1
|
Azam K, Mir H, Siddiqui MW, Ranjan T, Homa F, Perveen N, Singh DR, Siddiqui MH. Mitigating Oxidative Browning in Litchi by Regulating Biochemical Markers and Targeted Gene expression via Exogenous Nitric Oxide. PHYSIOLOGIA PLANTARUM 2025; 177:e70107. [PMID: 39953851 DOI: 10.1111/ppl.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Nitric oxide has been shown to influence oxidative metabolism in plants, enhancing their resilience to various biotic and abiotic stresses. Post-harvest oxidative stress is a key factor leading to quality deterioration in litchi (Litchi chinensis Sonn.) fruit, with visible symptoms that significantly reduce shelf life and consumer acceptability. Therefore, the effect of exogenous sodium nitroprusside (SNP; 1.0 mM and 2.0 mM) on litchi (cv. Purbi) fruit was examined during storage at 7 ± 1°C. Different biochemical changes related to post-harvest quality and pericarp browning of litchi were evaluated. The results suggested that SNP (2.0 mM) was significantly effective in reducing weight loss, the pericarp browning index and decay loss. The fruit subjected to SNP (2.0 mM) treatment retained more total anthocyanins and total phenolic content with reduced peroxidase and polyphenol oxidase enzyme activity. Other quality attributes, such as total soluble solids (TSS), titratable acidity and ascorbic acid, were also recorded to be greater in the SNP (2.0 mM)-treated fruits. These results were consistent with the expression profiles of LcPPO, LcPOD and Laccase genes. The expression levels of these genes were highly suppressed in the nitric oxide-treated fruits compared to those in the control fruits. Therefore, SNP (2.0 mM) treatment could reduce litchi pericarp browning and prolong the post-harvest life of fruit for up to eighteen days during cold storage.
Collapse
Affiliation(s)
- Khushboo Azam
- Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Hidayatullah Mir
- Regional Horticulture Research Sub-Station, Bhaderwah, SKUAST-Jammu (J&K), India
| | | | - Tushar Ranjan
- Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Fozia Homa
- Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Nusrat Perveen
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K, India
| | | | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zhou J, Wu J, Liu H, Lin X, Cheng L, Li C, Weng S, Zhao M, Xu Y, Wen J. Low voltage electrostatic field combined with ice-temperature to improve the quality of litchi during storage. Food Res Int 2024; 196:115068. [PMID: 39614494 DOI: 10.1016/j.foodres.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Litchi is popular among consumers due to its delicious taste, however, the extremely short shelf life limits its commercial value. Few studies have been conducted to develop new technologies to extend the shelf life of litchi. Therefore, this study applied a novel technique (low voltage electrostatic field, LVEF) combined with ice-temperature (0 °C) treatment on litchi and evaluated its quality characteristics during storage. The results demonstrated that low voltage electrostatic field with ice-temperature storage (LVEF-IT) decreased malondialdehyde content, relative electrolyte leakage, and polyphenol oxidase and peroxidase activities, successfully delayed the start of peel browning. Additionally, it preserved the fruit pulp's excellent quality, which included high concentrations of soluble solids, ascorbic acid, and soluble protein. These findings imply that LVEF-IT treatment may be a novel technique for extending the storage time of litchi.
Collapse
Affiliation(s)
- Junping Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China; College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jijun Wu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Haoran Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Xian Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Lina Cheng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China
| | - Chuyuan Li
- Guangzhou Wanglaoji Lychee Industry Development Co., Ltd, Guangzhou, Guangdong 510623, China
| | - Shaoquan Weng
- Guangzhou Wanglaoji Lychee Industry Development Co., Ltd, Guangzhou, Guangdong 510623, China
| | - Min Zhao
- Guangzhou Wanglaoji Lychee Industry Development Co., Ltd, Guangzhou, Guangdong 510623, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China.
| | - Jing Wen
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China.
| |
Collapse
|
3
|
Wei L, Zhong Y, Wu X, Wei S, Liu Y. Roles of Nitric Oxide and Brassinosteroid in Improving Fruit Quality during Postharvest: Potential Regulators? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23671-23688. [PMID: 39406695 DOI: 10.1021/acs.jafc.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Most postharvest fruits are highly perishable, which directly impairs fruit taste and causes an economic loss of fresh products. Thus, it is necessary to find effective techniques to alleviate this issue. Recently, nitric oxide (NO) and brassinosteroid (BR) have been developed as postharvest alternatives to improve fruit quality. This work mainly reviews the recent processes of NO and BR in improving fruit quality during postharvest. Exogenous NO or BR treatments delayed fruit senescence, enhanced disease resistance, and alleviated chilling injury in postharvest fruit, and potential physiological and biochemical mechanisms mainly include (1) enhancing antioxidant and defense ability, (2) affecting ethylene biosynthesis, (3) regulating sugar and energy metabolism, (4) mediating plant hormone signaling, and (5) regulating protein S-nitrosylation and DNA methylation. This review concludes the functions and mechanisms of NO and BR in improving postharvest fruit quality. Additionally, a specific finding is the possible crosstalk of applications of NO and BR during postharvest fruit storage, which provides new insights into the applicability of NO and BR for delaying fruit senescence, enhancing disease resistances of fruit, and alleviating chilling injury in postharvest fruit.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yue Zhong
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiqing Liu
- Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
4
|
Zhong Y, Wu X, Zhang L, Zhang Y, Wei L, Liu Y. The roles of nitric oxide in improving postharvest fruits quality: Crosstalk with phytohormones. Food Chem 2024; 455:139977. [PMID: 38850982 DOI: 10.1016/j.foodchem.2024.139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Nowadays, improving the quality of postharvest fruits has become a hot research topic. Nitric oxide (NO) is often regarded as a signaling molecule that delays the postharvest senescence of fruits. Moreover, phytohormones affect the postharvest senescence of fruits. This review mainly describes how NO improves the postharvest quality of fruits by delaying postharvest fruit senescence, mitigating fruit cold damage and controlling postharvest diseases. Furthermore, the crosstalk of NO and multiple plant hormones effectively delays the postharvest senescence of fruits, and the major crosstalk mechanisms include (1) mediating phytohormone signaling. (2) inhibiting ETH production. (3) stimulating antioxidant enzyme activity. (4) decreasing membrane lipid peroxidation. (5) maintaining membrane integrity. (6) inhibiting respiration rate. (7) regulating gene expression related to fruit senescence. This review concluded the roles and mechanisms of NO in delaying postharvest fruit senescence. In addition, the crosstalk mechanisms between NO and various phytohormones on the regulation of postharvest fruit quality are also highlighted, which provides new ideas for the subsequent research.
Collapse
Affiliation(s)
- Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lingling Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yiming Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
5
|
Aseel DG, Ibrahim OM, Abdelkhalek A. Biosynthesized silver nanoparticles mediated by Ammi visnaga extract enhanced systemic resistance and triggered multiple defense-related genes, including SbWRKY transcription factors, against tobacco mosaic virus infection. BMC PLANT BIOLOGY 2024; 24:756. [PMID: 39107683 PMCID: PMC11305019 DOI: 10.1186/s12870-024-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.
Collapse
Affiliation(s)
- Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Omar M Ibrahim
- Plant Production Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| |
Collapse
|
6
|
Du H, He L. Synergistic improvement of antioxidant and antibacterial properties of carbon quantum complexes with zinc doping and chlorogenic acid for longan preservation. Food Chem 2024; 439:138169. [PMID: 38128425 DOI: 10.1016/j.foodchem.2023.138169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The deterioration of fruit could reduce the shelf life, decreased marketability and substantial economic value. Thus, a safe, simple, economical and environmentally friendly preservation technology for fruit is of great significance. Here, the postharvest preservation technology was investigated with zinc-doped carbon quantum dots and chlorogenic acid (Zn-CQDs/CGA) composite. Zn-CQDs/CGA composite were synthesized, which exhibits superior antioxidant and antibacterial activities. The binding mechanism of the Zn-CQDs/CGA composite was investigated, which revealed that the bindings of two components were mainly driven by hydrogen bonding and van der Waals forces to create a novel composite. The Zn-CQDs/CGA composite was applied to longan preservation and was found to significantly reduce the incidence of mildew spot, browning of fruit endocarp and pulp, as well as the degree of degradation of quality indexes. These results suggest that the Zn-CQDs/CGA composite has the potential for inhibiting browning and preserving the quality of longan during storage.
Collapse
Affiliation(s)
- Hongying Du
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| | - Linjing He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
7
|
Alhamdan AM. Utilizing VIS-NIR Technology to Generate a Quality Index (Q i) Model of Barhi Date Fruits at the Khalal Stage Stored in a Controlled Environment. Foods 2024; 13:345. [PMID: 38275712 PMCID: PMC10815365 DOI: 10.3390/foods13020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Saudi Arabia is a prominent producer of dates, producing 1.6 million tons annually. There is a need to evaluate the physical properties and quality of fruits non-destructively and then modeled and predict them throughout the storage period. The aim of the current study was to generate a quality index (Qi) and visible-near-infrared spectra (VIS-NIR) models non-destructively to predict properties of Barhi dates including objective and sensory evaluations. A total of 1000 Barhi fruits were sorted into three stages of maturation, ranging from 80 to 100% yellowish. The physical properties (hardness, color, TSS, pH, and sensory evaluations) of Barhi dates were measured and modeled with Qi based on VIS-NIR of fresh Barhi fruits and during storage in ambient (25 °C), cold (1 °C), and CA (1 °C with 5%:5% O2:CO2, 85% RH) conditions for up to 3 months. The prediction of Qi was non-destructively based on VIS-NIR utilizing PLSR and ANN data analysis. The results showed that the shelf-life of stored Barhi fruits were 20, 40, and 120 days corresponding to 25 °C, cold (1 °C), and CA, respectively. It was found that VIS-NIR spectroscopy was helpful in estimating the Qi of Barhi fruits for PLSR and ANN data analysis, respectively, in calibration with an R2 of 0.793 and 0.912 and RMSEC of 0.110 and 0.308 and cross-validation with an R2 of 0.783 and 0.912 and RMSEC of 0.298 and 0.308. The VIS-NIR spectrum has proven to be an effective method for the evaluation of the Qi of Barhi fruits and their physical properties throughout the supply chain in the handling, processing, transportation, storage and retail sectors. It was found that ANN is more suitable than PLSR analysis.
Collapse
Affiliation(s)
- Abdullah M Alhamdan
- Dates Industry and Technology Chair, Department of Agricultural Engineering, College of Food and Agricultural Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
8
|
Luo T, Lin X, Lai T, Long L, Lai Z, Du X, Guo X, Shuai L, Han D, Wu Z. GA 3 Treatment Delays the Deterioration of 'Shixia' Longan during the On-Tree Preservation and Room-Temperature Storage and Up-Regulates Antioxidants. Foods 2023; 12:foods12102032. [PMID: 37238852 DOI: 10.3390/foods12102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Gibberellic acids had been proven to improve the fruit quality and storability by delaying deterioration and maintaining the antioxidant system. In this study, the effect of GA3 spraying at different concentrations (10, 20, and 50 mg L-1) on the quality of on-tree preserved 'Shixia' longan was examined. Only 50 mg L-1 GA3 significantly delayed the decline of soluble solids (22.0% higher than the control) and resulted in higher total phenolics content (TPC), total flavonoid content (TFC), and phenylalanine ammonia-lyase activity in pulp at the later stages. The widely targeted metabolome analysis showed that the treatment reprogrammed secondary metabolites and up-regulated many tannins, phenolic acids, and lignans during the on-tree preservation. More importantly, the preharvest 50 mg L-1 GA3 spraying (at 85 and 95 days after flowering) led to significantly delayed pericarp browning and aril breakdown, as well as lower pericarp relative conductivity and mass loss at the later stages of room-temperature storage. The treatment also resulted in higher antioxidants in pulp (vitamin C, phenolics, and reduced glutathione) and pericarp (vitamin C, flavonoids, and phenolics). Therefore, preharvest 50 mg L-1 GA3 spraying is an effective method for maintaining the quality and up-regulating antioxidants of longan fruit during both on-tree preservation and room-temperature storage.
Collapse
Affiliation(s)
- Tao Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Tingting Lai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Libing Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Ziying Lai
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xinxin Du
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Liang Shuai
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Liu J, Zhou X, Chen D, Guo J, Chen K, Ye C, Liu C. 1H NMR-Based Metabolic Profiling to Follow Changes in Pomelo Cultivars during Postharvest Senescence. Foods 2023; 12:foods12102001. [PMID: 37238818 DOI: 10.3390/foods12102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated metabolite changes in three pomelo cultivars during postharvest senescence using 1H NMR-based metabolic profiling. Three pomelo cultivars, 'Hongroumiyou', 'Bairoumiyou' and 'Huangroumiyou', abbreviated as "R", "W" and "Y" according to the color of their juice sacs, were stored at 25 °C for 90 days, and NMR was applied to determine the metabolite changes in juice sacs during storage. Fifteen metabolites were identified, including organic acids, sugars, amino acids, fatty acids, phenols and naringin. Partial least squares discriminant analysis (PLS-DA) was used to screen the significant metabolites according to the variable importance for the projection (VIP) scores in three pomelo cultivars during 90 days of storage. Additionally, eight metabolites, naringin, alanine, asparagine, choline, citric acid, malic acid, phosphocholine and β-D-glucose, were screened to be the crucial biomarkers with VIP > 1. The undesirable flavor of "bitter and sour" during the 60 days of storage was mainly attributed to the naringin, citric acid and sugars. According to the correlation analysis, the citric acid content determined by NMR showed a significantly positive relationship with that analyzed by HPLC. These findings suggested that NMR technology was accurate and efficient for metabolomic analysis of pomelo fruit, and the 1H NMR-based metabolic profiling can be efficient during quality evaluation and useful for improving the fruit flavor quality during postharvest storage.
Collapse
Affiliation(s)
- Juan Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xinqiao Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Dagang Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Jie Guo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
10
|
Bano A, Noreen Z, Tabassum F, Zafar F, Rashid M, Aslam M, Shah AA, Shah AN, Jaremko M, Alasmael N, Abdelsalam NR, Hasan ME. Induction of salt tolerance in Brassica rapa by nitric oxide treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:995837. [PMID: 36466280 PMCID: PMC9709477 DOI: 10.3389/fpls.2022.995837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Salinity is one of the major plant abiotic stresses increasing over time worldwide. The most important biological role of nitric oxide (NO) in plants is related to their development and growth under abiotic conditions. The present experiment was conducted to study the effect of salt stress (0 and 100 mM) and NO (0 and 80 μM) on two different ecotypes of Brassica rapa (L.): PTWG-HL and PTWG-PK. The different growth attributes, biochemical and physiological parameters, and the mineral contents were examined. The results indicated increased hydrogen peroxide (H2O2), relative membrane permeability, malondialdehyde (MDA), and Na+ content and decreased plant biomass in both ecotypes (PTWG-PK and PTWG-HL) under salt stress. In contrast, NO treatment resulted in increased plant biomass, chlorophyll content, and total soluble proteins and decreased H2O2, relative membrane permeability, MDA, total phenolic content, catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and Na+. The combined effect of salt stress and NO application increased the chlorophyll a content, total phenolic content, and total soluble proteins, but decreased H2O2, relative membrane permeability, MDA, and Na+. The response of carotenoids, anthocyanins, and K+, Ca2+, and Cl- ions varied in both ecotypes under all treatment conditions. The PTWG-PK ecotype showed maximum overall growth response with the application of NO. Henceforth, it is proposed that the molecular mechanisms associated with NO-induced stress tolerance in plants may be exploited to attain sustainability in agriculture under changing climate scenarios.
Collapse
Affiliation(s)
- Atiyyah Bano
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fariha Tabassum
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fizza Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noura Alasmael
- Smart Hybrid Materials Laboratory, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed E. Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
11
|
Long L, Lai T, Han D, Lin X, Xu J, Zhu D, Guo X, Lin Y, Pan F, Wang Y, Lai Z, Du X, Fang D, Shuai L, Wu Z, Luo T. A Comprehensive Analysis of Physiologic and Hormone Basis for the Difference in Room-Temperature Storability between ‘Shixia’ and ‘Luosanmu’ Longan Fruits. PLANTS 2022; 11:plants11192503. [PMID: 36235369 PMCID: PMC9572663 DOI: 10.3390/plants11192503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Although the effects of phytohormones (mainly salicylic acid) on the storability of longan fruit have been reported, the relationship between postharvest hormone variation and signal transduction and storability remains unexplored. The basis of physiology, biochemistry, hormone content and signalling for the storability difference at room-temperature between ‘Shixia’ and ‘Luosanmu’ longan fruit were examined. ‘Luosanmu’ longan exhibited faster pericarp browning, aril breakdown and rotting during storage. ‘Luosanmu’ pericarp exhibited higher malondialdehyde but faster decreased total phenolics, flavonoid, glutathione, vitamin C, catalase activity and gene expression. Higher H2O2 and malondialdehyde but lower glutathione, glutathione-reductase and peroxidase activities, while higher activities and gene expressions of polygalacturonase, β-galactosidase and cellulose, lower covalent-soluble pectin, cellulose and hemicellulose but higher water-soluble pectin were observed in ‘Luosanmu’ aril. Lower abscisic acid and methyl jasmonate but higher expressions of LOX2, JAZ and NPR1 in pericarp, while higher abscisic acid, methyl jasmonate and salicylic acid together with higher expressions of ABF, JAZ, NPR1 and PR-1 in ‘Luosanmu’ aril were observed. In conclusion, the imbalance between the accumulation and scavenging of active oxygen in ‘Luosanmu’ longan might induce faster lipid peroxidation and senescence-related hormone signalling and further the polymerization of phenolics in pericarp and polysaccharide degradation in aril.
Collapse
Affiliation(s)
- Libing Long
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Tingting Lai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China
| | - Xiaolan Lin
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Jianhang Xu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Difa Zhu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Yuqiong Lin
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Fengyi Pan
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Yihang Wang
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Ziying Lai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xinxin Du
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Di Fang
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Correspondence: (Z.W.); (T.L.)
| | - Tao Luo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Correspondence: (Z.W.); (T.L.)
| |
Collapse
|
12
|
Madebo MP, Ayalew Y, Zheng Y, Jin P. Nitric Oxide and Its Donor Sodium-Nitroprusside Regulation of the Postharvest Quality and Oxidative Stress on Fruits: A Systematic Review and Meta-Analysis. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yenenesh Ayalew
- Department of Horticulture, College of Agriculture and Natural Resource, Dilla University, Dilla, Ethiopia
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
13
|
Ji Y, Xu M, Liu Z, Yuan H, Lv T, Li H, Xu Y, Si Y, Wang A. NUCLEOCYTOPLASMIC shuttling of ETHYLENE RESPONSE FACTOR 5 mediated by nitric oxide suppresses ethylene biosynthesis in apple fruit. THE NEW PHYTOLOGIST 2022; 234:1714-1734. [PMID: 35254663 PMCID: PMC9313842 DOI: 10.1111/nph.18071] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is known to modulate the action of several phytohormones. This includes the gaseous hormone ethylene, but the molecular mechanisms underlying the effect of NO on ethylene biosynthesis are unclear. Here, we observed a decrease in endogenous NO abundance during apple (Malus domestica) fruit development and exogenous treatment of apple fruit with a NO donor suppressed ethylene production, suggesting that NO is a ripening suppressor. Expression of the transcription factor MdERF5 was activated by NO donor treatment. NO induced the nucleocytoplasmic shuttling of MdERF5 by modulating its interaction with the protein phosphatase, MdPP2C57. MdPP2C57-induced dephosphorylation of MdERF5 at Ser260 is sufficient to promote nuclear export of MdERF5. As a consequence of this export, MdERF5 proteins in the cytoplasm interacted with and suppressed the activity of MdACO1, an enzyme that converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The NO-activated MdERF5 was observed to increase in abundance in the nucleus and bind to the promoter of the ACC synthase gene MdACS1 and directly suppress its transcription. Together, these results suggest that NO-activated nucleocytoplasmic MdERF5 suppresses the action of ethylene biosynthetic genes, thereby suppressing ethylene biosynthesis and limiting fruit ripening.
Collapse
Affiliation(s)
- Yinglin Ji
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Zhi Liu
- Liaoning Institute of PomologyXiongyue115009China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Tianxing Lv
- Liaoning Institute of PomologyXiongyue115009China
| | - Hongjian Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
- Liaoning Institute of PomologyXiongyue115009China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Yajing Si
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province)Key Laboratory of Protected Horticulture (Ministry of Education)National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning)College of HorticultureShenyang Agricultural UniversityShenyang110866China
| |
Collapse
|
14
|
Khan MR, Huang C, Ullah R, Ullah H, Qazi IM, Nawaz T, Adnan M, Khan A, Su H, Ren L. Effects of Various Polymeric Films on the Pericarp Microstructure and Storability of Longan (cv. Shixia) Fruit Treated with Propyl Disulfide Essential Oil from the Neem (Azadirachta indica) Plant. Polymers (Basel) 2022; 14:polym14030536. [PMID: 35160524 PMCID: PMC8839377 DOI: 10.3390/polym14030536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Plant extracts represent a rich repository of metabolites with antioxidant and antimicrobial properties. Neem (Azadirachta indica) is a medicinal plant considered the tree of the 21st century. In this study, we investigated the antioxidant and antimicrobial effects of propyl disulfide (PD), a major volatile compound in neem seed, against the pericarp browning (BI), microbial decay incidence (DI), and water loss of longan fruit. Fresh longan cv. Shixia samples were packaged in oriented polypropylene (OPP) and polyethene (PE) packages of different thicknesses (20, 40, and 60 µm). Sterile gauze was fixed inside the packages and 500 uL of PD was placed on them to avoid the direct contact of PD with fruit samples. Packages were sealed immediately to minimize vaporization and stored at 12 ± 1 °C for 18 days. Fruit samples packaged in open net packages served as controls. The results showed that fruit treated with PD in OPP and PE packages significantly prevented losses of water, DI, and BI compared to control treatment. PD also maintained the color, TSS values, TA values, pH values, high peel firmness, high TPC content, and high TFC content, and reduced the activity levels of PPO and POD. Scanning electron microscope (SEM) analysis indicated that the exocarp, mesocarp, and endocarp of longan peel were smooth, uniform, and compact with no free space compared to control, where crakes, a damaged and loose structure, and a lot of fungal mycelia were found. The shortest shelf life of 9 days was observed in control as compared to 18 days in OPP-20 and OPP-40; 15 days in OPP-60, PE-20, and PE-40; and 12 days in PE-60 packaging films. Therefore, PD as a natural antioxidant and antimicrobial agent, in combination with OPP-20 and OPP-40 polymeric films, could successfully be applied commercially to extend the postharvest shelf life of longan.
Collapse
Affiliation(s)
- Muhammad Rafiullah Khan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.S.); (L.R.)
- Correspondence: (M.R.K.); (C.H.)
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.S.); (L.R.)
- Correspondence: (M.R.K.); (C.H.)
| | - Rafi Ullah
- Department of Agriculture, University of Swabi, Swabi 25130, Pakistan; (R.U.); (H.U.)
| | - Hakim Ullah
- Department of Agriculture, University of Swabi, Swabi 25130, Pakistan; (R.U.); (H.U.)
| | - Ihsan Mabood Qazi
- Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar 25000, Pakistan; (I.M.Q.); (T.N.)
| | - Taufiq Nawaz
- Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar 25000, Pakistan; (I.M.Q.); (T.N.)
| | - Muhammad Adnan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresorces, Guangxi University, Nanning 530004, China; (M.A.); (A.K.)
| | - Abdullah Khan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresorces, Guangxi University, Nanning 530004, China; (M.A.); (A.K.)
| | - Hongxia Su
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.S.); (L.R.)
| | - Liu Ren
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (H.S.); (L.R.)
| |
Collapse
|
15
|
Rashad YM, Abdel Razik ES, Darwish DB. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off. Sci Rep 2022; 12:857. [PMID: 35039591 PMCID: PMC8763899 DOI: 10.1038/s41598-022-04903-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.
Collapse
Affiliation(s)
- Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Doaa B Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Chen Y, Deng H, Zhang J, Tiemur A, Wang J, Wu B. Effect of nitric oxide fumigation on microorganisms and quality of dried apricots during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Chen
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou People’s Republic of China
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi People’s Republic of China
| | - Hao Deng
- College of Food Science and Pharmacy Xinjiang Agricultural University Urumqi People’s Republic of China
| | - Jian Zhang
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| | - Atawula Tiemur
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| | - Jide Wang
- College of Chemistry and Chemical Engineering Xinjiang University Urumqi People’s Republic of China
| | - Bin Wu
- Institute of Commodity Storage and Processing Xinjiang Academy of Agricultural Sciences Urumqi People’s Republic of China
| |
Collapse
|
17
|
Hashemi M, Dastjerdi AM, Mirdehghan SH, Shakerardekani A, Golding JB. Incorporation of Zataria multiflora Boiss essential oil into gum Arabic edible coating to maintain the quality properties of fresh in-hull pistachio (Pistacia vera L.). Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Effect of Sodium Alginate in Combination with Zataria multiflora Boiss. on Phenolic Compounds, Antioxidant Activity, and Browning Enzymes of Fresh In-Hull Pistachio (Pistacia vera L.). J FOOD QUALITY 2021. [DOI: 10.1155/2021/3193573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The color of fresh pistachio is used as a postharvest quality indicator. The present study was performed to investigate the chemical properties of fresh pistachios coated with different sodium alginate concentrations (1 and 1.5%), various amounts of Shirazi thyme essential oil (0.3 and 0.5%), and their combination during storage (2 ± 1°C and 85 ± 5% RH). Over the storage duration, chemical parameters were measured on days 13, 26, and 39. The results showed that although the application of sodium alginate in combination with thyme essential oil decreased polyphenol oxidase activity in comparison with other treatments, the highest total phenolics and phenylalanine ammonia lyase activity were found in pistachios coated with alginate (1%) + thyme essential oil (0.3% and 0.5%). In general, it was proven that treatments containing 1% alginate + 0.3% essential oil had the ability to maintain the quality of fresh pistachio fruit approximately over 39 days of storage.
Collapse
|
19
|
Luo T, Yin F, Liao L, Liu Y, Guan B, Wang M, Lai T, Wu Z, Shuai L. Postharvest melatonin treatment inhibited longan ( Dimocarpus longan Lour.) pericarp browning by increasing ROS scavenging ability and protecting cytomembrane integrity. Food Sci Nutr 2021; 9:4963-4973. [PMID: 34532008 PMCID: PMC8441273 DOI: 10.1002/fsn3.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Postharvest melatonin treatments have been reported to improve the quality and storability, especially to inhibit browning in many fruits, but the effect had not been systematically investigated on longan fruit. In this study, the effect of 0.4 mM melatonin (MLT) dipping on the quality and pericarp browning of longan fruits stored at low temperature was investigated. The MLT treatment did not influence the TSS content of longan fruits but lead to increased lightness and h° value while decreased a* value of pericarp. More importantly, the treatment significantly delayed the increase in electrolyte leakage and malonaldehyde accumulation, inhibited the activities of polyphenol oxidase and peroxidase, and thus retarded pericarp browning. In addition, the treatment significantly inhibited the production of O2 •- and H2O2 while promoted the accumulation of glutathione, flavonoids, and phenolics at earlier storage stages in longan pericarp. Interestingly, the activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) were significantly upregulated but activities of catalase were downregulated in the MLT-treated longan pericarp. MLT treatment effectively enhanced APX and SOD activities, increased flavonoid, phenolics, and glutathione content, protected cytomembrane integrity, inhibited the production of O2 •- and H2O2 and browning-related enzymes, and thus delayed the longan pericarp browning.
Collapse
Affiliation(s)
- Tao Luo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Feilong Yin
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Boyang Guan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Min Wang
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Tingting Lai
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Zhenxian Wu
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research CenterGuangzhouChina
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| |
Collapse
|
20
|
Khan MR, Huang C, Durrani Y, Muhammad A. Chemistry of enzymatic browning in longan fruit as a function of pericarp pH and dehydration and its prevention by essential oil, an alternative approach to SO 2 fumigation. PeerJ 2021; 9:e11539. [PMID: 34178450 PMCID: PMC8210808 DOI: 10.7717/peerj.11539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
Background Longan fruit is a rich source of bioactive compounds; however, enzymatic browning of pericarp and microbial decay have limited its postharvest life. SO2 has widely been used to overcome these limitations; however, due to safety and regulatory concerns, alternative means should be identified. In this study, antioxidant and antimicrobial properties of thymol (TH) essential oil were investigated against the enzymatic browning and decay of longan fruit. Methods Fruits were coated with TH (4%) for 5 min, sealed in polyethylene (PE) packages and stored at 4 °C for 42 d. Fruits immersed in distilled water (DW) and stored in PE were used as control. Results TH extended the postharvest life of longan to 42 d than 28 d in DW. TH residues decreased from 142 to 11.17 mg kg-1, while no residues were found at day 42. TH significantly (P ≤ 0.05) reduced the respiration rate, inhibited polyphenol oxidase (PPO) and peroxidase (POD) enzyme activities, sustained high phenols/flavonoids and prevented pericarp browning (BI) than DW. TH also effectively (P ≤ 0.05) maintained the color values, firmness of peel and aril, total soluble solids (TSS), titratable acidity (TA), inhibited decay incidence (DI) and resulted in lower ethanol content than DW. BI as a function of pericarp pH was highly correlated; pH and BI (r = 0. 97), with PPO (r = 0.93) and with water loss (r = 0.99). A high coefficient of correlation of BI was found with the pericarp pH, enzymes, phenolic, water loss and decay incidence with ethanol. TH could be the best alternative to SO2 and other synthetic preservatives.
Collapse
Affiliation(s)
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yasser Durrani
- Department of Food Science and Technology, The University of Agriculture, Peshawar, Pakistan
| | - Ali Muhammad
- Department of Food Science and Technology, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
21
|
Zhao X, Zhang Y, Ma Y, Zhang L, Jiang Y, Liang H, Wang D. Inhibitory mechanism of low-oxygen-storage treatment in postharvest internal bluing of radish (Raphanus sativus) roots. Food Chem 2021; 364:130423. [PMID: 34198034 DOI: 10.1016/j.foodchem.2021.130423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress in radish roots causes internal blue discoloration and decreases vegetable quality. Accordingly, the effects of different oxygen concentration treatment on this coloration during storage was investigated; 4-hydroxyglucobrassicin content (a precursor of the blue component); the reactive oxygen species (ROS) superoxide (O2-) and hydrogen peroxide (H2O2); the antioxidants ascorbic acid (AsA) and glutathione (GSH); and the activities and gene expression levels of the enzymes catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), were monitored under normal and low-oxygen conditions. The results indicated that packaging radish roots under 10% O2 prevents blue discoloration by decreasing the activity and expression of the oxidant enzyme POD, increasing the levels of antioxidant and reducing substances, and upregulating antioxidant enzymes, all of which act to decrease the generation of ROS (O2- and H2O2).
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yaqian Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; College of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yue Ma
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Li Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Ying Jiang
- College of Food Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hao Liang
- Longda Food Group Co. LTD, Shandong 265231, China
| | - Dan Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
22
|
Khaliq G, Ullah M, Memon SA, Ali A, Rashid M. Exogenous nitric oxide reduces postharvest anthracnose disease and maintains quality of custard apple (Annona squamosa L.) fruit during ripening. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00658-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Assessment of the optical properties of peaches with fungal infection using spatially-resolved diffuse reflectance technique and their relationships with tissue structural and biochemical properties. Food Chem 2020; 321:126704. [PMID: 32234637 DOI: 10.1016/j.foodchem.2020.126704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
This research measured the optical absorption (µa) and reduced scattering (μs') properties in peaches during quality deterioration, and determine the relationships of the optical parameters with select structural and biochemical parameters. Spatially resolved reflectance was measured for healthy and fungal infected peaches, followed by physical (the size and tissue color), structural [membrane permeability and SEM], and biochemical (Vc, soluble sugar, titratable acid, chlorophyll, total phenolic content) measurements. Both µa and µs' were correlated well with the cellulosic structural and biochemical parameters of peaches, and they had the best correlations with those quality parameters at 675 nm. The correlation of μs' with membrane permeability was the highest from -0.962-0.743, while μa had the best correlation with the chlorophyll content at 675 nm which is an indicator of plant maturation and senescence. These findings would be useful for further development of an effective optical technique for early disease detection of peach fruit.
Collapse
|
24
|
Chen Y, Xie H, Tang J, Lin M, Hung YC, Lin H. Effects of acidic electrolyzed water treatment on storability, quality attributes and nutritive properties of longan fruit during storage. Food Chem 2020; 320:126641. [PMID: 32213424 DOI: 10.1016/j.foodchem.2020.126641] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study was to use acidic electrolyzed water (AEW) to treat longan fruit and evaluate the effects of AEW treatment on storability, quality attributes and nutritive properties of longans during storage. The data indicated that, as compared to the control samples, AEW treatment could effectively reduce the respiration rate and pericarp cell membrane permeability, retard the occurrences of pericarp browning, pulp breakdown and fruit disease, keep a higher rate of commercially acceptable fruit. Additionally, AEW treatment could suppress the decrease of chromaticity values of L*, a* and b* of the fruit surface, keep higher amounts of pericarp carotenoid, chlorophyll, flavonoid and anthocyanin, maintain higher amounts of pulp total soluble solid (TSS), total soluble sugars, sucrose and vitamin C. These results demonstrated that AEW treatment at pH of 2.5, ACC of 80 mg/L could maintain higher quality attributes and nutritive properties, and display better storability of harvested longans.
Collapse
Affiliation(s)
- Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Huilin Xie
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Jinyan Tang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, United States
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
25
|
Lin Y, Lin H, Chen Y, Wang H, Ritenour MA, Lin Y. Hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage. Food Chem 2019; 297:124955. [DOI: 10.1016/j.foodchem.2019.124955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/25/2022]
|
26
|
Gao K, Liu Z, Chen J, Chen L, Qi Y, Wang Z, Sun Y. Effects of different substrates on low-temperature storage of fresh ginseng. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6258-6266. [PMID: 31250451 DOI: 10.1002/jsfa.9899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Fresh ginseng was buried in three types of sand with different moisture contents and three types of soil and then stored at 2 °C to determine the effects of these storage substrates on fresh ginseng. RESULTS At a storage time of 200 days, ginseng stored in underforest soil softened the most slowly and had a significantly greater firmness compared to the other samples (P < 0.05). The amount of most ginsenosides changed after storage for most of the substrates. Samples stored in ginseng soil and biological fertilizer had the highest concentration of total saponin and ginseng polysaccharides, respectively. Fresh ginseng stored in medium-water content sand had a significantly lower polyphenol oxidase activity (P < 0.05). A significant difference was observed in the total concentration of nucleosides and nucleobases between the ginseng samples stored with and without substrates (P < 0.05). CONCLUSION The data obtained in the present study suggest that the use of storage substrates is an optimal method for extending the shelf life of fresh ginseng without detrimental effects on its components. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Gao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Zhengbo Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Jianbo Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Lixue Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| | - Yuli Qi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| | - Zeshuai Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin, China
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Zhu L, Du H, Wang W, Zhang W, Shen Y, Wan C, Chen J. Synergistic effect of nitric oxide with hydrogen sulfide on inhibition of ripening and softening of peach fruits during storage. SCIENTIA HORTICULTURAE 2019; 256:108591. [DOI: 10.1016/j.scienta.2019.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B. Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via l-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-l-Methionine. Antioxidants (Basel) 2019; 8:antiox8090358. [PMID: 31480617 PMCID: PMC6769871 DOI: 10.3390/antiox8090358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is known to antagonize ethylene by various mechanisms; one of such mechanisms is reducing ethylene levels by competitive action on S-adenosyl-L-methionine (SAM)—a common precursor for both ethylene and polyamines (PAs) biosynthesis. In order to investigate whether this mechanism of SAM pool diversion by NO occur towards PAs biosynthesis in banana, we studied the effect of NO on alterations in the levels of PAs, which in turn modulate ethylene levels during ripening. In response to NO donor sodium nitroprusside (SNP) treatment, all three major PAs viz. putrescine, spermidine and spermine were induced in control as well as ethylene pre-treated banana fruits. However, the gene expression studies in two popular banana varieties of diverse genomes, Nanjanagudu rasabale (NR; AAB genome) and Cavendish (CAV; AAA genome) revealed the downregulation of SAM decarboxylase, an intermediate gene involved in ethylene and PA pathway after the fifth day of NO donor SNP treatment, suggesting that ethylene and PA pathways do not compete for SAM. Interestingly, arginine decarboxylase belonging to arginine-mediated route of PA biosynthesis was upregulated several folds in response to the SNP treatment. These observations revealed that NO induces PAs via l-arginine-mediated route and not via diversion of SAM pool.
Collapse
Affiliation(s)
- Veeresh Lokesh
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Girigowda Manjunatha
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Namratha S Hegde
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | | | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
29
|
Khan MR, Chinsirikul W, Sane A, Chonhenchob V. Combined effects of natural substances and modified atmosphere packaging on reducing enzymatic browning and postharvest decay of longan fruit. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Rafiullah Khan
- Department of Packaging and Materials Technology Kasetsart University Bangkok 10900 Thailand
- Postharvest Technology Innovation Center Commission on Higher Education Bangkok 10400 Thailand
| | - Wannee Chinsirikul
- National Nanotechnology Center National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Amporn Sane
- Department of Packaging and Materials Technology Kasetsart University Bangkok 10900 Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology Kasetsart University Bangkok 10900 Thailand
- Postharvest Technology Innovation Center Commission on Higher Education Bangkok 10400 Thailand
| |
Collapse
|
30
|
Luo T, Li S, Han D, Guo X, Shuai L, Wu Z. The effect of desulfurization on the postharvest quality and sulfite metabolism in pulp of sulfitated "Feizixiao" Litchi ( Litchi chinensis Sonn.) fruits. Food Sci Nutr 2019; 7:1715-1726. [PMID: 31139384 PMCID: PMC6526637 DOI: 10.1002/fsn3.1008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 01/02/2023] Open
Abstract
The residual sulfite caused by sulfur fumigation (SF) is a hazard to health and influenced the export trade of litchi. Desulfurization (DS) is a valid chemical method to reduce the residual sulfite. However, the effect of DS on fumigated litchi has not been studied at physiological and molecular level. This study was aimed to evaluate the effect of DS (SF plus 3% desulfurizer) on the postharvest quality, sulfite residue, and the sulfite metabolism in sulfitated "Feizixiao" litchi during the 4°C storage. Results indicated that the DS promoted the color recovery of sulfitated litchi and achieved an effect similar to SF on controlling rot and browning. DS recovered the water content and respiration rate of sulfitated litchi pericarp. Thus, DS improves commodity properties of sulfitated litchi. Moreover, DS greatly reduced sulfite residue especially in pulp and ensured the edible safety of sulfitated litchi. The activities of sulfite oxidase, sulfite reductase, serine acetyltransferase, and O-acetylserine(thiol) lyase in pulp increased after SF but fell down after DS while the expressions of their encoding genes decreased after SF but then rallied after DS. These results indicated the key role of these enzymes in sulfite metabolism after SF and DS changed the sulfite metabolism at both enzymatic and transcriptional level. It could be concluded that DS used in this study was an effective method for improving the color recovery and ensuring the edible safety of sulfitated litchi by not only chemical reaction but also both of enzymatic and transcriptional regulation.
Collapse
Affiliation(s)
- Tao Luo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouP.R. China
| | - Shuangshuang Li
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouP.R. China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource UtilizationMinistry of AgricultureGuangzhouP.R. China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouP.R. China
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouP.R. China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South ChinaMinistry of EducationGuangzhouP.R. China
- Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China) of Ministry of AgricultureGuangzhouP.R. China
| |
Collapse
|
31
|
Luo T, Niu J, Guo X, Wu H, Han D, Shuai L, Wu Z. Preharvest zinc sulfate spray improves the storability of longan (Dimocarpus longan Lour.) fruits by protecting the cell wall components and antioxidants of pericarp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1098-1107. [PMID: 30047133 DOI: 10.1002/jsfa.9277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Zinc (Zn) fertilization has been reported to improve the quality and storability of many fruits, but the mechanism had not been systematically studied. In this study, the effect of preharvest 0.2% zinc sulfate (ZnSO4 ) spray on the storability of longan fruits was investigated. RESULTS The preharvest ZnSO4 spray did not significantly influence the quality but increased the Zn content in longan pericarp by 12.5-fold. More importantly, the treatment significantly reduced the rotting rate, pericarp browning, and aril breakdown of longan fruits stored at room temperature and low temperature. Physiological and biochemical results indicated that the treatment resulted in higher water retention capacity and inhibited the degradation of cellulose, pectin, flavonoid, and phenolics of longan pericarp at the late stages of storage. Consistent with these results, the activity of cellulase, polygalacturonase, polyphenol oxidase, and lipoxygenase was significantly inhibited in the ZnSO4 -treated longan pericarp at the late stages of storage. CONCLUSION Higher Zn content in the ZnSO4 -treated longan pericarp might help to enhance the resistance against microbial infection, inhibit the hydrolysis of cell wall components, and thus effectively protected the cell wall components, maintained the cellular compartmentation, and prevented the phenolics and flavonoid from degradation by browning-related enzymes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Luo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, P.R. China
| | - Jiajia Niu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
| | - Huitao Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture/Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Liang Shuai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, P.R. China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- Guangdong Litchi Engineering Research Center, Guangzhou, P.R. China
| |
Collapse
|
32
|
Improved Postharvest Preservation Effects of Pholiota nameko Mushroom by Sodium Alginate–Based Edible Composite Coating. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2235-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Mukherjee S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 2019; 82:25-34. [DOI: 10.1016/j.niox.2018.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/11/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
34
|
Wang H, Chen YH, Sun JZ, Lin YF, Lin YX, Lin M, Hung YC, Ritenour MA, Lin HT. The Changes in Metabolisms of Membrane Lipids and Phenolics Induced by Phomopsis longanae Chi Infection in Association with Pericarp Browning and Disease Occurrence of Postharvest Longan Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12794-12804. [PMID: 30403851 DOI: 10.1021/acs.jafc.8b04616] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the changes in metabolisms of membrane lipids and phenolics caused by Phomopsis longanae Chi infection in association with pericarp browning and fruit disease occurrence of postharvest longans. Compared with the uninoculated-longans, the longans inoculated by P. longanae exhibited higher cellular membrane permeability; higher PLD, lipase, and LOX activities; and higher levels of saturated fatty acids (SFAs) and phosphatidic acid but lower levels of phosphatidylinositol, phosphatidylcholine, and unsaturated fatty acids (USFAs). Additionally, the longans inoculated by P. longanae showed higher activities of POD and PPO but a lower amount of total phenolics. These findings suggested that infection of P. longanae enhanced activities of PLD-, lipase-, and LOX- stimulated degradations of membrane lipids and USFAs, which destroyed the integrity of the cell membrane structure, resulting in enzymatic browning by contact of phenolics with POD and PPO, and resulting in reduction of resistance to pathogen infection and accordingly accelerated disease occurrence of postharvest longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Hui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jun-Zheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Fen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Yi-Xiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems & Bioengineering , University of Missouri , Columbia , Missouri 65211-5160 , United States
| | - Yen-Con Hung
- Department of Food Science and Technology , University of Georgia , 1109 Experiment Street , Griffin , Georgia 30223 , United States
| | - Mark A Ritenour
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences , University of Florida , Fort Pierce 34945 , United States
| | - He-Tong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| |
Collapse
|
35
|
Khezerluo M, Hosseini B, Amiri J. Sodium nitroprusside stimulated production of tropane alkaloids and antioxidant enzymes activity in hairy root culture of Hyoscyamus reticulatus L. ACTA BIOLOGICA HUNGARICA 2018; 69:437-448. [PMID: 30587015 DOI: 10.1556/018.69.2018.4.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyoscyamus reticulatus L. is a herbaceous biennial belonging to the solanaceae family. Hyoscyamine and scopolamine as main tropane alkaloids accumulated in henbane are widely used in medicine to treat diseases such as parkinson's or to calm schizoid patients. Hairy roots media manipulation which uses elicitors to activate defense mechanisms is one of the main strategies for inducing secondary metabolism as well as increasing the production of valuable metabolites. Cotyledon-derived hairy root cultures were transformed by Agrobacterium rhizogenes. Sodium nitroprusside (SNP), a nitric oxide donor), was used in various concentrations (0, 50, 100, 200 and 300 μM) and exposure times (24 and 48 h). Treatment with SNP led to a significant reduction in fresh and dry weight of hairy roots, compared to control cultures. ANOVA results showed that elicitation of hairy root cultures with SNP at different concentrations and exposure times significantly affected the activity of as antioxidant enzymes such as catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). The highest hyoscyamine and scopolamine production (about 1.2-fold and 1.5-fold increases over the control) was observed at 50 and 100 μM SNP at 48 and 24 hours of exposure time, respectively. This is the first report of SNP elicitation effects on the production of tropane alkaloids in hairy root cultures.
Collapse
Affiliation(s)
- Madineh Khezerluo
- Department of Horticultural Science, Urmia University, Urmia 165, Iran
| | - Bahman Hosseini
- Department of Horticultural Science, Urmia University, Urmia 165, Iran
| | - Jafar Amiri
- Department of Horticultural Science, Urmia University, Urmia 165, Iran
| |
Collapse
|
36
|
Wang H, Chen Y, Lin H, Sun J, Lin Y, Lin M. Phomopsis longanae Chi-Induced Change in ROS Metabolism and Its Relation to Pericarp Browning and Disease Development of Harvested Longan Fruit. Front Microbiol 2018; 9:2466. [PMID: 30386318 PMCID: PMC6198053 DOI: 10.3389/fmicb.2018.02466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Phomopsis longanae Chi is a major pathogenic fungus that infects harvested longan fruit. This study aimed to investigate the effects of P. longanae on reactive oxygen species (ROS) metabolism and its relation to the pericarp browning and disease development of harvested longan fruit during storage at 28°C and 90% relative humidity. Results showed that compared to the control longans, P. longanae-inoculated longans displayed higher indexes of pericarp browning and fruit disease, higher O2 -. generation rate, higher accumulation of malondialdehyde (MDA), lower contents of glutathione (GSH) and ascorbic acid (AsA), lower 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability and reducing power in pericarp. In addition, P. longanae-infected longans exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the first 2 days of storage, and lower activities of SOD, CAT, and APX during storage day 2-5 than those in the control longans. These findings indicated that pericarp browning and disease development of P. longanae-infected longan fruit might be the result of the reducing ROS scavenging ability and the increasing O2 -. generation rate, which might lead to the peroxidation of membrane lipid, the loss of compartmentalization in longan pericarp cells, and subsequently cause polyphenol oxidase (PPO) and peroxidase (POD) to contact with phenolic substrates which result in enzymatic browning of longan pericarp, as well as cause the decrease of disease resistance to P. longanae and stimulate disease development of harvested longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
37
|
Gao H, Zeng Q, Ren Z, Li P, Xu X. Effect of exogenous γ-aminobutyric acid treatment on the enzymatic browning of fresh-cut potato during storage. Journal of Food Science and Technology 2018; 55:5035-5044. [PMID: 30482999 DOI: 10.1007/s13197-018-3442-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the effect of γ-aminobutyric acid (GABA) treatment on the enzymatic browning of fresh-cut potatoes. The browning index and activities of browning and defense-related enzymes were analyzed after 0, 1, 2, 3, 4, 5, and 6 days of storage at 4 °C. The results showed that the treatment with 20 g/L GABA for 10 min significantly retarded the browning of fresh-cut potatoes. GABA inhibited the browning of fresh-cut potatoes by enhancing the activities of catalase and superoxide dismutase, and decreasing the activities of polyphenol oxidase and reactive oxygen species. The results suggest that GABA plays an important role in reducing the browning of fresh-cut potatoes. Hence, GABA treatment is a promising approach for reducing the browning and maintaining the quality of fresh-cut potatoes.
Collapse
Affiliation(s)
- Haiyan Gao
- 1School of Life Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, 200444 People's Republic of China
| | - Qing Zeng
- 1School of Life Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, 200444 People's Republic of China
| | - Zhengnan Ren
- 1School of Life Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, 200444 People's Republic of China
| | - Peizhong Li
- 1School of Life Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, 200444 People's Republic of China
| | - Xinxing Xu
- 1School of Life Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, 200444 People's Republic of China
| |
Collapse
|
38
|
Chotikakham S, Vichaiya T, Faiyue B, Uthaibutra J, Saengnil K. Exogenous hydrogen peroxide protects senescent spotting and oxidative membrane damage of ‘Sucrier’ banana fruit during storage. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1210.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
The roles of ROS production-scavenging system in Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced pericarp browning and disease development of harvested longan fruit. Food Chem 2018; 247:16-22. [DOI: 10.1016/j.foodchem.2017.12.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
|
40
|
Lasiodiplodia theobromae (Pat.) Griff. & Maubl.-induced disease development and pericarp browning of harvested longan fruit in association with membrane lipids metabolism. Food Chem 2018; 244:93-101. [DOI: 10.1016/j.foodchem.2017.10.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022]
|
41
|
Lin Y, Lin Y, Lin H, Chen Y, Wang H, Shi J. Application of propyl gallate alleviates pericarp browning in harvested longan fruit by modulating metabolisms of respiration and energy. Food Chem 2018; 240:863-869. [DOI: 10.1016/j.foodchem.2017.07.118] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
|
42
|
Khan MR, Suwanamornlert P, Leelaphiwat P, Chinsirikul W, Chonhenchob V. Quality and biochemical changes of longan (Dimocarpus longan
Lour cv. Daw) fruit under different controlled atmosphere conditions. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Rafiullah Khan
- Department of Packaging and Materials Technology; Kasetsart University; Bangkok 10900 Thailand
- Postharvest Technology Innovation Center; Commission on Higher Education; Bangkok 10400 Thailand
| | - Panitee Suwanamornlert
- Department of Packaging and Materials Technology; Kasetsart University; Bangkok 10900 Thailand
- Postharvest Technology Innovation Center; Commission on Higher Education; Bangkok 10400 Thailand
| | - Pattarin Leelaphiwat
- Department of Packaging and Materials Technology; Kasetsart University; Bangkok 10900 Thailand
- Postharvest Technology Innovation Center; Commission on Higher Education; Bangkok 10400 Thailand
| | - Wannee Chinsirikul
- National Metal and Materials Technology Center; National Science and Technology Development Agency; Pathumthani 12120 Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology; Kasetsart University; Bangkok 10900 Thailand
- Postharvest Technology Innovation Center; Commission on Higher Education; Bangkok 10400 Thailand
| |
Collapse
|
43
|
Li L, Sun H, Kitazawa H, Wang X. Effects of a high O2 dynamic-controlled atmosphere technology on the browning of postharvest white mushroom (Agaricus bisporus) in relation to energy metabolism. FOOD SCI TECHNOL INT 2017; 23:385-395. [DOI: 10.1177/1082013217695146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Browning is one of the main problems in senescence of mushrooms, and it is also one of the most important attributes accounting for the loss of the quality and reduction in market value. In order to study the relationship between the energy metabolism and the browning of white mushroom under high O2 dynamic-controlled atmosphere (HO-DCA), mushrooms were stored in 100% O2 (SCA1), 80% O2 + 20% CO2 (SCA2), 100% O2 for three days and then transferred into the treatment of 80% O2 + 20% CO2 (HO-DCA) at 2 ± 1 ℃ and air as control. In this study, adenosine triphosphate (ATP) content, energy charge level, sensory evaluation, browning of surface and flesh, cell membrane integrity, exogenous ATP, polyphenol oxidase (PPO) and peroxidase (POD) activity and genes encoding PPO of the white mushroom were investigated. These were all closely related to the browning of products. The optimal storage condition of the HO-DCA treatment could delay the browning of pericarp and flesh tissues of the mushrooms, inhibit PPO activity and reduce the relative expression levels of the three genes encoding PPO. Meanwhile, it maintained moderate POD activity, good sensory properties and cell membrane integrity in a certain extent and thus slowed down the senescence of mushrooms. Results indicated that there was a positive correlation between the ATP content and whitening index ( r = 0.901). In addition, HO-DCA maintained a higher ATP level, prolonged the storage time to 28 days and it might be an ideal strategy for preserving the quality of mushroom during storage.
Collapse
Affiliation(s)
- Ling Li
- School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, China
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Han Sun
- School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, China
| | - Hiroaki Kitazawa
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Xiangyou Wang
- School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, China
| |
Collapse
|
44
|
Lin Y, Chen M, Lin H, Hung YC, Lin Y, Chen Y, Wang H, Shi J. DNP and ATP induced alteration in disease development of Phomopsis longanae Chi-inoculated longan fruit by acting on energy status and reactive oxygen species production-scavenging system. Food Chem 2017; 228:497-505. [PMID: 28317755 DOI: 10.1016/j.foodchem.2017.02.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023]
Abstract
As compared with P. longanae-inoculated longans, DNP treatment for P. longanae-inoculated longans exhibited higher fruit disease index and pericarp browning index, lower ATP amount and energy charge level, lower activities of SOD, CAT and APX, lower amounts of AsA and GSH, lower levels of DPPH radical scavenging activity and reducing power, higher O2- generating rate and MDA amount. However, supply of ATP for P. longanae-inoculated longans showed the contrary effects. These results gave convincing evidence that DNP treatment for accelerating pericarp browning and disease development of harvested longans caused by P. longanae was due to decreases of energy production and ROS scavenging capacity, and increases of O2- accumulation and membrane lipid peroxidation. Whereas, supply of ATP for retarding pericarp browning and disease development of harvested longans caused by P. longanae was due to increases of energy production and ROS scavenging capacity, and reductions of O2- accumulation and membrane lipid peroxidation.
Collapse
Affiliation(s)
- Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyin Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Yixiong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
45
|
Inhibitory effects of propyl gallate on membrane lipids metabolism and its relation to increasing storability of harvested longan fruit. Food Chem 2017; 217:133-138. [DOI: 10.1016/j.foodchem.2016.08.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/27/2016] [Accepted: 08/22/2016] [Indexed: 11/22/2022]
|
46
|
The Effect of the Application of Edible Coatings on or before Ultraviolet Treatment on Postharvested Longan Fruits. J FOOD QUALITY 2017. [DOI: 10.1155/2017/5454263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study compared the effect of application of edible coating on or before ultraviolet treatment on postharvest longan fruits. The treated longan fruits were examined for weight loss, respiration rate, surface color changes, enzymatic activities (PPO, POD, and PAL), and total phenolic contents throughout the 7 storage days at ambient temperature. In addition, coat homogeneity was examined and cell structure of longan flesh at the end of storage was observed. The results showed that when UV was applied before coating (i.e., chitosan or carrageenan), it had relatively lower PPO and PAL activities and retained higher TPC in longan pericarp. However, the changes in enzymatic activities did not affect the surface lightness and browning index as they were more influenced by the type of coating, in which combination treatments with carrageenan showed higher surface lightness and lower browning index compared to treatment combinations containing chitosan. However, when UV treatment preceded coating, the combinations of UV plus chitosan coating produced lower PPO and PAL activities and retained better cell structure with less damage than the combinations of UV plus carrageenan coating. UV plus carrageenan coating showed relatively higher weight loss and respiration rate, with cell structure exhibiting bigger intercellular spaces at the end of storage. Therefore, application of UV treatment followed by chitosan coating was found to be the best treatment combination for controlling enzymatic activities and reducing senescence rate of longan fruits.
Collapse
|
47
|
Hao Y, Chen F, Wu G, Gao W. Impact of Postharvest Nitric Oxide Treatment on Lignin Biosynthesis-Related Genes in Wax Apple (Syzygium samarangense) Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8483-8490. [PMID: 27787989 DOI: 10.1021/acs.jafc.6b03281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The role of nitric oxide (NO) during storage in wax apple through NO (10 μL/L) fumigate fruit was investigated. Wax apple fruit treated with NO had a significantly lower rate of weight loss, a softening index, and loss of firmness during storage. The transcriptional profile of 10 genes involved in lignin biosynthesis has been analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR analysis showed nine genes regulated in the wax apple (p < 0.05) upon NO fumigation, which coincided with the enzyme activity results (NO group lower than control group in peroxidase, phenylalanine ammonia-lyase, and 4-coumarate-CoA ligase), whose total lignin content decreased upon treatment with NO. These results indicate that NO treatment can effectively delay the softening and senescence of wax apple fruit and play an important regulatory role in lignin biosynthesis.
Collapse
Affiliation(s)
- Yuqi Hao
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Fahe Chen
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Guangbin Wu
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| | - Weiya Gao
- College of Food and Biological Engineering, Jimei University , Xiamen, China
| |
Collapse
|
48
|
Wang H, Zhi W, Qu H, Lin H, Jiang Y. Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit. Chem Cent J 2015; 9:54. [PMID: 26457116 PMCID: PMC4595526 DOI: 10.1186/s13065-015-0124-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Pericarp browning is a critical problem resulting in reduced commercial value and shelf life of longan fruit. RESULTS Two non-protein amino acids, α-aminoisobutyric acid (AIB) and β-aminoisobutyric acid (BAIB) at 100 and 1 mM were applied to longan fruit prior to storage for up to 8 days at 25 °C respectively. Contents of the major five phenolics (gallic acid, catechin, corilagin, epicatechin and gallocatechin gallate) were assayed by high-performance liquid chromatography (HPLC). Physiological properties related to pericarp browning of longan fruit were investigated during storage. Respiration rate, membrane permeability, malondialdehyde (MDA) content, and activities of polyphenol oxidase (PPO) and peroxidase (POD) were down-regulated by AIB or BAIB treatments, with significantly lower pericarp browning index and higher proportion of edible fruit than the control. Moreover, exogenous application of AIB and BAIB maintained higher contents of catechin, corilagin, epicatechin and gallocatechin gallate, but lower content of gallic acid compared to the control in the pericarp of longan fruit during storage, which was associated with the oxidation of browning substrate. CONCLUSIONS Pericarp browning was inhibited and storage life of longan fruit was extended effectively by AIB and BAIB treatments with AIB treatment being more significant than BAIB. The findings may provide a new strategy for controlling pericarp browning of harvested longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Wei Zhi
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Hongxia Qu
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | - Hetong Lin
- />Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Yueming Jiang
- />Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| |
Collapse
|
49
|
Nitric oxide prevents wound-induced browning and delays senescence through inhibition of hydrogen peroxide accumulation in fresh-cut lettuce. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Chen BN, Xing R, Wang F, Zheng AP, Wang L. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples. Food Chem 2015; 188:177-83. [PMID: 26041180 DOI: 10.1016/j.foodchem.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
α-Na8SiW11CoO40 was synthesized and characterized. The inhibitory effects of α-Na8SiW11CoO40 on the activity of mushroom tyrosinase and the effects of α-Na8SiW11CoO40 on the browning of fresh-cut apples were studied. The Native-PAGE result showed that α-Na8SiW11CoO40 had a significant inhibitory effect on tyrosinase. Kinetic analyses showed that α-Na8SiW11CoO40 was an irreversible and competitive inhibitor. The inhibitor concentration leading to a 50% reduction in activity (IC50) was estimated to be 0.239 mM. Additionally, the results also showed that α-Na8SiW11CoO40 treatment could significantly decrease the browning process of apple slices and inhibit the polyphenol oxidase (PPO) activity. Moreover, application of α-Na8SiW11CoO40 resulted in higher peroxidase activity and promoted high amounts of phenolic compounds and ascorbic acid. This study may provide a promising method for the use of polyoxometalates to inhibit tyrosinase activity and control the browning of fresh-cut apples.
Collapse
Affiliation(s)
- Bing-Nian Chen
- Yanwu Affiliated Hospital of Zhongshan Hospital Xiamen University (Xiamen University Hospital), Xiamen 361005, China.
| | - Rui Xing
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Fang Wang
- College of Chemistry and Life Science, Quanzhou Normal College, Quanzhou 362000, China
| | - A-Ping Zheng
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Li Wang
- College of Food and Bioengineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|