Bacillus and Enterococcus during the early period, shifting to Aspergillus dominance after 10 days. Metabolic pathway reconstruction and transcriptional analysis reveal that Aspergillus primarily decomposed polysaccharides to free sugars; Aspergillus and Bacillus metabolized lipids, free sugars, and organic acids generated by Enterococcus; and Aspergillus and Bacillus were instrumental in amino acid metabolism: their contributions varied by compounds and pathways.
Collapse
Affiliation(s)
- Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
4
|
Wang J, Wang Z, Liu C, Song M, Xu Q, Liu Y, Yan H. Genome analysis of a newly isolated Bacillus velezensis-YW01 for biodegrading acetaldehyde. Biodegradation 2024; 35:539-549. [PMID: 38573500 DOI: 10.1007/s10532-024-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
5
|
Liu Q, Zhao W, Li W, Zhang F, Wang Y, Wang J, Gao Y, Liu H, Zhang L. Lipopeptides from Bacillus velezensis ZLP-101 and their mode of action against bean aphids Acyrthosiphon pisum Harris. BMC Microbiol 2024; 24:231. [PMID: 38951812 PMCID: PMC11218388 DOI: 10.1186/s12866-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.
Collapse
Affiliation(s)
- Qiuyue Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Zhao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Wenya Li
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Feiyan Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yana Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Jiangping Wang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Yumeng Gao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China
- Hebei Normal University, Shijiazhuang, 050024, PR China
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| | - Liping Zhang
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, PR China.
- Main Crops Disease of Microbial Control Engineering Technology Research Center in Hebei Province, Shijiazhuang, 050081, PR China.
| |
Collapse
|
6
|
Dahar GY, Wang HW, Rajer FU, Jin P, Xu P, Abro MA, Qureshi AS, Karim A, Miao W. Comparative genomic analysis of Bacillus atrophaeus HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities. Front Microbiol 2024; 15:1384691. [PMID: 38989016 PMCID: PMC11233526 DOI: 10.3389/fmicb.2024.1384691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.
Collapse
Affiliation(s)
- Ghulam Yaseen Dahar
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Huan Wei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Pengfie Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Abdul Sattar Qureshi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Asad Karim
- Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China
| |
Collapse
|
7
|
Han DM, Baek JH, Choi DG, Jeon MS, Eyun SI, Jeon CO. Comparative pangenome analysis of Aspergillus flavus and Aspergillus oryzae reveals their phylogenetic, genomic, and metabolic homogeneity. Food Microbiol 2024; 119:104435. [PMID: 38225047 DOI: 10.1016/j.fm.2023.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Aspergillus flavus and Aspergillus oryzae are closely related fungal species with contrasting roles in food safety and fermentation. To comprehensively investigate their phylogenetic, genomic, and metabolic characteristics, we conducted an extensive comparative pangenome analysis using complete, dereplicated genome sets for both species. Phylogenetic analyses, employing both the entirety of the identified single-copy orthologous genes and six housekeeping genes commonly used for fungal classification, did not reveal clear differentiation between A. flavus and A. oryzae genomes. Upon analyzing the aflatoxin biosynthesis gene clusters within the genomes, we observed that non-aflatoxin-producing strains were dispersed throughout the phylogenetic tree, encompassing both A. flavus and A. oryzae strains. This suggests that aflatoxin production is not a distinguishing trait between the two species. Furthermore, A. oryzae and A. flavus strains displayed remarkably similar genomic attributes, including genome sizes, gene contents, and G + C contents, as well as metabolic features and pathways. The profiles of CAZyme genes and secondary metabolite biosynthesis gene clusters within the genomes of both species further highlight their similarity. Collectively, these findings challenge the conventional differentiation of A. flavus and A. oryzae as distinct species and highlight their phylogenetic, genomic, and metabolic homogeneity, potentially indicating that they may indeed belong to the same species.
Collapse
Affiliation(s)
- Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
8
|
Meng XJ, Wang LQ, Ma BG, Wei XH, Zhou Y, Sun ZX, Li YY. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2024; 15:1360173. [PMID: 38751839 PMCID: PMC11094357 DOI: 10.3389/fpls.2024.1360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiang-jia Meng
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Lan-qin Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bai-ge Ma
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Xi-hong Wei
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Zheng-xiang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Yan-yan Li
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
9
|
Cheng Y, Lou H, He H, He X, Wang Z, Gao X, Liu J. Genomic and biological control of Sclerotinia sclerotiorum using an extracellular extract from Bacillus velezensis 20507. Front Microbiol 2024; 15:1385067. [PMID: 38596383 PMCID: PMC11002150 DOI: 10.3389/fmicb.2024.1385067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sclerotinia sclerotiorum is a known pathogen that harms crops and vegetables. Unfortunately, there is a lack of effective biological control measures for this pathogen. Bacillus velezensis 20507 has a strong antagonistic effect on S. Sclerotiorum; however, the biological basis of its antifungal effect is not fully understood. Methods In this study, the broad-spectrum antagonistic microorganisms of B. velezensis 20507 were investigated, and the active antifungal ingredients in this strain were isolated, purified, identified and thermal stability experiments were carried out to explore its antifungal mechanism. Results The B. velezensis 20507 genome comprised one circular chromosome with a length of 4,043,341 bp, including 3,879 genes, 185 tandem repeats, 87 tRNAs, and 27 rRNAs. Comparative genomic analysis revealed that our sequenced strain had the closest genetic relationship with Bacillus velezensis (GenBank ID: NC 009725.2); however, there were significant differences in the positions of genes within the two genomes. It is predicted that B. velezensis 20507 encode 12 secondary metabolites, including difficidin, macrolactin H, fengycin, surfactin, bacillibactin, bacillothiazole A-N, butirosin a/b, and bacillaene. Results showed that B. velezensis 20507 produced various antagonistic effects on six plant pathogen strains: Exserohilum turcicum, Pyricularia oryzae, Fusarium graminearum, Sclerotinia sclerotiorum, Fusarium oxysporum, and Fusarium verticillioides. Acid precipitation followed by 80% methanol leaching is an effective method for isolating the antifungal component ME80 in B. velezensis 20507, which can damage the membranes of S. sclerotiorum hyphae and has good heat resistance. Using high-performance liquid chromatography, and Mass Spectrometry analysis, it is believed that fengycin C72H110N12O20 is the main active antifungal substance. Discussion This study provides new resources for the biological control of S. Sclerotiorum in soybeans and a theoretical basis for further clarification of the mechanism of action of B. velezensis 20507.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| | - Hanxiao Lou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| | - Xinyi He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| | - Zicheng Wang
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Xin Gao
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin, China
| |
Collapse
|
10
|
Han Z, Ye C, Dong X, Chen C, Zou D, Huang K, Wei X. Genetic identification and expression optimization of a novel protease HapR from Bacillus velezensis. Front Bioeng Biotechnol 2024; 12:1383083. [PMID: 38544979 PMCID: PMC10966715 DOI: 10.3389/fbioe.2024.1383083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 11/11/2024] Open
Abstract
Due to the broad application and substantial market demand for proteases, it was vital to explore the novel and efficient protease resources. The aim of this study was to identify the novel protease for tobacco protein degradation and optimize the expression levels. Firstly, the tobacco protein was used as the sole nitrogen resource for isolation of protease-producing strains, and a strain with high protease production ability was obtained, identified as Bacillus velezensis WH-7. Then, the whole genome sequencing was conducted on the strain B. velezensis WH-7, and 7 proteases genes were mined by gene annotation analysis. By further heterologous expression of the 7 protease genes, the key protease HapR was identified with the highest protease activity (144.19 U/mL). Moreover, the catalysis mechanism of HapR was explained by amino acid sequence analysis. The expression levels of protease HapR were further improved through optimization of promoter, signal peptide and host strain, and the maximum protease activity reaced 384.27 U/mL in WX-02/pHY-P43-SPyfkD-hapR, increased by 167% than that of initial recombinant strain HZ/pHY-P43-SPhapR-hapR. This study identified a novel protease HapR and the expression level was significantly improved, which provided an important enzyme resource for the development of enzyme preparations in tobacco protein degradation.
Collapse
Affiliation(s)
- Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xinyu Dong
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenchen Chen
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuo Huang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
11
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
12
|
Chio C, Shrestha S, Carr G, Khatiwada JR, Zhu Y, Li O, Chen X, Hu J, Qin W. Optimization and purification of bioproducts from Bacillus velezensis PhCL fermentation and their potential on industrial application and bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166428. [PMID: 37619727 DOI: 10.1016/j.scitotenv.2023.166428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bioproduction is considered a promising alternative way of obtaining useful and green chemicals. However, the downstream process of biomolecules has been one of the major difficulties in upscaling the application of bioproducts due to the high purification cost. Acid precipitation is the most common method for purifying biosurfactants from the fermentation broth with high purity. However, the use of strong acids and organic solvents in solvent extraction has limited its application. Hence, in this study, a new strain of Bacillus velezensis PhCL was isolated from phenolic waste, and its production of amylase had been optimized via response surface methodology. After that, amylase and biosurfactant were purified by sequential ammonium sulfate precipitation and the result suggested that even though the purified crude biosurfactant had a lower purification fold compared to the acid precipitation, the yield was higher and both enzymes and biosurfactant also could be recovered for lowering the purification cost. Moreover, the purified amylase and crude biosurfactant were characterized and the results suggested that the purified crude biosurfactant would have a higher emulsion activity and petroleum hydrocarbon removal rate compared to traditional surfactants. This study provided another approach for purifying bioactive compounds including enzymes and biosurfactants from the same fermentation broth and further explored the potential of the crude purified biosurfactant in the bioremediation of polycyclic aromatic hydrocarbons and petroleum hydrocarbons.
Collapse
Affiliation(s)
- Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Sarita Shrestha
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Griffin Carr
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Janak Raj Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yuen Zhu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Ou Li
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuantong Chen
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Jing Hu
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
13
|
Cheng Y, Han J, Song M, Zhang S, Cao Q. Serine peptidase Vpr forms enzymatically active fibrils outside Bacillus bacteria revealed by cryo-EM. Nat Commun 2023; 14:7503. [PMID: 37980359 PMCID: PMC10657474 DOI: 10.1038/s41467-023-43359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Bacteria develop a variety of extracellular fibrous structures crucial for their survival, such as flagella and pili. In this study, we use cryo-EM to identify protein fibrils surrounding lab-cultured Bacillus amyloiquefaciens and discover an unreported fibril species in addition to the flagellar fibrils. These previously unknown fibrils are composed of Vpr, an extracellular serine peptidase. We find that Vpr assembles into fibrils in an enzymatically active form, potentially representing a strategy of enriching Vpr activities around bacterial cells. Vpr fibrils are also observed under other culture conditions and around other Bacillus bacteria, such as Bacillus subtilis, which may suggest a general mechanism across all Bacillus bacterial groups. Taken together, our study reveals fibrils outside the bacterial cell and sheds light on the physiological role of these extracellular fibrils.
Collapse
Affiliation(s)
- Yijia Cheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianting Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meinai Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shuqin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
14
|
Han DM, Baek JH, Chun BH, Jeon CO. Fermentative features of Bacillus velezensis and Leuconostoc mesenteroides in doenjang-meju, a Korean traditional fermented soybean brick. Food Microbiol 2022; 110:104186. [DOI: 10.1016/j.fm.2022.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
15
|
Yao Q, Gao Y, Fan L, Wang J, Zheng N. 2'-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut-Liver-Metabolites Axis. Nutrients 2022; 14:nu14194186. [PMID: 36235838 PMCID: PMC9572607 DOI: 10.3390/nu14194186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Liver oxygen stress is one of the main extraintestinal manifestations of colitis and 5% of cases develop into a further liver injury and metabolic disease. 2′-fucosyllactose (2′-FL), a main member of human milk oligosaccharides (HMOs), has been found to exert efficient impacts on remitting colitis. However, whether 2′-FL exerts the function to alleviate colitis-induced liver injury and how 2′-FL influences the metabolism via regulating gut microbiota remain unknown. Herein, in our study, liver oxygen stress was measured by measuring liver weight and oxygen-stress-related indicators. Then, 16S full-length sequencing analysis and non-target metabolome in feces were performed to evaluate the overall responses of metabolites and intestinal bacteria after being treated with 2′-FL (400 mg/kg b.w.) in colitis mice. The results showed that, compared with the control group, the liver weight of colitis mice was significantly decreased by 18.30% (p < 0.05). After 2′-FL treatment, the liver weight was significantly increased by 12.65% compared with colitis mice (p < 0.05). Meanwhile, they exhibited higher levels of oxidation in liver tissue with decreasing total antioxidant capacity (T-AOC) (decreased by 17.15%) and glutathione (GSH) levels (dropped by 22.68%) and an increasing malondialdehyde (MDA) level (increased by 36.24%), and 2′-FL treatment could reverse those tendencies. Full-length 16S rRNA sequencing revealed that there were 39 species/genera differentially enriched in the control, dextran sulphate sodium (DSS), and DSS + 2′-FL groups. After treatment with 2′-FL, the intestinal metabolic patterns, especially glycometabolism and the lipid-metabolism-related process, in DSS mice were strikingly altered with 33 metabolites significantly down-regulated and 26 metabolites up-regulated. Further analysis found DSS induced a 40.01%, 41.12%, 43.81%, and 39.86% decline in acetic acid, propionic acid, butyric acid, and total short chain fatty acids (SCFAs) in colitis mice (all p < 0.05), respectively, while these were up-regulated to different degrees in the DSS + 2′-FL group. By co-analyzing the data of gut microbiota and metabolites, glycometabolism and lipid-metabolism-associated metabolites exhibited strong positive/negative relationships with Akkermansia_muciniphila (all p < 0.01) and Paraprevotella spp. (all p < 0.01), suggesting that the two species might play crucial roles in the process of 2′-FL alleviating colitis-induced liver oxygen stress. In conclusion, in the gut−liver−microbiotas axis, 2′-FL mediated in glucose and lipid-related metabolism and alleviated liver oxygen stress via regulating gut microbiota in the DSS-induced colitis model. The above results provide a new perspective to understand the probiotic function of 2′-FL.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2# Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069; Fax: +86-10-62897587
| |
Collapse
|
16
|
Chen Q, Qiu Y, Yuan Y, Wang K, Wang H. Biocontrol activity and action mechanism of Bacillus velezensis strain SDTB038 against Fusarium crown and root rot of tomato. Front Microbiol 2022; 13:994716. [PMID: 36118232 PMCID: PMC9479544 DOI: 10.3389/fmicb.2022.994716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium crown and root rot of tomato is a soilborne diseases that has brought serious harm and economic losses to tomato production in facilities in recent years. The disease has been reported in more than 30 countries worldwide, but there are few reports on its biological control. A Bacillus velezensis strain SDTB038 with biocontrol effects was isolated and identified in a previous study and is considered one of the most important PGPRs. Seven secondary metabolite biosynthesis gene clusters were found in strain SDTB038 by whole genome sequencing, explaining its biocontrol effects. Results indicated that different concentrations of SDTB038 fermentation broth inhibited the mycelial growth of Fusarium crown and root rot of tomato. Strain SDTB038 could generate indole acetic acid and promote healthy growth of tomatoes, while the effect of 108 CFU/ml SDTB038 concentration on promoting tomato growth was the most obvious. B. velezensis SDTB038 significantly reduced the accumulation of ROS in tomato plants, induced the up-regulation of antifreeze genes, and promoted the rapid recovery of tomato plants at low temperatures in a pot experiment. At the same time, SDTB038 had good control effect on Fusarium crown and root rot of tomato, and 108 CFU/ml SDTB038 fermentation broth had the best control effect, which was 42.98%. In summary, the strain B. velezensis SDTB038 may be a promising bacterial agent for biological control of Fusarium crown and root rot of tomato, and an important source of potential antimicrobial compounds.
Collapse
|
17
|
Luo Y, Chen L, Lu Z, Zhang W, Liu W, Chen Y, Wang X, Du W, Luo J, Wu H. Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism. BIORESOUR BIOPROCESS 2022; 9:74. [PMID: 38647608 PMCID: PMC10991351 DOI: 10.1186/s40643-022-00563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) or Biocontrol strains inevitably encounter heavy metal excess stress during the product's processing and application. Bacillus amyloliquefaciens Bam1 was a potential biocontrol strain with strong heavy metal resistant ability. To understand its heavy metal resistance mechanism, the complete genome of Bam1 had been sequenced, and the comparative genomic analysis of Bam1 and FZB42, an industrialized PGPR and biocontrol strain with relatively lower heavy metal tolerance, was conducted. The comparative genomic analysis of Bam1 and the other nine B. amyloliquefaciens strains as well as one Bacillus velezensis (genetically and physiologically very close to B. amyloliquefaciens) was also performed. Our results showed that the complete genome size of Bam1 was 3.95 Mb, 4219 coding sequences were predicted, and it possessed the highest number of unique genes among the eleven analyzed strains. Nine genes related to heavy metal resistance were detected within the twelve DNA islands of Bam1, while only two of them were detected within the seventeen DNA islands of FZB42. When compared with B. amyloliquefaciens type strain DSM7, Bam1 lacked contig L, whereas FZB42 lacked contig D and I, as well as just possessed contig B with a very small size. Our results could also deduce that Bam1 promoted its essential heavy metal resistance mainly by decreasing the import and increasing the export of heavy metals with the corresponding homeostasis systems, which are regulated by different metalloregulators. While Bam1 promoted its non-essential heavy metal resistance mainly by the activation of some specific or non-specific exporters responding to different heavy metals. The variation of the genes related to heavy metal resistance and the other differences of the genomes, including the different number and arrangement of contigs, as well as the number of the heavy metal resistant genes in Prophages and Genomic islands, led to the significant different resistance of Bam1 and FZB42 to heavy metals.
Collapse
Affiliation(s)
- Yuanchan Luo
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China
| | - Zhibo Lu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weijian Zhang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentong Liu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuwei Chen
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinran Wang
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Du
- Agricultural Technology Extension Station of Ningxia, 2, West Shanghai Road, Yinchuan, 750001, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, 201103, China.
| | - Hui Wu
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
18
|
Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Gene 2022; 836:146671. [PMID: 35714801 DOI: 10.1016/j.gene.2022.146671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Insights into the application of endophytic bacilli in sustainable agricultural practices have opened up new avenues for the inhibition of soil-borne pathogens and the improvement of plant health. Bacillus subtilis K1, an endophytic bacterium originally isolated from aerial roots of Ficus benghalensis is a potential biocontrol agent secreting a mixture of surfactins, iturins and fengycins. The current study extends the characterization of this bacterium through genomic and comparative genomics approaches. The sequencing of the bacterial genome at Illumina MiSeq platform revealed that it possessed a 4,103,502-bp circular chromosome with 45.98% GC content and 4325 predicted protein-coding sequences. Based on phylogenomics and whole-genome average nucleotide identity, the B. subtilis K1 was taxonomically classified as Bacillus velezensis. The formerly evaluated phenotypic traits viz. C-source utilization and lipopeptide-mediated fungal antagonism were correlated to their molecular determinants. The genome also harbored several genes associated with induced systemic resistance and plant growth promotion i.e, phytohormone production, nitrogen assimilation and reduction, siderophore production, phosphate solubilization, biofilm formation, swarming motility, acetoin and butanediol synthesis. The production of antifungal volatile organic compounds and plant growth promotion was experimentally demonstrated by volatile compound assay and seed germination assay on cumin and groundnut. The isolate also holds great prospects for application as a soil inoculant as indicated by enhancement in the growth of groundnut via in planta pot studies. Bacterial pan-genome analysis based on a comparison of whole genomes with eighteen other Bacillus strains was also conducted. Comparative examination of biosynthetic gene clusters across all genomes indicated that the largest number of gene clusters were harbored by the K1 genome. Based on the findings, we propose K1 as a model for scrutinizing non-ribosomally synthesized peptide synthetase and polyketide synthetase derived molecules.
Collapse
|
19
|
Wang SY, Herrera-Balandrano DD, Wang YX, Shi XC, Chen X, Jin Y, Liu FQ, Laborda P. Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the Management of Fungal Postharvest Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6591-6616. [PMID: 35604328 DOI: 10.1021/acs.jafc.2c01745] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Bacillus amyloliquefaciens group, composed of B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, has recently emerged as an interesting source of biocontrol agents for the management of pathogenic fungi. In this review, all the reports regarding the ability of these species to control postharvest fungal diseases have been covered for the first time. B. amyloliquefaciens species showed various antifungal mechanisms, including production of antifungal lipopeptides and volatile organic compounds, competition for nutrients, and induction of disease resistance. Most reports discussed their use for the control of fruit diseases. Several strains were studied in combination with additives, improving their inhibitory efficacies. In addition, a few strains have been commercialized. Overall, studies showed that B. amyloliquefaciens species are a suitable environmentally friendly alternative for the control of postharvest diseases. However, there are still crucial knowledge gaps to improve their efficacy and host range.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Yan-Xia Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Feng-Quan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
20
|
O'Donnell MM, Hegarty JW, Healy B, Schulz S, Walsh CJ, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities. Sci Rep 2022; 12:9283. [PMID: 35662257 PMCID: PMC9166764 DOI: 10.1038/s41598-022-13248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.
Collapse
Affiliation(s)
| | - James W Hegarty
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Brian Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Calum J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
21
|
Pan-Genomic and Transcriptomic Analyses of Marine Pseudoalteromonas agarivorans Hao 2018 Revealed Its Genomic and Metabolic Features. Mar Drugs 2022; 20:md20040248. [PMID: 35447921 PMCID: PMC9027991 DOI: 10.3390/md20040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
The genomic and carbohydrate metabolic features of Pseudoalteromonas agarivorans Hao 2018 (P. agarivorans Hao 2018) were investigated through pan-genomic and transcriptomic analyses, and key enzyme genes that may encode the process involved in its extracellular polysaccharide synthesis were screened. The pan-genome of the P. agarivorans strains consists of a core-genome containing 2331 genes, an accessory-genome containing 956 genes, and a unique-genome containing 1519 genes. Clusters of Orthologous Groups analyses showed that P. agarivorans harbors strain-specifically diverse metabolisms, probably representing high evolutionary genome changes. The Kyoto Encyclopedia of Genes and Genomes and reconstructed carbohydrate metabolic pathways displayed that P. agarivorans strains can utilize a variety of carbohydrates, such as d-glucose, d-fructose, and d-lactose. Analyses of differentially expressed genes showed that compared with the stationary phase (24 h), strain P. agarivorans Hao 2018 had upregulated expression of genes related to the synthesis of extracellular polysaccharides in the logarithmic growth phase (2 h), and that the expression of these genes affected extracellular polysaccharide transport, nucleotide sugar synthesis, and glycosyltransferase synthesis. This is the first investigation of the genomic and metabolic features of P. agarivorans through pan-genomic and transcriptomic analyses, and these intriguing discoveries provide the possibility to produce novel marine drug lead compounds with high biological activity.
Collapse
|
22
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
23
|
Shi Z, Hong W, Wang Q. Complete Genome Resource of Bacillus velezensis J17-4, an Endophyte Isolated from Stem Tissues of Rice. PLANT DISEASE 2022; 106:727-729. [PMID: 34260284 DOI: 10.1094/pdis-05-21-0996-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dickeya zeae is the causative agent of rice root rot disease and causes severe harvest and economic losses. In this study, the Bacillus velezensis strain J17-4 with significant antagonism against D. zeae was used to generate DNA for sequencing. After assembly, a high-quality complete genome comprising only a circular chromosome was available. The genome sequence consists of a total of 3,877 prediction coding sequences and nine types of gene clusters involved in secondary metabolite production. This genome data will provide information for understanding the underlying mechanism of strain J17-4 antagonist against D. zeae and a new useful source for comparative genomics studies between strains isolated from various habitats.
Collapse
Affiliation(s)
- Zurong Shi
- School of Biological Engineering, HuaiNan Normal University, Huainan 232038, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanwen Hong
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingwei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. FORESTS 2021. [DOI: 10.3390/f12121714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacillus velezensis gram-positive bacterium, is frequently isolated from diverse niches mainly soil, water, plant roots, and fermented foods. B. velezensis is ubiquitous, non-pathogenic and endospore forming. Being frequently isolated from diverse plant holobionts it is considered host adapted microorganism and recognized of high economic importance given its ability to promote plant growth under diverse biotic and abiotic stress conditions. Additionally, the species suppress many plant diseases, including bacterial, oomycete, and fungal diseases. It is also able after plant host root colonization to induce unique physiological situation of host plant called primed state. Primed host plants are able to respond more rapidly and/or effectively to biotic or abiotic stress. Moreover, B. velezenis have the ability to resist diverse environmental stresses and help host plants to cope with, including metal and xenobiotic stresses. Within species B. velezensis strains have unique abilities allowing them to adopt different life styles. Strain level abilities knowledge is warranted and could be inferred using the ever-expanding new genomes list available in genomes databases. Pangenome analysis and subsequent identification of core, accessory and unique genomes is actually of paramount importance to decipher species full metabolic capacities and fitness across diverse environmental conditions shaping its life style. Despite the crucial importance of the pan genome, its assessment among large number of strains remains sparse and systematic studies still needed. Extensive knowledge of the pan genome is needed to translate genome sequencing efforts into developing more efficient biocontrol agents and bio-fertilizers. In this study, a genome survey of B. velezensis allowed us to (a) highlight B. velezensis species boundaries and show that Bacillus suffers taxonomic imprecision that blurs the debate over species pangenome; (b) identify drivers of their successful acquisition of specific life styles and colonization of new niches; (c) describe strategies they use to promote plant growth and development; (d) reveal the unlocked strain specific orphan secondary metabolite gene clusters (biosynthetic clusters with corresponding metabolites unknown) that product identification is still awaiting to amend our knowledge of their putative role in suppression of pathogens and plant growth promotion, and (e) to describe a dynamic pangenome with a secondary metabolite rich accessory genome.
Collapse
|
25
|
Kim MJ, Shim CK, Park JH. Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation. THE PLANT PATHOLOGY JOURNAL 2021; 37:580-595. [PMID: 34897250 PMCID: PMC8666241 DOI: 10.5423/ppj.ft.09.2021.0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/14/2023]
Abstract
Although late blight is an important disease in eco-friendly potato cultivation in Korea, it is highly dependent on the use of eco-friendly agricultural materials and the development of biological control technology is low. It is a necessary to develop an effective biocontrol agent to inactivate late blight in the field. AFB2-2 strain is a gram-positive with peritrichous flagella. It can utilize 20 types of carbon sources, like L-arabinose, and D-trehalose at 35°C. The optimal growth temperature of the strain is 37°C. It can survive at 20-50°C in tryptic soy broth. The maximum salt concentration tolerated by AFB2-2 strain is 7.5% NaCl. AFB2-2 strain inhibited the mycelial growth of seven plant pathogens by an average inhibitory zone of 10.2 mm or more. Among the concentrations of AFB2-2, 107 cfu/ml showed the highest control value of 85.7% in the greenhouse. Among the three concentrations of AFB2-2, the disease incidence and severity of potato late blight at 107 cfu/ml was lowest at 0.07 and 6.7, respectively. The nucleotide sequences of AFB2-2 strain were searched in the NCBI GenBank; Bacillus siamensis strain KCTC 13613, Bacillus velezensis strain CR-502, and Bacillus amyloliquefaciens strain DSM7 were found to have a genetic similarity of 99.7%, 99.7%, and 99.5%, respectively. The AFB2-2 strain was found to harbor the biosynthetic genes for bacillomycin D, iturin, and surfactin. Obtained data recommended that the B. velezensis AFB2-2 strain could be considered as a promising biocontrol agent for P. infestans in the field.
Collapse
Affiliation(s)
| | - Chang Ki Shim
- Corresponding author: Phone) +82-63-238-2554, FAX) +82-63-238-3824, E-mail)
| | | |
Collapse
|
26
|
Horak I, Jansen van Rensburg PJ, Claassens S. Effect of cultivation media and temperature on metabolite profiles of three nematicidal Bacillus species. NEMATOLOGY 2021. [DOI: 10.1163/15685411-bja10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Globally, root-knot nematode (RKN) infestations cause great financial losses. Although agrochemicals are used to manage these pests, there is increased interest in using biocontrol agents based on natural antagonistic microorganisms, such as Bacillus. These nematicidal bacteria demonstrate antagonism towards RKN through different modes of action, including specialised metabolite production. The aim of this study was to compare metabolite profiles of nematicidal Bacillus species and assess the influence of cultivation conditions on these profiles. Two hyphenated metabolomics platforms, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), were employed to profile and compare metabolite features produced during the cultivation of three nematicidal Bacillus species (Bacillus firmus, B. cereus and B. soli) in complex Luria-Bertani broth (LB) and a simpler minimal broth (MB), at three different temperatures (25, 30 and 37°C). Cultivation in complex LB as opposed to simpler MB resulted in the production of more statistically significant metabolite features. Selected temperatures in this study did not have a significant influence on metabolite profiles. Moreover, media-specific influences outweighed temperature-specific influences on metabolite profiles. Results from this study are a valuable first step in establishing suitable cultivation conditions for the production of Bacillus metabolites of interest.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | | | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
27
|
Soni R, Keharia H, Bose A, Pandit N, Doshi J, Rao SVR, Paul SS, Raju MVLN. Genome assisted probiotic characterization and application of Bacillus velezensis ZBG17 as an alternative to antibiotic growth promoters in broiler chickens. Genomics 2021; 113:4061-4074. [PMID: 34678442 DOI: 10.1016/j.ygeno.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/12/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022]
Abstract
The present study describes genome annotation and phenotypic characterization of Bacillus velezensis ZBG17 and evaluation of its performance as antibiotic growth promoter substitute in broiler chickens. ZBG17 comprises 3.89 Mbp genome with GC content of 46.5%. ZBG17 could tolerate simulated gastrointestinal juices prevalent in the animal gut. Some adhesion-associated genomic features of ZBG17 supported the experimentally determined cell surface hydrophobicity and cell aggregation results. ZBG17 encoded multiple secondary metabolite gene clusters correlating with its broad-spectrum antibacterial activity. Interestingly, ZBG17 completely inhibited Salmonella enterica and Escherichia coli within 6 h and 8 h in liquid co-culture assay, respectively. ZBG17 genome analysis did not reveal any genetic determinant associated with reported safety hazards for use as a poultry direct-fed microbial. Dietary supplementation of ZBG17 significantly improved feed utilization efficiency and humoral immune response in broiler chickens, suggesting its prospective application as a direct-fed microbial in broiler chickens.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, Sardar Patel University, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, Sardar Patel University, Gujarat, India.
| | - Anjali Bose
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - Ninad Pandit
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - Jayraj Doshi
- Zytex Biotech Pvt. Ltd., 702/B Polaris, Marol, Andheri (E), Mumbai 400059, Maharashtra, India
| | - S V Rama Rao
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| | - S S Paul
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| | - M V L N Raju
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, Telangana 500 030, India
| |
Collapse
|
28
|
Zeng Q, Xie J, Li Y, Gao T, Zhang X, Wang Q. Comprehensive Genomic Analysis of the Endophytic Bacillus altitudinis Strain GLB197, a Potential Biocontrol Agent of Grape Downy Mildew. Front Genet 2021; 12:729603. [PMID: 34646305 PMCID: PMC8502975 DOI: 10.3389/fgene.2021.729603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus has been extensively studied for agricultural application as a biocontrol agent. B. altitudinis GLB197, an endophytic bacterium isolated from grape leaves, exhibits distinctive inhibition to grape downy mildew based on unknown mechanisms. To determine the genetic traits involved in the mechanism of biocontrol and host-interaction traits, the genome sequence of GLB197 was obtained and further analyzed. The genome of B. altitudinis GLB197 consisted of one plasmid and a 3,733,835-bp circular chromosome with 41.56% G + C content, containing 3,770 protein-coding genes. Phylogenetic analysis of 17 Bacillus strains using the concatenated 1,226 single-copy core genes divided into different clusters was conducted. In addition, average nucleotide identity (ANI) values indicate that the current taxonomy of some B. pumilus group strains is incorrect. Comparative analysis of B. altitudinis GLB197 proteins with other B. altitudinis strains identified 3,157 core genes. Furthermore, we found that the pan-genome of B. altitudinis is open. The genome of B. altitudinis GLB197 contains one nonribosomal peptide synthetase (NRPS) gene cluster which was annotated as lichenysin. Interestingly, the cluster in B. altitudinis has two more genes than other Bacillus strains (lgrD and lgrB). The two genes were probably obtained via horizontal gene transfer (HGT) during the evolutionary process from Brevibacillus. Taken together, these observations enable the future application of B. altitudinis GLB197 as a biocontrol agent for control of grape downy mildew and promote our understanding of the beneficial interactions between B. altitudinis GLB197 and plants.
Collapse
Affiliation(s)
- Qingchao Zeng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yan Li
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tantan Gao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xun Zhang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
30
|
Mullins AJ, Li Y, Qin L, Hu X, Xie L, Gu C, Mahenthiralingam E, Liao X, Webster G. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. MICROBIOLOGY-SGM 2021; 166:1121-1128. [PMID: 33205747 PMCID: PMC7819358 DOI: 10.1099/mic.0.000986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The genomes of two historical Bacillus species strains isolated from the roots of oilseed rape and used routinely in PR China as biocontrol agents to suppress Sclerotinia disease were sequenced. Average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses demonstrated that they were originally misclassified as Bacillus subtilis and now belong to the bacterial species Bacillus velezensis. A broader ANI analysis of available Bacillus genomes identified 292 B. velezensis genomes that were then subjected to core gene analysis and phylogenomics. Prediction and dereplication of specialized metabolite biosynthetic gene clusters (BGCs) defined the prevalence of multiple antimicrobial-associated BGCs and highlighted the natural product potential of B. velezensis. By defining the core and accessory antimicrobial biosynthetic capacity of the species, we offer an in-depth understanding of B. velezensis natural product capacity to facilitate the selection and testing of B. velezensis strains for use as biological control agents.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
31
|
Hemicellulosic biomass conversion by Moroccan hot spring Bacillus paralicheniformis CCMM B940 evidenced by glycoside hydrolase activities and whole genome sequencing. 3 Biotech 2021; 11:379. [PMID: 34447652 PMCID: PMC8298745 DOI: 10.1007/s13205-021-02919-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Thermophilic bacteria, especially from the genus Bacillus, constitute a huge potential source of novel enzymes that could be relevant for biotechnological applications. In this work, we described the cellulose and hemicellulose-related enzymatic activities of the hot spring Bacillus aerius CCMM B940 from the Moroccan Coordinated Collections of Microorganisms (CCMM), and revealed its potential for hemicellulosic biomass utilization. Indeed, B940 was able to degrade complex polysaccharides such as xylan and lichenan and exhibited activity towards carboxymethylcellulose. The strain was also able to grow on agriculture waste such as orange and apple peels as the sole carbon source. Whole-genome sequencing allowed the reclassification of CCMM B940 previously known as B. aerius into Bacillus paralicheniformis since the former species name has been rejected. The draft genome reported here is composed of 38 contigs resulting in a genome of 4,315,004 bp and an average G + C content of 45.87%, and is an important resource for illuminating the molecular mechanisms of carbohydrate metabolism. The annotated genomic sequences evidenced more than 52 genes encoding glycoside hydrolases and pectate lyases belonging to 27 different families of CAZymes that are involved in the degradation of plant cell wall carbohydrates. Genomic predictions in addition to in vitro experiments have revealed broad hydrolytic capabilities of the strain, thus reinforcing its relevance for biotechnology applications.
Collapse
|
32
|
Fu X, Gong L, Liu Y, Lai Q, Li G, Shao Z. Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation. Front Microbiol 2021; 12:571212. [PMID: 34025591 PMCID: PMC8139322 DOI: 10.3389/fmicb.2021.571212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Members of the Bacillus pumilus group (abbreviated as the Bp group) are quite diverse and ubiquitous in marine environments, but little is known about correlation with their terrestrial counterparts. In this study, 16 marine strains that we had isolated before were sequenced and comparative genome analyses were performed with a total of 52 Bp group strains. The analyses included 20 marine isolates (which included the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, differentiation, and environmental adaptation. Results Phylogenomic analysis revealed that the marine Bp group strains were grouped into three species: B. pumilus, B. altitudinis and B. safensis. All the three share a common ancestor. However, members of B. altitudinis were observed to cluster independently, separating from the other two, thus diverging from the others. Consistent with the universal nature of genes involved in the functioning of the translational machinery, the genes related to translation were enriched in the core genome. Functional genomic analyses revealed that the marine-derived and the terrestrial strains showed differences in certain hypothetical proteins, transcriptional regulators, K+ transporter (TrK) and ABC transporters. However, species differences showed the precedence of environmental adaptation discrepancies. In each species, land specific genes were found with possible functions that likely facilitate survival in diverse terrestrial niches, while marine bacteria were enriched with genes of unknown functions and those related to transcription, phage defense, DNA recombination and repair. Conclusion Our results indicated that the Bp isolates show distinct genomic features even as they share a common core. The marine and land isolates did not evolve independently; the transition between marine and non-marine habitats might have occurred multiple times. The lineage exhibited a priority effect over the niche in driving their dispersal. Certain intra-species niche specific genes could be related to a strains adaptation to its respective marine or terrestrial environment(s). In summary, this report describes the systematic evolution of 52 Bp group strains and will facilitate future studies toward understanding their ecological role and adaptation to marine and/or terrestrial environments.
Collapse
Affiliation(s)
- Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Yang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China.,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
33
|
Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - Microbial diversity and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112016. [PMID: 33550079 DOI: 10.1016/j.ecoenv.2021.112016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
The effects of Bacillus subtilis inoculation on the growth and Cd uptake of alfalfa were evaluated in this research using pot experiments, and the relevant biochemical mechanisms were first investigated by combined microbial diversity and nontarget metabolomics analyses. The results indicated that inoculation with alfalfa significantly decreased the amount of plant malondialdehyde (MDA) and improved the activities of plant antioxidant enzymes and soil nutrient cycling-involved enzymes, thereby promoting biomass by 29.4%. Inoculation also increased Cd bioavailability in rhizosphere soil by 12.0% and Cd removal efficiency by 139.3%. The biochemical mechanisms included enhanced bacterial diversity, transformed microbial community composition, regulated amounts of amino acids, fatty acids, carbohydrates, flavonoids and phenols in rhizosphere soil metabolites, and modulations of the corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These responses were beneficial to microbial activity, nutrient cycling, and Cd mobilization, detoxification, and decontamination by alfalfa in soil. This study, especially the newly identified differential metabolites and metabolic pathways, provides new insights into mechanism revelation and strategy development in microbe-assisted phytomanagement of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
34
|
Ngalimat MS, Yahaya RSR, Baharudin MMAA, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021; 9:microorganisms9030614. [PMID: 33802666 PMCID: PMC8002464 DOI: 10.3390/microorganisms9030614] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
Collapse
Affiliation(s)
- Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Syafiqah Mohd. Yaminudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698298
| |
Collapse
|
35
|
Freitas-Silva J, de Oliveira BFR, Vigoder FDM, Muricy G, Dobson ADW, Laport MS. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 2021; 11:592735. [PMID: 33488540 PMCID: PMC7820076 DOI: 10.3389/fmicb.2020.592735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Microbiology, University College Cork, Cork, Ireland
| | - Felipe de Mello Vigoder
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Kim J, Jung HS, Baek JH, Chun BH, Khan SA, Jeon CO. Paenibacillus silvestris sp. nov., Isolated from Forest Soil. Curr Microbiol 2021; 78:822-829. [PMID: 33388935 DOI: 10.1007/s00284-020-02333-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
A bacterial strain, designated 5J-6T, was isolated from soil in Cheongnyeongpo, Republic of Korea. Cells were Gram-stain-positive, strictly aerobic, and motile rods and their catalase and oxidase activities were positive. Strain 5J-6T grew at 10-30 °C, pH 6.0-9.0, and 0-0.8% (w/v) NaCl concentration, with optimum growth at 25 °C, pH 6.5, and 0.4% NaCl concentration. Anteiso-C15:0 and iso-C16:0 were detected as the predominant fatty acids and menaquinone-7 was the sole isoprenoid quinone detected. Strain 5J-6T contained phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid as major polar lipids. The peptidoglycan belonged to the type A1γ meso-diaminopimelic acid. The G+C content of the genomic DNA calculated from the whole genomic sequence was 46.1 mol%. Phylogenetic analysis of strain 5J-6T based on 16S rRNA gene sequences placed the isolate into a member of the genus Paenibacillus. Sequence similarity analysis of 16S rRNA gene sequences revealed that strain 5J-6T was most closely related to Paenibacillus aceris KUDC4121T and Paenibacillus chondroitinus DSM 5051T with 98.76% and 98.42% similarities, respectively. Average nucleotide identity and in silico DNA-DNA hybridization values between strain 5J-6T and the type strain of P. aceris were 83.97% and 28.60%, respectively. Based on the phylogenetic and phenotypic characteristics and genomic data, strain 5J-6T could be considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus silvestris sp. nov. is proposed. The type strain is 5J-6T (= KACC 21430T = JCM 33812T).
Collapse
Affiliation(s)
- Jungeun Kim
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hye Su Jung
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Shehzad Abid Khan
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
37
|
Zheng Y, Chen J, Chen L, Hu T, Shi L, Wan S, Wang M. Analysis and control of microbial gas production in fermented chili paste. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Ju Chen
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Lin Chen
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Tao Hu
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science and Technology Tianjin China
| | - Lei Shi
- Tianjin Limin Condiment Limited Company Tianjin China
| | - Shoupeng Wan
- Tianjin Limin Condiment Limited Company Tianjin China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
38
|
Heo J, Kim JS, Hong SB, Park BY, Kim SJ, Kwon SW. Genetic marker gene, recQ, differentiating Bacillus subtilis and the closely related Bacillus species. FEMS Microbiol Lett 2020; 366:5571089. [PMID: 31675066 DOI: 10.1093/femsle/fnz172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
RecQ, which encodes a DNA helicase, was selected in searching for a marker gene of Bacillus subtilis and related species via genome mining. RecQ gene sequence similarity of type strains among Bacillus species used in this study ranged from 66.2% to 96.6%, whereas orthologous average nucleotide identity ranged from 72.6% to 95.8%. According to the phylogenetic tree based on recQ sequences, each type strain of all Bacillus species or subspecies used in this study was placed in a unique taxonomic position. Four B. subtilis subspecies, Bacillus tequilensis and Bacillus vallismortis were grouped in one cluster (cluster A). Strains of B. subtilis subsp. subtilis were classified into A1 cluster, and divided into subgroups. Isolates from Natto, Japanese fermented bean food, were classified into one subgroup, whereas those from Cheonggukjang, Korean fermented bean food, were divided into several subgroups within A1. Type strains of Bacillus halotolerans and Bacillus mojavensis were grouped into another cluster (cluster B), related to cluster A. Bacillus siamensis, Bacillus velezensis and Bacillus amyloliquefaciens were grouped into an independent cluster (cluster E). Sequencing of recQ was useful for the classification or differentiation of B. subtilis and closely related species. Therefore, recQ gene can be applied to the classification of these taxa.
Collapse
Affiliation(s)
- Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Byeong-Yong Park
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
39
|
Chun BH, Kim KH, Jeong SE, Jeon CO. The effect of salt concentrations on the fermentation of doenjang, a traditional Korean fermented soybean paste. Food Microbiol 2020; 86:103329. [PMID: 31703874 DOI: 10.1016/j.fm.2019.103329] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
Four sets of doenjang (traditional Korean fermented soybean paste) with 9%, 12%, 15%, and 18% solar salt concentrations were prepared and their pH, microbial abundances and communities, metabolites, and volatile compounds were analyzed periodically during the entire fermentation. The speeds of decrease in pH and increase in microbial abundances, representing microbial activity, were higher during early fermentation in lower (9% and 12%) salt doenjang. Microbial abundances in 15% and 18% salt doenjang were significantly lower than in the 9% and 12% salt doenjang, indicating low microbial activity. Community analysis revealed that Bacillus, Staphylococcus, and Clostridium and Aspergillus, Scopulariopsis, Fusarium, Mucor, and Penicillium, which might be derived from doenjang-meju used for preparing doenjang, were identified as major bacterial and fungal genera, respectively, in all doenjang samples. Weissella, Tetragenococcus, Oceanobacillus, and Debaryomyces, not dominant in doenjang-meju, were also identified as major groups in low salt doenjang. Metabolite analysis showed that amino acid profiles were relatively similar independent of salt concentrations and microbial growth, indicating important roles of indigenous proteases present in doenjang-meju, not microbial activity during doenjang fermentation, in amino acid production. The metabolism of free sugars to organic acids and biogenic amine production were greater in lower salt doenjang, which might be associated with the growth of microbes, particularly lactic acid bacteria. A higher level of and more diverse volatile compounds were identified in lower salt doenjang, indicating close association with microbial growth. This study provides a deeper understanding of doenjang fermentation and insight into the development of low salt doenjang.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
40
|
Zhang DX, Kang YH, Zhan S, Zhao ZL, Jin SN, Chen C, Zhang L, Shen JY, Wang CF, Wang GQ, Shan XF, Qian AD. Effect of Bacillus velezensis on Aeromonas veronii-Induced Intestinal Mucosal Barrier Function Damage and Inflammation in Crucian Carp ( Carassius auratus). Front Microbiol 2019; 10:2663. [PMID: 31798571 PMCID: PMC6874145 DOI: 10.3389/fmicb.2019.02663] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is an emerging aquatic pathogen causing hemorrhagic septicemia in humans and animals. Probiotic is an effective strategy for controlling enteric infections through reducing intestinal colonization by pathogens. Here we report that the consumption of Bacillus velezensis regulated the intestinal innate immune response and decreased the degree of intestinal inflammation damage caused by the A. veronii in Crucian carp. In this study, we isolated four strains of B. velezensis, named C-11, S-22, L-17 and S-14 from apparently healthy Crucian carp, which exerted a broad-spectrum antimicrobial activity inhibiting both Gram-positive and Gram-negative bacteria especially the fish pathogens. B. velezensis isolates showed typical Bacillus characteristics by endospore staining, physiological and biochemical test, enzyme activity analysis (amylase, protease, and lipase), and molecular identification. Here, Bacillus-containing dietary was orally administrated to Crucian carp for 8 weeks before A. veronii challenge. Immunological parameters and the expression of immune-related genes were measured at 2, 4, 6, 8, and 10 weeks post-administration. The results showed that B. velezensis was found to promote the increase in the phagocytic activities of peripheral blood leukocytes (PBLs) and head kidney leukocytes (HKLs), as well as the increase in interleukin 1β (IL-1β), IL-10 and tumor necrosis factor α (TNF-α) concentration of serum. Lysozyme levels (113.76 U/mL), ACP activity (25.32 U/mL), AKP activity (130.08 U/mL), and SOD activity (240.63 U/mL) were maximum (P < 0.05) in the B. velezensis C-11 treated group at 8 week. Our results showed that Crucian carp fed with the diet containing B. velezensis C-11 and S-22 developed a strong immune response with significantly higher (P < 0.05) levels of IgM in samples of serum, mucus of skin and intestine compared to B. velezensis L-17 and S-14 groups. Moreover, B. velezensis spores appeared to show no toxicity and damage in fish, which could inhabit the gut of Crucian carp. B. velezensis restrained up-regulation of pro-inflammation cytokines (IL-1β, IFN-γ, and TNF-α) mRNA levels in the intestine and head kidney at final stage of administration, and the expression of IL-10 was increased throughout the 10-week trial. A. veronii infection increased the population of inflammatory cells in the intestinal villi in the controls. In contrast, numerous goblet cells and few inflammatory cells infiltrated the mucosa in the B. velezensis groups after challenge with A. veronii. Compared with A. veronii group, B. velezensis could safeguard the integrity of intestinal villi. The highest post-challenge survival rate (75.0%) was recorded in B. velezensis C-11 group. The present data suggest that probiotic B. velezensis act as a potential gut-targeted therapy regimens to protecting fish from pathogenic bacteria infection. IMPORTANCE In this work, four Bacillus velezensis strains isolated from apparently healthy Crucian carp, which exhibited a broad-spectrum antibacterial activity especially the fish pathogens. Administration of B. velezensis induced the enhancement of the intestinal innate immune response through reducing intestinal colonization by pathogens. The isolation and characterization would help better understand probiotic can be recognized as an alternative of antimicrobial drugs protecting human and animal health.
Collapse
Affiliation(s)
- Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sheng Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Sheng-Nan Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chong Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jin-Yu Shen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
41
|
Genomic and metabolic features of Lactobacillus sakei as revealed by its pan-genome and the metatranscriptome of kimchi fermentation. Food Microbiol 2019; 86:103341. [PMID: 31703875 DOI: 10.1016/j.fm.2019.103341] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/08/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
The genomic and metabolic features of Lactobacillus sakei were investigated using its pan-genome and by analyzing the metatranscriptome of kimchi fermentation. In the genome-based relatedness analysis, the strains were divided into the Lb. sakei ssp. sakei and Lb. sakei ssp. carnosus lineage groups. Genomic and metabolic pathway analysis revealed that all Lb. sakei strains have the capability of producing d/l-lactate, ethanol, acetate, CO2, formate, l-malate, diacetyl, acetoin, and 2,3-butanediol from d-glucose, d-fructose, d-galactose, sucrose, d-lactose, l-arabinose, cellobiose, d-mannose, d-gluconate, and d-ribose through homolactic and heterolactic fermentation, whereas their capability of d-maltose, d-xylose, l-xylulose, d-galacturonate, and d-glucuronate metabolism is strain-specific. All strains carry genes for the biosynthesis of folate and thiamine, whereas genes for biogenic amine and toxin production, hemolysis, and antibiotic resistance were not identified. The metatranscriptomic analysis showed that the expression of Lb. sakei transcripts involved in carbohydrate metabolism increased as kimchi fermentation progressed, suggesting that Lb. sakei is more competitive during late fermentation stage. Homolactic fermentation pathway was highly expressed and generally constant during kimchi fermentation, whereas expression of heterolactic fermentation pathway increased gradually as fermentation progressed. l-Lactate dehydrogenase was more highly expressed than d-lactate dehydrogenase, suggesting that l-lactate is the major lactate metabolized by Lb. sakei.
Collapse
|
42
|
Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol 2019; 83:36-47. [PMID: 31202417 DOI: 10.1016/j.fm.2019.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 04/20/2019] [Indexed: 01/10/2023]
Abstract
The genomic and metabolic diversity and features of Tetragenococcus halophilus, a moderately halophilic lactic acid bacterium, were investigated by pan-genome, transcriptome, and metabolite analyses. Phylogenetic analyses based on the 16S rRNA gene and genome sequences of 15 T. halophilus strains revealed their phylogenetic distinctness from other Tetragenococcus species. Pan-genome analysis of the T. halophilus strains showed that their carbohydrate metabolic capabilities were diverse and strain dependent. Aside from one histidine decarboxylase gene in one strain, no decarboxylase gene associated with biogenic amine production was identified from the genomes. However, T. halophilus DSM 20339T produced tyramine without a biogenic amine-producing decarboxylase gene, suggesting the presence of an unidentified tyramine-producing gene. Our reconstruction of the metabolic pathways of these strains showed that T. halophilus harbors a facultative lactic acid fermentation pathway to produce l-lactate, ethanol, acetate, and CO2 from various carbohydrates. The transcriptomic analysis of strain DSM 20339T suggested that T. halophilus may produce more acetate via the heterolactic pathway (including d-ribose metabolism) at high salt conditions. Although genes associated with the metabolism of glycine betaine, proline, glutamate, glutamine, choline, and citrulline were identified from the T. halophilus genomes, the transcriptome and metabolite analyses suggested that glycine betaine was the main compatible solute responding to high salt concentration and that citrulline may play an important role in the coping mechanism against high salinity-induced osmotic stresses. Our results will provide a better understanding of the genome and metabolic features of T. halophilus, which has implications for the food fermentation industry.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|