1
|
Mollenkopf DF, Lee S, Ballash GA, Sulliván SMP, Lee J, Wittum TE. Carbapenemase-producing Enterobacterales and their carbapenemase genes are stably recovered across the wastewater-watershed ecosystem nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179241. [PMID: 40174253 DOI: 10.1016/j.scitotenv.2025.179241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Carbapenemase-producing Enterobacterales (CPE) have emerged as an important nosocomial threat to hospitalized patients, but CPE can also colonize the enteric microbiota of healthy individuals in the community. We hypothesized that clinically relevant CPE are frequently transported in municipal wastewater flows to treatment plants where they are reduced but not eliminated and are subsequently discharged into nearby surface waters and disseminate in the environment. We sampled untreated influent, treated effluent, and nearby surface waters weekly for a one-year period at a single large metropolitan wastewater treatment plant (WWTP) servicing Columbus, Ohio USA. In addition, we investigated the dissemination of these CPE into the environment and the downstream watershed, including sediment, fish, mammals, waterfowl, crops and soils. CPE were recovered from each (100 %) of the 44 influent samples and from 37 (84 %) effluent samples. We also isolated CPE from 50 % (22/44) of the upstream water, 82 % (36/44) of downstream, and 68 % (30/44) way downstream water. CPE were most commonly Enterobacter spp. expressing the blaKPC-2 genotype, although a variety of other species and genotypes were observed. blaKPC concentration was greatest in the influent (mean = 106 gene copies/100 mL water) and treatment resulted in a 4-log reduction in blaKPC concentration (P < 0.05), which was consistent with reduction in total bacteria concentration. We found 22 of 450 fish vent swabs (4.9 %) carrying CPE, but CPE were not recovered from terrestrial wildlife living in the Scioto watershed. Fish intestinal microbiome maintained approximately 1.5 × 104 copies of blaKPC per gram of feces. Our data support the hypothesized flow of CPE from healthcare settings into surface water and the downstream natural environment via municipal wastewater discharge. Our results suggest that river environments can serve as a reservoir for CPE, facilitating their broader One Health dissemination among surface water, wildlife, agriculture, and ultimately back to humans.
Collapse
Affiliation(s)
- Dixie F Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - Seungjun Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States of America
| | - Gregory A Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - S Mažeika P Sulliván
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States of America; Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America; Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
2
|
Pérez-Lavalle L, Borges A, Gomes IB, Carrasco E, Valero A, Simões M. The ability of Salmonella enterica subsp. enterica strains to form biofilms on abiotic surfaces and their susceptibility to selected essential oil components. Lett Appl Microbiol 2025; 78:ovaf032. [PMID: 40053511 DOI: 10.1093/lambio/ovaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/09/2025]
Abstract
The ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of 14 S. enterica strains among different serovars and sources and to evaluate the ability of essential oil (EO) components (carveol, citronellol, and citronellal) to disinfect the biofilms formed on stainless steel and polypropylene surfaces. All the strains were able to form biofilms with counts between 5.34 to 6.78 log CFU cm-2. Then, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EO components were evaluated on two selected strains. All compounds inhibited the growth of Salmonella Typhimurium (strain 1; MIC = 800-1000 µg ml-1) and Salmonella Enteritidis (strain 5; MIC = 400-1000 µg ml-1) and only carveol showed bactericidal activity against strains 1 and 5 (MBC = 1200 µg ml-1). Biofilms were exposed to the EO components at 10 × MIC for 30 min and polypropylene surfaces were more difficult to disinfect showing reductions between 0.9 and <1.2 log CFU cm-2. In general, the S. enterica biofilms demonstrated a significant tolerance to disinfection, demonstrating their high degree of recalcitrance on food processing surfaces.
Collapse
Affiliation(s)
- Liliana Pérez-Lavalle
- Faculty of Basic and Biomedical Sciences, Centro de Investigación e Innovación en Biodiversidad y Cambio Climático (Adaptia), Universidad Simón Bolívar, 080002 Barranquilla, Colombia
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Elena Carrasco
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014 Córdoba, Spain
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014 Córdoba, Spain
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Reyes-Rodríguez NE, Talavera-González JM, de-Anda FRG, Varela-Guerrero JA, Zepeda-Velázquez AP, Vega-Sánchez V. Aeromonas, an opportunistic pathogen present in wastewater in Tulancingo, Mexico. JOURNAL OF WATER AND HEALTH 2025; 23:336-349. [PMID: 40156212 DOI: 10.2166/wh.2025.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Wastewater is free in the environment and is an important source of contamination. One of the microorganisms that is present in aquatic environments is Aeromonas, so the objective of this study was to identify the presence of Aeromonas in the Tulancingo River. A total of 55 presumptive isolates of Aeromonas spp. were obtained by means of phenotypic characteristics; of these, 80% (44/55) were positive for the gcat gene, and 100% (44/44) of those were confirmed to be Aeromonas spp. by means of the rpoD gene, where Aeromonas caviae was identified in 43.2%, Aeromonas media in 29.5%, Aeromonas hydrophila in 11.3%, Aeromonas salmonicida in 9.1%, and Aeromonas allosaccharophila, Aeromonas lusitana, and Aeromonas veronii in 2.3% each. The genus Aeromonas is capable of causing infections in humans. Aeromonad wastewater can resist treatment processes if not done correctly, which represents a potential route of contamination. Therefore, its presence should not be underestimated, and it should be considered to be a true gastrointestinal pathogen. In addition, specific actions must be taken, mainly with the use of wastewater treatment plants. All of this will ensure the quality of treated water and its reuse for the irrigation of agricultural growing areas, thus mitigating potential health threats.
Collapse
Affiliation(s)
- Nydia E Reyes-Rodríguez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1. Ex-Hda. de Aquetzalpa A.P. 32, Tulancingo, Hidalgo 43600, México
| | - Juan M Talavera-González
- Centro de Bachillerato Tecnológico, Subsecretaría de Educación Media Superior, Ixtlahuaca, Estado De México, México
| | - Fabián R Gómez de-Anda
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1. Ex-Hda. de Aquetzalpa A.P. 32, Tulancingo, Hidalgo 43600, México
| | - Jorge A Varela-Guerrero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Andrea Paloma Zepeda-Velázquez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1. Ex-Hda. de Aquetzalpa A.P. 32, Tulancingo, Hidalgo 43600, México
| | - Vicente Vega-Sánchez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1. Ex-Hda. de Aquetzalpa A.P. 32, Tulancingo, Hidalgo 43600, México E-mail:
| |
Collapse
|
4
|
Cui X, Wang Y, Liu J, Liu Z, Zhao M, Yu W, Zhu M, Xu H, Lu B, Peng D, Shi J, Liao N, Niu S, Shen J, Qiu J, Yu L. Dietary limonin alleviates Salmonella Typhimurium-induced colitis via dual targeting virulence SopB and SopE2 and inhibiting RAC1/CDC42/Arp2/3 pathway and regulating gut microbiota. Food Funct 2025; 16:1041-1059. [PMID: 39820212 DOI: 10.1039/d4fo02810d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Salmonella enterica serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity in silico and was verified by CETSA and DARTS assays in vitro. Limonin inhibited the enzyme activities and expression of SopB and SopE2 in vitro. Furthermore, we found that limonin treatment significantly reduced the number of STM colony-forming units (CFUs) in infected HeLa and Raw264.7 cells, which resulted in a decrease in the rate of membrane ruffling mediated by SopB-regulated Arf6/Cyth2/Arf1-, RAC1-, and CDC42-driven Arp2/3-dependent actin polymerization and the SopE2-regulated CDC42/Arp2/3 pathway, and the confocal laser scanning microscopy analysis revealed that limonin treatment repressed the recruitment of the Salmonella-containing vacuole (SCV) biomarkers LC3, Rab7, GAL8 and NDP52. Furthermore, limonin treatment ameliorated STM-induced colitis by reducing the disease activity index (DAI), colon shortening, and MPO and EPO activities; mitigating the severity of S. Typhimurium-induced colitis damage; and influencing the levels of inflammatory factors (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) while increasing the levels of colonic epithelial barrier and tight junction genes (Mucin 1, Mucin 2, Occludin, Claudin-3 and ZO-1). A gut microbiota analysis revealed that limonin treatment influenced α- and β-diversity of the flora and increased the counts of the beneficial bacteria Muribaculum and Faecalibaculum to regulate gut microbiota dysbiosis. Finally, colon SCFA measurements revealed that limonin treatment significantly increased acetate, butyrate, propionate and valerate concentrations. Thus, this study is an important reference for the anti-STM effects of limonin on induced colitis.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Yang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiajia Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ziyan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Meng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Wanlu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Mingmei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Hongyue Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Baochun Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Danping Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jinyang Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ning Liao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Sijia Niu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Lu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Vinha MB, Moro LB, Lima IDM, Nascimento MDSD, Pires GP, de Oliveira JP, Cassini STA. Salmonella in black pepper (Piper nigrum): From farm to processing. Int J Food Microbiol 2025; 426:110921. [PMID: 39332235 DOI: 10.1016/j.ijfoodmicro.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Contamination of black pepper (Piper nigrum) with Salmonella is a frequent problem in retail and imported shipments. However, there is scarce information about the prevalence of the pathogen in the initial stages of black pepper production chain. This study sought to bridge this gap in research by determining the prevalence, as well as quantifying, and identifying the main Salmonella serovars present during black pepper primary production and processing. Black pepper (233) and environmental (175) samples were collected from farms (354) and processing plants (54) in Espirito Santo, Brazil. The pathogen was detected in soil (16.7 %), drying waste (20.4 %), fallen berries (3.7 %), threshed berries (14.3 %), and dried peppercorns (22.2 %) collected from farms. Salmonella was also detected in samples of raw material (11.1 %), export products (16.7 %), and processing waste (16.7 %) collected from processing plants. A total of 12 serotypes were identified, and Salmonella Javiana showed the highest prevalence (38.8 %). According to the results, contamination occurring in the post-harvest phase is not eliminated or reduced during processing. Therefore, the adoption of good agricultural and manufacturing practices, supported by hazard analysis and critical control points (HACCP), is crucial to mitigate this kind of contamination. These practices should be combined with decontamination treatments to ensure the safety of the final product.
Collapse
Affiliation(s)
- Mariana Barboza Vinha
- Laboratory of Enviromental Sampling, Center for Research Innovation and Developing (LACAR/CPID), Ladeira Eliezer Batista, Jardim América, Cariacica, Espírito Santo 29140-500, Brazil; Capixaba Institute of Research, Technical Assistance and Rural Extension (Incaper), Rua Afonso Sarlo, 160, Vitória, Espírito Santo, Brazil.
| | - Larissa Bernardino Moro
- Laboratory of Enviromental Sampling, Center for Research Innovation and Developing (LACAR/CPID), Ladeira Eliezer Batista, Jardim América, Cariacica, Espírito Santo 29140-500, Brazil
| | - Inorbert de Melo Lima
- Capixaba Institute of Research, Technical Assistance and Rural Extension (Incaper), Rua Afonso Sarlo, 160, Vitória, Espírito Santo, Brazil
| | | | - Giovanna Pinto Pires
- Laboratory of Enviromental Sampling, Center for Research Innovation and Developing (LACAR/CPID), Ladeira Eliezer Batista, Jardim América, Cariacica, Espírito Santo 29140-500, Brazil
| | - Jairo Pinto de Oliveira
- Laboratory of Enviromental Sampling, Center for Research Innovation and Developing (LACAR/CPID), Ladeira Eliezer Batista, Jardim América, Cariacica, Espírito Santo 29140-500, Brazil
| | - Servio Tulio Alves Cassini
- Laboratory of Enviromental Sampling, Center for Research Innovation and Developing (LACAR/CPID), Ladeira Eliezer Batista, Jardim América, Cariacica, Espírito Santo 29140-500, Brazil
| |
Collapse
|
6
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
7
|
Sutar AA, Dashpute RS, Shinde YD, Mukherjee S, Chowdhury C. A Systemic Review on Fitness and Survival of Salmonella in Dynamic Environment and Conceivable Ways of Its Mitigation. Indian J Microbiol 2024; 64:267-286. [PMID: 39011015 PMCID: PMC11246371 DOI: 10.1007/s12088-023-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 07/17/2024] Open
Abstract
Gastroenteritis caused by non-typhoidal Salmonella still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal Salmonella is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host. Moreover, a peculiar aid of the ever-changing climatic conditions grants this organism with remarkable potential to survive within the environment. Abusive use of antibiotics for the treatment of gastroenteritis has led to the emergence of multiple drug resistance, making the infections difficult to treat. This review emphasizes the importance of early detection of Salmonella, along with strategies for accomplishing it, as well as exploring alternative treatment approaches. The exceptional characteristics exhibited by Salmonella, like strategies of infection, persistence, and survival parallelly with multiple drug resistance, make this pathogen a prominent concern to human health.
Collapse
Affiliation(s)
- Ajit A Sutar
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rohit S Dashpute
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Yashodhara D Shinde
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Srestha Mukherjee
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MH 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
8
|
Woodford L, Fellows R, White HL, Ormsby MJ, Quilliam RS. Salmonella Typhimurium and Vibrio cholerae can be transferred from plastic mulch to basil and spinach salad leaves. Heliyon 2024; 10:e31343. [PMID: 38818200 PMCID: PMC11137414 DOI: 10.1016/j.heliyon.2024.e31343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Plastic pollution is increasingly found in agricultural environments, where it contaminates soil and crops. Microbial biofilms rapidly colonise environmental plastics, such as the plastic mulches used in agricultural systems, which provide a unique environment for microbial plastisphere communities. Human pathogens can also persist in the plastisphere, and enter agricultural environments via flooding or irrigation with contaminated water. In this study we examined whether Salmonella Typhimurium and Vibrio cholerae can be transferred from the plastisphere on plastic mulch to the surface of ready-to-eat crop plants, and subsequently persist on the leaf surface. Both S. Typhimurium and V. cholerae were able to persist for 14 days on fragments of plastic mulch adhering to the surface of leaves of both basil and spinach. Importantly, within 24 h both pathogens were capable of dissociating from the surface of the plastic and were transferred onto the surface of both basil and spinach leaves. This poses a further risk to food safety and human health, as even removal of adhering plastics and washing of these ready-to-eat crops would not completely remove these pathogens. As the need for more intensive food production increases, so too does the use of plastic mulches in agronomic systems. Therefore, there is now an urgent need to understand the unquantified co-pollutant pathogen risk of contaminating agricultural and food production systems with plastic pollution.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L. White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J. Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
9
|
Szymańska S, Deja-Sikora E, Sikora M, Niedojadło K, Mazur J, Hrynkiewicz K. Colonization of Raphanus sativus by human pathogenic microorganisms. Front Microbiol 2024; 15:1296372. [PMID: 38426059 PMCID: PMC10902717 DOI: 10.3389/fmicb.2024.1296372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Contamination of vegetables with human pathogenic microorganisms (HPMOs) is considered one of the most important problems in the food industry, as current nutritional guidelines include increased consumption of raw or minimally processed organic vegetables due to healthy lifestyle promotion. Vegetables are known to be potential vehicles for HPMOs and sources of disease outbreaks. In this study, we tested the susceptibility of radish (Raphanus sativus) to colonization by different HPMOs, including Escherichia coli PCM 2561, Salmonella enterica subsp. enterica PCM 2565, Listeria monocytogenes PCM 2191 and Bacillus cereus PCM 1948. We hypothesized that host plant roots containing bactericidal compounds are less prone to HPMO colonization than shoots and leaves. We also determined the effect of selected pathogens on radish growth to check host plant-microbe interactions. We found that one-week-old radish is susceptible to colonization by selected HPMOs, as the presence of the tested HPMOs was demonstrated in all organs of R. sativus. The differences were noticed 2 weeks after inoculation because B. cereus was most abundant in roots (log10 CFU - 2.54), S. enterica was observed exclusively in stems (log10 CFU - 3.15), and L. monocytogenes and E. coli were most abundant in leaves (log10 CFU - 4.80 and 3.23, respectively). The results suggest that E. coli and L. monocytogenes show a higher ability to colonize and move across the plant than B. cereus and S. enterica. Based on fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) approach HPMOs were detected in extracellular matrix and in some individual cells of all analyzed organs. The presence of pathogens adversely affected the growth parameters of one-week-old R. sativus, especially leaf and stem fresh weight (decreased by 47-66 and 17-57%, respectively). In two-week-old plants, no reduction in plant biomass development was noted. This observation may result from plant adaptation to biotic stress caused by the presence of HPMOs, but confirmation of this assumption is needed. Among the investigated HPMOs, L. monocytogenes turned out to be the pathogen that most intensively colonized the aboveground part of R. sativus and at the same time negatively affected the largest number of radish growth parameters.
Collapse
Affiliation(s)
- Sonia Szymańska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Sikora
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Mazur
- Center for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
10
|
Jacob C, Student J, Bridges DF, Chu W, Porwollik S, McClelland M, Melotto M. Intraspecies competition among Salmonella enterica isolates in the lettuce leaf apoplast. FRONTIERS IN PLANT SCIENCE 2024; 15:1302047. [PMID: 38352648 PMCID: PMC10861783 DOI: 10.3389/fpls.2024.1302047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.
Collapse
Affiliation(s)
- Cristián Jacob
- Departamento de Ciencias Vegetales, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joseph Student
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Horticulture and Agronomy Graduate Program, University of California, Davis, Davis, CA, United States
| | - David F. Bridges
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Totsline N, Kniel KE, Sabagyanam C, Bais HP. Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent. Sci Rep 2024; 14:898. [PMID: 38195662 PMCID: PMC10776768 DOI: 10.1038/s41598-024-51573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024] Open
Abstract
As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Chandran Sabagyanam
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
12
|
Pigłowski M, Niewczas-Dobrowolska M. Hazards reported on food of plant origin in the Rapid Alert System for Foodand Feed (RASFF) from 1997 to 2021 and their occurrence, prevention and reduction. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:91-104. [PMID: 38166161 DOI: 10.1080/19440049.2023.2299679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Between 1997 and 2021 notifications for foods of plant origin covered 44.6% of all notifications in the EU Rapid Alert System for Food and Feed (RASFF). A two-way joining cluster analysis for notifications on plants reported in the RASFF in 1997-2021 was carried out. The following variables were considered: hazard, product category and country of origin in relation to year of notification. In the period studied mainly mycotoxins, pesticide residues and pathogenic micro-organisms were reported. The most frequently notified product categories were nuts and seeds, fruit and vegetables and herbs and spices. The submitted products originated from Asian, African and South-American countries. The study findings were followed by a literature analysis outlining the occurrence and prevention and reduction possibilities of the mentioned hazards, which can be used in these countries. Attention was drawn to the need to carry out controls at EU border inspection posts, monitor and update hazard limits and improve the rapid exchange of information and response to detected hazards.
Collapse
Affiliation(s)
- Marcin Pigłowski
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, Gdynia, Poland
| | - Magdalena Niewczas-Dobrowolska
- Department of Quality Management, Institute of Quality Sciences and Product Management, College of Management and Quality Sciences, Kraków University of Economics, Kraków, Poland
| |
Collapse
|
13
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
14
|
Vitt JD, Hansen EG, Garg R, Bowden SD. Bacteria intrinsic to Medicago sativa (alfalfa) reduce Salmonella enterica growth in planta. J Appl Microbiol 2023; 134:lxad204. [PMID: 37669894 DOI: 10.1093/jambio/lxad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
AIMS The purpose of this study was to determine whether plant-associated bacteria (PAB) can reduce Salmonella enterica colonization and infection of alfalfa sprouts to reduce the risk of foodborne illness. METHODS We isolated PAB from alfalfa seeds and sprouts. Monoclonal isolates of the bacteria were obtained and tested for their ability to inhibit Salmonella Typhimurium growth in alfalfa sprouts over 6 days. Genome sequencing and annotation were used to construct draft genomes of the bacteria isolated in this study using Illumina sequencing platform. RESULTS We observed that a cocktail of five PAB could reduce Salmonella growth in alfalfa sprouts from ∼108 to ∼105 CFU g-1, demonstrating a protective role. Genome sequencing revealed that these bacteria were members of the Pseudomonas, Pantoea, and Priestia genus, and did not possess genes that were pathogenic to plants or animals. CONCLUSIONS This work demonstrates that PAB can be utilized to reduce pathogen levels in fresh produce, which may be synergistic with other technologies to improve the safety of sprouts and other fresh produce.
Collapse
Affiliation(s)
- Jacob D Vitt
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Eleanore G Hansen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Raghav Garg
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, United States
| |
Collapse
|
15
|
Quilliam RS, Pow CJ, Shilla DJ, Mwesiga JJ, Shilla DA, Woodford L. Microplastics in agriculture - a potential novel mechanism for the delivery of human pathogens onto crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1152419. [PMID: 37636119 PMCID: PMC10448812 DOI: 10.3389/fpls.2023.1152419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Mulching with plastic sheeting, the use of plastic carriers in seed coatings, and irrigation with wastewater or contaminated surface water have resulted in plastics, and microplastics, becoming ubiquitous in agricultural soils. Once in the environment, plastic surfaces quickly become colonised by microbial biofilm comprised of a diverse microbial community. This so-called 'plastisphere' community can also include human pathogens, particularly if the plastic has been exposed to faecal contamination (e.g., from wastewater or organic manures and livestock faeces). The plastisphere is hypothesised to facilitate the survival and dissemination of pathogens, and therefore plastics in agricultural systems could play a significant role in transferring human pathogens to crops, particularly as microplastics adhering to ready to eat crops are difficult to remove by washing. In this paper we critically discuss the pathways for human pathogens associated with microplastics to interact with crop leaves and roots, and the potential for the transfer, adherence, and uptake of human pathogens from the plastisphere to plants. Globally, the concentration of plastics in agricultural soils are increasing, therefore, quantifying the potential for the plastisphere to transfer human pathogens into the food chain needs to be treated as a priority.
Collapse
Affiliation(s)
- Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Chloe J. Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Dativa J. Shilla
- Department of Chemistry, Dar es Salaam University College of Education (DUCE), Dar es Salaam, Tanzania
| | - James J. Mwesiga
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Daniel A. Shilla
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
16
|
Elbehiry A, Abalkhail A, Marzouk E, Elmanssury AE, Almuzaini AM, Alfheeaid H, Alshahrani MT, Huraysh N, Ibrahem M, Alzaben F, Alanazi F, Alzaben M, Anagreyyah SA, Bayameen AM, Draz A, Abu-Okail A. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines (Basel) 2023; 11:vaccines11040725. [PMID: 37112637 PMCID: PMC10143666 DOI: 10.3390/vaccines11040725] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogens found in food are believed to be the leading cause of foodborne illnesses; and they are considered a serious problem with global ramifications. During the last few decades, a lot of attention has been paid to determining the microorganisms that cause foodborne illnesses and developing new methods to identify them. Foodborne pathogen identification technologies have evolved rapidly over the last few decades, with the newer technologies focusing on immunoassays, genome-wide approaches, biosensors, and mass spectrometry as the primary methods of identification. Bacteriophages (phages), probiotics and prebiotics were known to have the ability to combat bacterial diseases since the turn of the 20th century. A primary focus of phage use was the development of medical therapies; however, its use quickly expanded to other applications in biotechnology and industry. A similar argument can be made with regards to the food safety industry, as diseases directly endanger the health of customers. Recently, a lot of attention has been paid to bacteriophages, probiotics and prebiotics most likely due to the exhaustion of traditional antibiotics. Reviewing a variety of current quick identification techniques is the purpose of this study. Using these techniques, we are able to quickly identify foodborne pathogenic bacteria, which forms the basis for future research advances. A review of recent studies on the use of phages, probiotics and prebiotics as a means of combating significant foodborne diseases is also presented. Furthermore, we discussed the advantages of using phages as well as the challenges they face, especially given their prevalent application in food safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
- Correspondence:
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Ahmed Elnadif Elmanssury
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia (E.M.)
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Human Nutrition, School of Medicine, Nursing and Dentistry, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Mohammed T. Alshahrani
- Department of Neurology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Nasser Huraysh
- Department of Family Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Farhan Alanazi
- Supply Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, Jubail 35517, Saudi Arabia
| | - Mohammed Alzaben
- Department of Food Factories Inspection, Operation Sector, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | | | | | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
17
|
He Y, Wang J, Zhang R, Chen L, Zhang H, Qi X, Chen J. Epidemiology of foodborne diseases caused by Salmonella in Zhejiang Province, China, between 2010 and 2021. Front Public Health 2023; 11:1127925. [PMID: 36817893 PMCID: PMC9929456 DOI: 10.3389/fpubh.2023.1127925] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Objective Salmonella infection is a common cause of bacterial foodborne diseases (FBDs) globally. In this study, we aimed to explore the epidemiological and etiological characteristics of Salmonella infection from 2012-2021 in Zhejiang Province, China. Methods Descriptive statistical methods were used to analyze the data reported by the Centers for Disease Control and Prevention at all levels in Zhejiang Province through the China National Foodborne Diseases Surveillance Network from 2012-2021. Results A total of 11,269 Salmonella cases were reported, with an average positive rate of 3.65%, including 1,614 hospitalizations. A significant seasonal trend was observed for Salmonella cases, with the highest rate over the summer period, peaking from May to October, accounting for 77.96%. The results indicated a higher positive rate among respondents aged 0-4 years, especially for the scattered children (P < 0.05). The highest number of Salmonella infections were caused due to contaminated fruit and fruit products. Households (54.69%) had the most common exposure settings. Serotypes analysis revealed that Salmonella typhimurium (36.07%), Salmonella enteritidis (15.17%), and Salmonella london (6.05%) were the dominant strains among the 173 serotypes. Diarrhea, abdominal pain, fever, nausea, and vomiting were the main symptoms of these serotypes. Conclusions FBDs caused by Salmonella are important issues for public health in Zhejiang Province, and there is a need to focus on the epidemiological and etiological characteristics to control Salmonella infections.
Collapse
Affiliation(s)
| | | | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | | |
Collapse
|
18
|
Lovelace AH, Chen HC, Lee S, Soufi Z, Bota P, Preston GM, Kvitko BH. RpoS contributes in a host-dependent manner to Salmonella colonization of the leaf apoplast during plant disease. Front Microbiol 2022; 13:999183. [PMID: 36425046 PMCID: PMC9679226 DOI: 10.3389/fmicb.2022.999183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2023] Open
Abstract
Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana. Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS-dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS-mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen.
Collapse
Affiliation(s)
- Amelia H. Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Sangwook Lee
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
19
|
Grivokostopoulos NC, Makariti IP, Tsadaris S, Skandamis PN. Impact of population density and stress adaptation on the internalization of Salmonella in leafy greens. Food Microbiol 2022; 106:104053. [PMID: 35690446 DOI: 10.1016/j.fm.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Salmonella enterica is capable of entering the interior of leafy greens and establishing in the apoplastic area, a phenomenon known as internalization. The ability of internalized bacteria to evade common disinfection practices poses a well-established risk. Our aim was to study the effect of: i) inoculum size and ii) prior adaptation of Salmonella to sublethal stresses, on the internalization of the pathogen in four leafy vegetables. Spinach, lettuce, arugula and chicory were inoculated, by immersion for 2 min at room temperature with: i) Salmonella Enteritidis at 3.0, 4.0, 5.0, 6.0, 7.0 log CFU/mL and ii) non-adapted or adapted S. Enteritidis to acid (in TSB with 1% glucose, incubated for 24 h at 37 °C), cold (in TSB for 7 days at 4 °C), starvation (0.85% NaCl of pH 6.6, 48 h at 37 °C) or desiccation (1.5 h at 42 °C, 4 days at 21 °C) stress at appx 3.5 log CFU/mL). Inoculated leafy greens were subsequently stored at 5 °C and 20 °C for 2 h and 48 h (n = 2 × 2). Population of internalized Salmonella, after surface decontamination with 1% w/v AgNO3, was assessed on selective media. Even the lowest initial bacterial inoculum was adequate for internalization of Salmonella to occur in leafy vegetables. Non-adapted Salmonella inoculum of 7.0 (maximum) and 3.0 log CFU/mL (lowest inoculation level tested) after short storage (2 h) resulted in 3.7-4.3 and 1.3-1.5 log CFU/g internalized bacterial population, respectively. Colonization (including both attachment and internalization processes), as well as internalization process, were positively correlated to initial inoculum level. These processes reached a different plateau beyond which, no further increase in internalization was observed. Adaptation of the pathogen to mild stresses enhanced internalization (P < 0.05), with desiccation- and acid-adapted Salmonella demonstrating the highest internalization capacity, regardless of the vegetable and storage temperature. These findings could contribute to further elucidation of colonization capacity of Salmonella in leafy vegetables and assist in selecting the proper conditions that contribute to the prevention of fresh produce contamination with Salmonella.
Collapse
Affiliation(s)
- N C Grivokostopoulos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - I P Makariti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - S Tsadaris
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - P N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| |
Collapse
|
20
|
Visconti S, Astolfi ML, Battistoni A, Ammendola S. Impairment of the Zn/Cd detoxification systems affects the ability of Salmonella to colonize Arabidopsis thaliana. Front Microbiol 2022; 13:975725. [PMID: 36071967 PMCID: PMC9441889 DOI: 10.3389/fmicb.2022.975725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella capacity to colonize different environments depends on its ability to respond efficiently to fluctuations in micronutrient availability. Among micronutrients, Zn, besides playing an essential role in bacterial physiology, is a key element whose concentration can influence bacterial survival in a particular niche. Plant colonization by Salmonella enterica was described for several years, and some molecular determinants involved in this host-pathogen interaction have started to be characterized. However, it is still unclear if Zn plays a role in the outcome of this interaction, as well established for animal hosts that employ nutritional immunity strategies to counteract pathogens infections. In this study, we have investigated the involvement of Salmonella Typhimurium main effectors of zinc homeostasis in plant colonization, using Arabidopsis thaliana as a model host. The results show that to colonize plant tissues, Salmonella takes advantage of its ability to export excess metal through the efflux pumps ZntA and ZitB. In fact, the deletion of these Zn/Cd detoxification systems can affect bacterial persistence in the shoots, depending on metal availability in the plant tissues. The importance of Salmonella ability to export excess metal was enhanced in the colonization of plants grown in high Zn conditions. On the contrary, the bacterial disadvantage related to Zn detoxification impairment can be abrogated if the plant cannot efficiently translocate Zn to the shoots. Overall, our work highlights the role of Zn in Salmonella-plant interaction and suggests that modulation of plant metal content through biofortification may be an efficient strategy to control pathogen colonization.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Serena Ammendola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Serena Ammendola,
| |
Collapse
|
21
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
22
|
George AS, Brandl MT. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021; 9:2485. [PMID: 34946087 PMCID: PMC8704493 DOI: 10.3390/microorganisms9122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.
Collapse
Affiliation(s)
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| |
Collapse
|