1
|
Farina P, Tognocchi M, Conte G, Casarosa L, Trusendi F, Conti B. Benefits of Essential Oil-Enriched Chitosan on Beef: From Appearance and Odour Improvement to Protection Against Blowfly Oviposition. Foods 2025; 14:897. [PMID: 40077600 PMCID: PMC11898430 DOI: 10.3390/foods14050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The food industry is increasingly turning to healthy and eco-friendly alternatives for meat preservation, with recent attention focused on chitosan (CH) and essential oils (EOs). Here, we propose two liquid formulations of CH enriched with Laurus nobilis or Piper nigrum EOs to preserve beef patties stored for 4 days at 4 °C from colour changes, secondary lipid oxidation, and alteration in volatile organic compound emissions while also preventing oviposition by Calliphora vomitoria on beef loaves hung for the same time at around 13 °C in a netted polytunnel. Overall, the L. nobilis EO-enriched CH solution increased the meat colour lightness compared to the control (+7.58%), kept redness and yellowness comparable to the control, maintained the level of thiobarbituric acid-reacting substances below the threshold for rancidity perception for at least 96 h, reduced the release of ethanol, enhanced the perception of fatty and woody notes in the meat along with the fresh, green, and citrusy aromas specific to the EO, and also provided significant protection (88.83%) against blowfly oviposition compared to the control. Therefore, the development of a spray CH formulation containing the L. nobilis EO appears to be a promising tool for stable and prolonged meat protection.
Collapse
Affiliation(s)
- Priscilla Farina
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
| | - Monica Tognocchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
- Research Center Nutraceuticals and Food for Health (Nutrafood), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Laura Casarosa
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
| | - Francesca Trusendi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (P.F.); (M.T.); (L.C.); (F.T.); (B.C.)
- Research Center Nutraceuticals and Food for Health (Nutrafood), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
2
|
Isvand A, Karimaei S, Amini M. Assessment of chitosan coating enriched with Citrus limon essential oil on the quality characteristics and shelf life of beef meat during cold storage. Int J Food Microbiol 2024; 423:110825. [PMID: 39059139 DOI: 10.1016/j.ijfoodmicro.2024.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The present work aimed to assess the effects of chitosan coating comprising Citrus limon essential oil (CLEO) as an antimicrobial and antioxidant on the quality and the shelf-life of beef meat during storage in cold temperatures. The microbial, chemical, and sensory characteristics of beef meat were repeatedly evaluated. The outcomes showed that CLEO had a substantial preservative effect on refrigerated beef meat by reducing total volatile basic nitrogen compounds (TVB-N), inhibiting the replication of microorganisms (p < 0.05), and decreasing oxidation (p < 0.05) during storage. The incorporation of CLEO into chitosan coating significantly reduced (p < 0.05), TBARS, especially for the Nano-CS- ClEO 2 % and 4 % groups, with values at the end of storage of approximately 0.68 and 1.01 mg MDA/kg respectively. Moreover, the meat treatments with essential oils led to lower carbonyl content production in compared to other groups that treated without essential oils. Coated beef meat had the highest inhibitory effects against microbial growth. The counts of Enterobacteriaceae, lactic acid bacteria (LAB), psychrophilic, and mesophilic bacteria were significantly lower (p < 0.05) in the Nano-CS- ClEO 2 % (1.1, 4.2, 6.2, and 6.32 Log CFU/g, respectively) at day 16. The sensory evaluation indicated that this coating with chitosan nanoemulsions in combination with ClEOs could significantly preserve sensory characteristics of beef meat during storage. Moreover, concerning sensory features, the control samples gained the maximum score. Additionally, the group that contains chitosan in combination with 4 % ClEO nanoliposomes had the highest inhibition of microbial growth, reduced sensory changes, and extending the shelf life of beef meat (p < 0.05). In conclusion, nanoemulsions containing Citrus limon essential oil had a significant preservation effect on beef meat during refrigerated storage by preventing the microorganism's proliferation and decreasing the oxidation of fat and protein (p < 0.05). Therefore, they are suggested to extend the durability of fresh meat products during refrigerated storage.
Collapse
Affiliation(s)
- Abbas Isvand
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Samira Karimaei
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoomeh Amini
- Food Microbiology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bhatia S, Shah YA, Al-Harrasi A, Jawad M, Koca E, Aydemir LY. Novel applications of black pepper essential oil as an antioxidant agent in sodium caseinate and chitosan based active edible films. Int J Biol Macromol 2024; 254:128045. [PMID: 37956812 DOI: 10.1016/j.ijbiomac.2023.128045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
In the current study, sodium caseinate and chitosan-based composite edible films were developed with the incorporation of black pepper (Piper nigrum) essential oil (BPO) in various concentrations (0.05, 0.1 and 0.15 %) for potential food packaging applications. The chemical composition of BPO was determined using GCMS and the major compound detected were β-caryophyllene, limonene, β-phellandren, pinene, copaene and α-humulene. The addition of BPO resulted in an increase in the thickness, EAB, WVP, moisture content and swelling index values of the films; however, the TS and water solubility decreased. The inclusion of BPO led to a substantial enhancement in the DPPH and ABTS radical scavenging capabilities of the edible films. SEM micrographs demonstrated intermolecular interaction between BPO, sodium caseinate, and chitosan. FTIR spectra confirmed the interaction of the functional groups of the polymers and BPO. The incorporation of the BPO increased the crystallinity of the films. Moreover, the thermal analysis including TGA, DSC and DTG demonstrated an increase in the thermal stability of the edible films with the addition of the BPO. These findings demonstrated that sodium caseinate and chitosan composite based edible films loaded with BPO can be used as sustainable active food packaging material.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India; Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Muhammad Jawad
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Esra Koca
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
4
|
Abd El‐Ghany NA, Abu Elella MH. Overview of Different Materials Used in Food Production. MATERIALS SCIENCE AND ENGINEERING IN FOOD PRODUCT DEVELOPMENT 2023:1-25. [DOI: 10.1002/9781119860594.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Lotfy TMR, Shawir SMS, Badawy MEI. The impacts of chitosan-essential oil nanoemulsions on the microbial diversity and chemical composition of refrigerated minced meat. Int J Biol Macromol 2023; 239:124237. [PMID: 37003382 DOI: 10.1016/j.ijbiomac.2023.124237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Essential oils of Mentha piperita, Punica granatum, Thymus vulgaris and Citrus limon in olive oil as a carrier were mixed with biopolymer chitosan to prepare nanoemulsions. The formulations were prepared using the following ratios: 0.5:0.5:4, 1:1:4, and 2:3:4 of chitosan: essential oil: olive oil, respectively, representing 12 formulations based on four essential oils. Based on the characterization of nanoemulsions, M. piperita, T. vulgaris, and C. limon oils produced the smallest droplets. However, P. granatum oil produced high droplets size. The products were evaluated in vitro for antimicrobial activity against two pathogenic food bacteria, Escherichia coli and Salmonella typhimunium. The in vivo antibacterial activity was further investigated on minced beef meat during storage at 4 °C for ten days. Based on the MIC values, E. coli was more susceptible than S. typhimunium. Chitosan was more effective as an antibacterial than essential oils (MIC = 500 and 650 mg/L against E. coli and S. typhimunium). Among the tested products, C. limon had a more antibacterial effect. In vivo studies proved that C. limon and its nanoemulsion were the most active products against E.coli. These results suggest that chitosan-essential oil nanoemulsions may help extend the shelf life of meat by acting as antimicrobial agents.
Collapse
Affiliation(s)
- Tesby M R Lotfy
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Samar M S Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, 21545-El-Shatby, Alexandria, Egypt.
| |
Collapse
|
6
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
7
|
Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics (Basel) 2022; 11:antibiotics11121820. [PMID: 36551477 PMCID: PMC9774598 DOI: 10.3390/antibiotics11121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing health concerns regarding the use of plasticware have led to the development of ecofriendly biodegradable packaging film from natural polymer and food additives. In the present study, basil essential oil (BEO) loaded halloysite nanotubes (HNTs) composite films were synthesized using a solution casting method. The effects of BEO and nanotube concentration on the mechanical, physical, structural, barrier, and antioxidant properties of films were evaluated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated well-dispersed HNTs and BEO in tailored composite films. The addition of BEO in Chitosan (Ch) film caused darkening of the film color; furthermore, the incorporation of HNTs in varied concentrations increased opaqueness in Ch/BEO film. The Ch/BEO film, upon adding HNTs 5-30 wt%, exhibited a corresponding increase in the film thickness (0.108-0.135 mm) when compared with the Ch/BEO film alone (0.081 mm). The BEO-loaded HNTs composite films displayed reduced moisture content and characteristic barrier and UV properties. The Ch/BEO film with 15 wt% HNTs was found to have enhanced antioxidant activity. The Ch/BEO/HNTs composite also managed to prevent broccoli florets from losing weight and firmness during storage. The enhanced barrier and antioxidant qualities of the nanocomposite film suggest its potential application in the food processing and packaging sector. This is the first ever report on the fabrication of nanocomposite film using BEO and HNTs for food packaging. The low production cost and ecofriendly approach make the film acceptable for further research and commercialization thereafter.
Collapse
|
8
|
Posgay M, Greff B, Kapcsándi V, Lakatos E. Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon 2022; 8:e10812. [PMID: 36247140 PMCID: PMC9562244 DOI: 10.1016/j.heliyon.2022.e10812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since foodborne diseases are often considered as one of the biggest public health threats worldwide, effective preservation strategies are needed to inhibit the growth of undesirable microorganisms in food commodities. Up to now, several techniques have been adopted for the production of safe and high-quality products. Although the traditional methods can improve the reliability, safety, and shelf-life of food, some of them cannot be applied without rising health concerns. Thereby, the addition of various phytochemicals has gained much attention during the last decades, especially for meat products that may be contaminated with pathogenic and spoilage organisms. Thyme (Thymus vulgaris L.), as an important medicinal and culinary herb, is a promising source of bioactive compounds that have a great impact on the microbiological stability of meat by suppressing the undesirable microflora. However, the use of these antimicrobials is still facing difficulties due to their aromatic properties and variable efficacy against targeted species. In this paper, we provide an overview on the potential effects of thyme essential oil (EO) and thymol as bio-preservative agents in meat products. Furthermore, this paper provides insights into the limitations and current challenges of the addition of EOs and their constituents to meat commodities and suggests viable solutions that can improve the applicability of these phytochemicals.
Collapse
Affiliation(s)
- Miklós Posgay
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Babett Greff
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Viktória Kapcsándi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 15-17 Lucsony Street, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
9
|
Purgatorio C, Serio A, Chaves-López C, Rossi C, Paparella A. An overview of the natural antimicrobial alternatives for sheep meat preservation. Compr Rev Food Sci Food Saf 2022; 21:4210-4250. [PMID: 35876396 DOI: 10.1111/1541-4337.13004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 01/28/2023]
Abstract
Sheep meat is consumed and appreciated all over the world for its nutritional value and flavor. However, this meat is very perishable and easily subjected to the action of both spoilage and pathogenic microorganisms. For this reason, in combination with cold storage, effective preservation techniques are required. There is increasing interest in the application of natural antimicrobials, such as essential oils, extracts, spices, and by-products of the food industry. This review analyses the studies on natural antimicrobials in sheep meat and sheep meat products and gathers evidence about the encouraging results achieved on the reduction and/or elimination of spoilage and pathogenic microorganisms. The use of these natural antimicrobial alternatives might open up important perspectives for industrial application, considering that this specific meat is often traded over long distances. In fact, on the basis of scientific literature, natural antimicrobials can be considered a sustainable and affordable alternative to extend the shelf life of sheep meat and guarantee its safety, although many factors need to be further investigated, such as the sensory impact, potential toxicity, and economic aspects. For all these issues, investigated in some of the studies reviewed here, it is fundamental to obtain the antimicrobial effect with the minimum amount of effective substance to avoid sensory modifications, toxic effects, and unbearable costs. This study sets foundations for the possible direction of future studies, which will contribute to identify effective solutions for industrial applications of natural antimicrobials in the sheep meat industry.
Collapse
Affiliation(s)
- Chiara Purgatorio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Chiara Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
10
|
Chitosan-Cinnamon Oil Coating Maintains Quality and Extends Shelf Life of Ready-to-Use Pomegranate Arils under Low-Temperature Storage. J FOOD QUALITY 2022. [DOI: 10.1155/2022/3404691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Different formulations of chitosan (1%, 2%, or 3%) with the incorporation of cinnamon oil (0.25% or 0.50%) were prepared for the preservation of pomegranate aril cv. Bhagwa. Six combinations of chitosan-cinnamon oil formulations along with one control (untreated) were applied to the freshly extracted arils using the dipping application method. All treatments were found to be effective in enhancing the shelf life, improving the postharvest characteristics, and reducing microbial populations on pomegranate arils during a 15-day storage period at 4 ± 1°C. The treated pomegranate arils exhibited excellent resistance to microbial decay, moisture loss, respiration rate, preservation of phenolics, flavonoids, and antioxidants activity, among other characteristics. Chitosan 2% + cinnamon oil 0.25% edible coating has a high potential to enhance the storage life and biochemical properties and reduce the microbial population of arils. This treatment recorded a higher total phenolic content (18%) and antioxidant activity (16%) than the control sample, respectively, at the end of storage. In addition, the treatment also helped to decrease the microbial activity by 45% compared to the control sample. The present investigation proposed an alternative method to prolong the shelf life of pomegranate arils during the 15 days of storage.
Collapse
|
11
|
Pilevar Z, Abhari K, Tahmasebi H, Beikzadeh S, Afshari R, Eskandari S, Bozorg MJA, Hosseini H. Antimicrobial properties of lysozyme in meat and meat products: possibilities and challenges. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.55262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Meat and meat products are highly perishable as they can provide an appropriate environment for microbial growth due to their high water activity and proper pH level. Quality, safety, sensory and nutritional properties of meat products are highly influenced by pathogenic and spoilage microorganisms. To prevent microbial growth, artificial antimicrobials have been used in food matrices, however safety concerns regarding the use of synthetic preservatives is a challenging issue. Additionally, consumer’s trend towards natural mildly processed products with extended shelf life necessitates the identification of alternative additives originating from natural sources of new acceptable and effective antimicrobials. Although the effectiveness of some natural antimicrobial agents has already been reported, still, there is lack of information regarding the possibility of using lysozyme as a preservative in meat and meat products either alone or in combination with other hurdles. In the present review the applications and beneficial effects of applying lysozyme in meat products, considering its limitations such as allergic problems, interactions with food constituents, reducing sensory changes and toxicity due to high required concentrations to prevent spoilage and oxidation in foods will be discussed
Collapse
|
12
|
Leon-Tinoco AY, Annis SL, Almeida ST, Guimarães BC, Killerby M, Zhang J, Wu C, Perkins LB, Ma Z, Jeong KC, Romero JJ. Evaluating the potential of lignosulfonates and chitosans as alfalfa hay preservatives using in vitro techniques. J Anim Sci 2022; 100:6576121. [PMID: 35486739 PMCID: PMC9175294 DOI: 10.1093/jas/skac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Our objectives were to compare the antifungal activity of 5 lignosulfonates, and 2 chitosans against fungi isolated from spoiled hay, and assess the effects of an optimized lignosulfonate, chitosan, and propionic acid (PRP) on high-moisture alfalfa hay. In experiment 1, we determined the minimum inhibitory concentration and minimum fungicidal concentration of 4 sodium lignosulfonates, 1 magnesium lignosulfonate, 2 chitosans, and PRP (positive control) against Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces hansenii at pH 4 and 6. Among sodium lignosulfonates, the one from Sappi Ltd. (NaSP) was the most antifungal at pH 4. However, chitosans had the strongest fungicidal activity with the exception of M. circinelloides at both pH 4 and 6. PRP had more antifungal effects than NaSP and was only better than chitosans for M. circinelloides. In experiment 2, we evaluated the effects of 3 additives (ADV): optimized NaSP (NaSP-O, UMaine), naïve chitosan (ChNv, Sigma-Aldrich), and PRP on high-moisture alfalfa hay. The experimental design was a randomized complete block design replicated 5 times. Treatment design was the factorial combination of 3 ADV× 5 doses (0, 0.25, 0.5, 1, and 2% w/w fresh basis). Additives were added to 35 g of sterile alfalfa hay (71.5 ± 0.23% DM), inoculated with a mixture of previously isolated spoilage fungi (5.8 log cfu/fresh g), and aerobically incubated in vitro for 23 d (25°C). After incubation, DM losses were reduced by doses as low as 0.25% for both NaSP-O and PRP (x=1.61) vs. untreated hay (24.0%), partially due to the decrease of mold and yeast counts as their doses increased. Also, hay NH3-N was lower in NaSP-O and PRP, with doses as low as 0.25%, relative to untreated hay (x= 1.13 vs 7.80% of N, respectively). Both NaSP-O and PRP increased digestible DM recovery (x= 69.7) and total volatile fatty acids (x= 94.3), with doses as low as 0.25%, compared with untreated hay (52.7% and 83.8 mM, respectively). However, ChNv did not decrease mold nor yeast counts (x= 6.59 and x= 6.16 log cfu/fresh g; respectively) and did not prevent DM losses relative to untreated hay. Overall, when using an alfalfa hay substrate in vitro, NaSP-O was able to prevent fungal spoilage to a similar extent to PRP. Thus, further studies are warranted to develop NaSP-O as a hay preservative under field conditions.
Collapse
Affiliation(s)
| | - Seanna L Annis
- School of Biology and Ecology, University of Maine, Orono , ME, 04469, USA
| | - Saulo T Almeida
- Department of Animal Science, University of Lavras , Minas Gerais, Brazil
| | - Bianca C Guimarães
- Department of Animal Science, University of Lavras , Minas Gerais, Brazil
| | - Marjorie Killerby
- Animal and Veterinary Sciences, University of Maine, Orono , ME, 04469, USA
| | - Jinglin Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark , DE, 19716, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark , DE, 19716, USA
| | - Lewis B Perkins
- Food Science and Human Nutrition, University of Maine, Orono , ME, 04469, USA
| | - Zhengxin Ma
- Department of Animal Science, University of Florida, Gainesville , FL, 32608, USA
| | - Kwangcheol C Jeong
- Department of Animal Science, University of Florida, Gainesville , FL, 32608, USA
| | - Juan J Romero
- Animal and Veterinary Sciences, University of Maine, Orono , ME, 04469, USA
| |
Collapse
|
13
|
Al-Harrasi A, Bhtaia S, Al-Azri MS, Makeen HA, Albratty M, Alhazmi HA, Mohan S, Sharma A, Behl T. Development and Characterization of Chitosan and Porphyran Based Composite Edible Films Containing Ginger Essential Oil. Polymers (Basel) 2022; 14:polym14091782. [PMID: 35566950 PMCID: PMC9103980 DOI: 10.3390/polym14091782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows the growing interest in the development of composite edible films (EFs) by using multiple biopolymers for the substantial improvement in the shelf life and quality of food products, via preventing oxidation among other benefits. In the present work, EFs based on chitosan (CS) and porphyran (POR) loaded with ginger essential oil (GEO) have been developed to study the effect of GEO, glycerol (Gly), and POR on the film structure as well as physical and antioxidant properties. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results showed the level of crystallinity and electrostatic interactions between CS, POR, Gly, and GEO. It was found that electrostatic interactions between CS and POR and the incorporation of GEO substantially improved barrier, thermal, optical, and mechanical properties and reduced the moisture content, swelling index, and thickness values. The color values of the S5 film altered apparently with a shift towards yellowness. SEM micrographs of the composite CS-POR-GEO film (S5) showed improved morphological attributes such as more uniformity and homogeneous structure than other films (S1–S4). Results obtained from total phenolic content assay suggested the presence of high phenolic components (5.97 ± 0.01) mg of GAE/g in GEO. Further, findings obtained from antioxidant assays revealed that the addition of GEO and POR significantly increased the antioxidant effects of CS films. All these findings suggested that GEO loaded CS-POR based films showed better physical and chemical properties with a significant improvement in antioxidant potential and thus can be used as a potential packaging material in the food industry.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- Correspondence: (A.A.-H.); (S.B.)
| | - Saurabh Bhtaia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India;
- Correspondence: (A.A.-H.); (S.B.)
| | - Mohammed Said Al-Azri
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| |
Collapse
|
14
|
Marc (Vlaic) RA, Mureșan V, Mureșan AE, Mureșan CC, Tanislav AE, Pușcaș A, Marţiș (Petruţ) GS, Ungur RA. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070960. [PMID: 35406940 PMCID: PMC9002745 DOI: 10.3390/plants11070960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Aromatic and spicy plants are an important factor that contributes not only to improving the taste of meat, meat products, and meat analogues, but also to increasing the nutritional value of the products to which they are added. The aim of this paper is to present the latest information on the bioactive antioxidant and antimicrobial properties of the most commonly used herbs and spices (parsley, dill, basil, oregano, sage, coriander, rosemary, marjoram, tarragon, bay, thyme, and mint) used in the meat and meat analogues industry, or proposed to be used for meat analogues.
Collapse
Affiliation(s)
- Romina Alina Marc (Vlaic)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Vlad Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Andruţa E. Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
- Correspondence: (V.M.); (A.E.M.)
| | - Crina Carmen Mureșan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Anda E. Tanislav
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Andreea Pușcaș
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Georgiana Smaranda Marţiș (Petruţ)
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur Street, 400372 Cluj-Napoca, Romania; (R.A.M.); (C.C.M.); (A.E.T.); (A.P.); (G.S.M.)
| | - Rodica Ana Ungur
- Department of Rehabilitation Iuliu-Haţieganu, Faculty of General Medicine, University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
Kasaai MR. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydr Polym 2022; 280:119027. [PMID: 35027129 DOI: 10.1016/j.carbpol.2021.119027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Both chitosan and zein are safe industrial biopolymers for the 21St century, respecting environmentally concerns. This review mainly is focused on preparations, properties and applications of a promising food packaging material, chitosan-zein nano-composite (NC). The properties and applications of the NCs were compared with their conventional counterparts. The structure of chitosan- zein composites was proposed. A procedure for preparations of conventional and nano zein-chitosan composites was proposed. The sizes of composites depend on molecular weight of chitosan and zein, the ratio of chitosan/zein, and pH of chitosan-zein solutions. The NCs had superior mechanical, antimicrobial, antioxidant, and barrier properties compared with the conventional ones. The properties of the composites were further improved by introduction of bioactive compounds, fillers or plasticizers. The composites have potential to employ as coatings/packaging materials to protect mushroom, meats, and fresh fruits and vegetables.
Collapse
Affiliation(s)
- Mohammad Reza Kasaai
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, Km. 9, P.O. Box, 578, Sari, Mazandaran, Iran.
| |
Collapse
|
16
|
Saavedra-Leos MZ, Román-Aguirre M, Toxqui-Terán A, Espinosa-Solís V, Franco-Vega A, Leyva-Porras C. Blends of Carbohydrate Polymers for the Co-Microencapsulation of Bacillus clausii and Quercetin as Active Ingredients of a Functional Food. Polymers (Basel) 2022; 14:236. [PMID: 35054642 PMCID: PMC8779310 DOI: 10.3390/polym14020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/31/2022] Open
Abstract
A functional food based on blends of carbohydrate polymers and active ingredients was prepared by spray drying. Inulin (IN) and maltodextrin (MX) were used as carrying agents to co-microencapsulate quercetin as an antioxidant and Bacillus clausii (Bc) as a probiotic. Through a reduced design of experiments, eleven runs were conducted and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and modulated differential scanning calorimetry (MDSC). The physical characterizations showed fine and non-aggregated powders, composed of pseudo-spherical particles with micrometric sizes. The observation of rod-like particles suggested that microorganisms were microencapsulated in these particles. The microstructure of the powders was amorphous, observing diffraction peaks attributed to the crystallization of the antioxidant. The glass transition temperature (Tg) of the blends was above the room temperature, which may promote a higher stability during storage. The antioxidant activity (AA) values increased for the IN-MX blends, while the viability of the microorganisms increased with the addition of MX. By a surface response plot (SRP) the yield showed a major dependency with the drying temperature and then with the concentration of IN. The work contributes to the use of carbohydrate polymers blends, and to the co-microencapsulation of active ingredients.
Collapse
Affiliation(s)
- María Z. Saavedra-Leos
- Coordinación Académica Región Altiplano (COARA), Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosi 78700, Mexico;
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados S.C., CIMAV, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Alberto Toxqui-Terán
- Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey, Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66600, Mexico;
| | - Vicente Espinosa-Solís
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Carretera Tamazunchale-San Martin Km. 5. Tamazunchale, San Luis Potosi 79960, Mexico;
| | - Avelina Franco-Vega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi 78210, Mexico;
| | - César Leyva-Porras
- Centro de Investigación en Materiales Avanzados S.C., CIMAV, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| |
Collapse
|
17
|
Cao Y, Hao R, Guo Z, Han L, Yu Q, Zhang W. Combined effects of superchilling and natural extracts on beef preservation quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Mashat BH, Attala OA, El-Khawas K, Kassem GMAE. Chitosan Edible Coating as Decontaminant During Water Thawing of Frozen Broiler Carcasses. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2020-1440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- BH Mashat
- Umrah Research Umm Al- Qura University, Saudi Arabia
| | - OA Attala
- Umrah Research Umm Al- Qura University, Saudi Arabia; Cairo University, Egypt
| | | | | |
Collapse
|
19
|
Hajiali S, Khajavi R, Kalaee MR, Montazer M. Dual‐functioning
core@shell nanofiber strip for enhancing drinking water quality: Polysulfone/graphene oxide adsorbent core layer and polyvinylpyrrolidone/mint sacrificial shell layer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Sepideh Hajiali
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
| | - Ramin Khajavi
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
| | - Mohammad Reza Kalaee
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
- Nanotechnology Research Centre Islamic Azad University Tehran Iran
| | - Majid Montazer
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
20
|
Esmaeili Y, Paidari S, Baghbaderani SA, Nateghi L, Al-Hassan AA, Ariffin F. Essential oils as natural antimicrobial agents in postharvest treatments of fruits and vegetables: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01178-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Effects of Peppermint Extract and Chitosan-Based Edible Coating on Storage Quality of Common Carp ( Cyprinus carpio) Fillets. Polymers (Basel) 2021; 13:polym13193243. [PMID: 34641059 PMCID: PMC8512069 DOI: 10.3390/polym13193243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Edible coatings have recently been developed and applied to different food matrices, due to their numerous benefits, such as increasing the shelf life of foods, improving their appearance, being vehicles of different compounds, such as extracts or oils of various spices that have antioxidant and antimicrobial activity, as well as being friendly to the environment. The objective of this research was to develop a new edible coating based on chitosan enriched with peppermint extract and to evaluate its effectiveness to inhibit microbial development in vitro and improve both the quality and shelf life of common carp (Cyprinus carpio) during refrigerated storage (4 ± 1 °C). Three treatments were used: edible coating (C + EC), edible coating +, 5% chitosan (C + ECCh) and edible coating + 1.5% chitosan + 10% peppermint (C + ECChP). Prior the coating carp fillets; the antibacterial activity and antioxidant capacity were evaluated in the peppermint extract and coating solutions. After coating and during storage, the following were determined on the fillet samples: microbiological properties, observed for ECP, an inhibition halo of 14.3 mm for Staphylococcus aureus, not being the case for Gram-negative species, for ECCh, inhibition halos of 17.6 mm, 17.1 mm and 16.5 mm for S. aureus, Salmonella typhimurium and Escherichia coli, respectively; for the ECChP, inhibition halos for S. aureus, S. typhimurium and E. coli of 20 mm, 17 mm and 16.8 mm, respectively. For the physicochemical characteristics: an increase in solubility was observed for all treatments during storage, reaching 46.7 mg SN protein/mg total protein for the control, and values below 29.1 mg SN protein/mg total protein (p < 0.05), for fillets with EC (C + EC > C + ECCh > C + ECChP, respectively at the end of storage. For the pH, maximum values were obtained for the control of 6.4, while for the fillets with EC a maximum of 5.8. For TVB-N, the fillets with different CE treatments obtained values (p < 0.05) of 33.3; 27.2; 25.3 and 23.3 mg N/100 g (control > C + E C > C + ECCh > C + ECChP respectively). Total phenolic compounds in the aqueous peppermint extract were 505.55 mg GAE/100 g dried leaves, with 98.78% antioxidant capacity in the aqueous extract and 81.88% in the EC. Biomolecule oxidation (hydroperoxide content) had a significant increase (p < 0.05) in all treatments during storage, 1.7 mM CHP/mg protein in the control, to 1.4 in C + EC, 1.27 in C + ECCh and 1.16 in C + ECChP; TBARS assay values increased in the different treatments during refrigerated storage, with final values of 33.44, 31.88, 29.40 and 29.21 mM MDA/mg protein in the control; C + EC; C + ECCh and C + ECChP respectively. In SDS -PAGE a protective effect was observed in the myofibrillar proteins of fillets with ECChP). The results indicate that the C + ECCh and C + ECChP treatments extend the shelf life of 3–5 days with respect to microbiological properties and 4–5 days with respect to physicochemical characteristics. A reduction in lipid and protein oxidation products was also observed during refrigerated storage. With these findings, this is considered a promising method to increase the shelf life of fish fillets combined with refrigeration and we are able to recommend this technology for the fish processing industry.
Collapse
|
22
|
Heidari M, Khomeiri M, Yousefi H, Rafieian M, Kashiri M. Chitin nanofiber-based nanocomposites containing biodegradable polymers for food packaging applications. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
23
|
Tantala J, Rachtanapun P, Rachtanapun C. Synergistic Antimicrobial Activities of Thai Household Essential Oils in Chitosan Film. Polymers (Basel) 2021; 13:polym13091519. [PMID: 34065089 PMCID: PMC8125964 DOI: 10.3390/polym13091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Foodborne pathogens mostly contaminate ready-to-eat (RTE) meat products by post-process contamination and cause foodborne disease outbreaks. Preventing post-process contamination and controlling microbial growth during storage by packing the RTE meats with active antimicrobial film from chitosan combined with the synergism of Thai household essential oils was investigated. Here, we analyzed antimicrobial activity and mechanical properties of chitosan films incorporated with essential oil of fingerroot (EOF) and holy basil (EOH) based on their fractional inhibitory concentration and isobolograms. We showed that antimicrobial activities of chitosan film and chitosan films formulated with EOF:EOH displayed a dramatical reduction of Listeria monocytogenes Scott A concentration by 7 Log in 12 h. Chitosan film incorporated with EOF:EOH at ratio 0.04:0.04% v/v/w strongly retarded growth of total viable count of L. monocytogenes on vacuum-packed bologna slices during seven days of storage at 4 and 10 °C. Combined EOF and EOH added to chitosan films did not alter thickness, elongation (%) and colors (L*, a* and b*) of the chitosan film, but it increased water vapor transmission rate and decreased film tensile strength. Results suggested that chitosan film had strong antibacterial properties. Its effectiveness in inhibiting foodborne pathogenic bacteria in ready-to-eat meat products was enhanced by adding a combination of EOF:EOH.
Collapse
Affiliation(s)
- Juthamas Tantala
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center for Advanced Studied Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5000 (ext. 5206)
| |
Collapse
|
24
|
Zhang S, Li M, Wang R, Chang L, Ju H, Lin W, Zhao W, Tang Y, Lin S. Superhydrophobic and Antioxidative Film Based on Edible Materials for Food Packaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5066-5072. [PMID: 33848420 DOI: 10.1021/acs.langmuir.1c00637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Significant wastage of the food deterioration in the food preserving process and residual liquid in a container has become a major concern for scientists and the whole society. In this study, an edible multifunctional film integrated superhydrophobicity and antioxidant ability is constructed by chitosan, tea polyphenol, carnauba wax material that is food and drug administration (FDA)-approved for food packaging. The formed edible packaging materials that exhibit great antioxidant property and extremely low water-absorbing quality, was thus proven to display excellent fresh beef preservation effect during storage of 14 days. Importantly, the formed edible multifunctional interface was also demonstrated to perform excellent superhydrophobicity due to the carnauba wax and exhibited large contact angles for various liquid foods, which could effectively reduce the liquid residue. Moreover, the formed edible multifunctional packaging materials showed good thermostability and biocompatibility, which has the potential to be applied as a functional packaging material.
Collapse
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Meng Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Lili Chang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Wei Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Weiping Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
25
|
Yaghoubi M, Ayaseh A, Alirezalu K, Nemati Z, Pateiro M, Lorenzo JM. Effect of Chitosan Coating Incorporated with Artemisia fragrans Essential Oil on Fresh Chicken Meat during Refrigerated Storage. Polymers (Basel) 2021; 13:716. [PMID: 33652853 PMCID: PMC7956520 DOI: 10.3390/polym13050716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to assess the impact of chitosan coating (1%) containing Artemisia fragrans essential oil (500, 1000, and 1500 ppm) as antioxidant and antimicrobial agent on the quality properties and shelf life of chicken fillets during refrigerated storage. After packaging meat samples, physicochemical, microbiological, and organoleptic attributes were evaluated at 0, 3, 6, 9, and 12 days at 4 °C. The results revealed that applied chitosan (CH) coating in combination with Artemisia fragrans essential oils (AFEOs) had no significant (p < 0.05) effects on proximate composition among treatments. The results showed that the incorporation of AFEOs into CH coating significantly reduced (p < 0.05) pH, thiobarbituric acid reactive substances (TBARS), and total volatile base nitrogen (TVB-N), especially for 1% CH coating + 1500 ppm AFEOs, with values at the end of storage of 5.58, 1.61, and 2.53, respectively. The coated samples also displayed higher phenolic compounds than those obtained by uncoated samples. Coated chicken meat had, significantly (p < 0.05), the highest inhibitory effects against microbial growth. The counts of TVC (total viable counts), coliforms, molds, and yeasts were significantly lower (p < 0.05) in 1% CH coating + 1500 ppm AFEOs fillets (5.32, 3.87, and 4.27 Log CFU/g, respectively) at day 12. Organoleptic attributes of coated samples also showed the highest overall acceptability scores than uncoated ones. Therefore, the incorporation of AFEOs into CH coating could be effectively used for improving stability and shelf life of chicken fillets during refrigerated storage.
Collapse
Affiliation(s)
- Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran; (M.Y.); (A.A.)
| | - Ali Ayaseh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran; (M.Y.); (A.A.)
| | - Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz 51666, Iran
| | - Zabihollah Nemati
- Department of Animal Science, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz 51666, Iran;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
26
|
Tamkutė L, Vaicekauskaitė R, Gil BM, Rovira Carballido J, Venskutonis PR. Black chokeberry (
Aronia melanocarpa
L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laura Tamkutė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Rūta Vaicekauskaitė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Beatriz M. Gil
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | | | | |
Collapse
|
27
|
Ulusoy H, Ceylan Ş, Peker H. Determination of antioxidant and antimicrobial activity of sweetgum (Liquidambar orientalis) leaf, a medicinal plant. POLIMEROS 2021. [DOI: 10.1590/0104-1428.04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Jakubowska E, Gierszewska M, Nowaczyk J, Olewnik-Kruszkowska E. The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydr Polym 2020; 255:117527. [PMID: 33436259 DOI: 10.1016/j.carbpol.2020.117527] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/31/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
In this work deep eutectic solvent (DES), based on the mixture of choline chloride and lactic acid, were suggested as chitosan films plasticizers. The molecular structure and properties of films obtained using chitosan, with different degree of deacetylation and 0-80 wt.% DES content (ωDES), were studied by means of FTIR spectroscopy, SEM and AFM microscopy (films' surface properties) together with optical characteristics, water vapor transmission rate (WVTR), water vapor permeability (WVP), tensile strength (TS) and elongation at break (Eb). Scanning electron micrographs revealed that all chitosan-DES films were smooth and uniform. DES significantly improves the film flexibility (Eb increases of ca. 160 % after incorporation of 80 wt.% DES), slightly decreases tensile strength and also improves antioxidative properties while simultaneously, increasing water vapor permeability (WVP). Films prepared in this study exhibit characteristics that qualify them for potential use as an active packaging material.
Collapse
Affiliation(s)
- Ewelina Jakubowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Magdalena Gierszewska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Jacek Nowaczyk
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| | - Ewa Olewnik-Kruszkowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
29
|
Use of Turkey Meat Affected by White Striping Myopathy for the Development of Low-Fat Cooked Sausage Enriched with Chitosan. Foods 2020; 9:foods9121866. [PMID: 33333724 PMCID: PMC7765124 DOI: 10.3390/foods9121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
The main objective of this research was the development of a healthy meat product from turkey meat with white striping myopathy. The effect of adding different proportions of chitosan on the qualitative characteristics, sensory acceptance, and stability of cooked sausages during storage was studied. Three treatments were elaborated (control, 1.5% chitosan, and 3% chitosan), stored for 56 days, and characterized in terms of chemical composition, texture profile analysis, drip and pressure loss analysis, and sensory analysis (after processing; day 0). In the different storage periods (0 and 56 days), the pH value, color, thiobarbituric acid reactive substances (TBARS), and volatile compounds were evaluated. The results showed that the moisture content, lipids, proteins, and weight loss decreased (p < 0.05) and the ash content increased (p < 0.05) with the addition of chitosan. Similarly, the values of texture parameters (hardness, cohesiveness, gumminess, and chewiness) were higher in the sausages reformulated with chitosan than in control samples. The addition of chitosan increased the pH and yellowness (b*) values and reduced (p < 0.05) redness (a*) and lightness (L*) values. The b* values (only in reformulated sausages) and pH increased during storage, while a* showed a significant reduction after 56 storage days. Lipid oxidation (TBARS) was kept below the limits of quantification in all samples and both after processing and 56 storage days. However, when quantifying the lipid-derived volatiles, a clear antioxidant activity of chitosan was observed, which limits the release of these compounds, mainly aldehydes (hexanal and nonanal). Finally, the sensory analysis indicated that, although chitosan treatments received the lowest scores for all attributes, the reformulated samples did not differ from control sausages. Therefore, sausage containing chitosan may represent an interesting alternative for adding value to turkey meats affected by white striping myopathy and, at the same time, develop into a healthy and functional meat product increasing the proportion of fibers in one’s diet.
Collapse
|
30
|
Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol 2020; 168:59-66. [PMID: 33279567 DOI: 10.1016/j.ijbiomac.2020.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, cinnamaldehyde-loaded liposomes decorated with different concentrations of chitosan (0, 0.25, 0.5, 1, 2, 3, and 4 mg/mL) were prepared and their physical and antibacterial properties were evaluated. The results showed that the physical decoration of chitosan improved the encapsulation efficiency and storage stability of the liposomes. Liposomes decorated with chitosan at the concentration of 0.25 to 4 mg/mL were able to achieve an obvious antibacterial efficiency against Staphylococcus aureus after only 10 min of incubation. The antibacterial efficiency of chitosan-decorated liposomes was still higher than 90% after being stored for 28 d when the chitosan concentration was greater than 1 mg/mL. Besides, increasing the chitosan concentration significantly decreased the minimum inhibitory concentration of the liposomes. The comparison of the antibacterial activities and mechanisms of cinnamaldehyde-loaded liposomes decorated with chitosan at a concentration of 4 mg/mL (CH-CL), cinnamaldehyde-loaded liposomes (CL), cinnamaldehyde, and chitosan revealed that chitosan and cinnamaldehyde exerted a cumulative and synergistic bacteriostatic effect in the liposomes. This led to damage to the cell membrane integrity, causing cell death by inducing leakage of intracellular components. These results can potentially provide guidance for the preparation and application of natural preservatives with rapid and long-term bacteriostatic effects.
Collapse
|
31
|
Pérez-Santaescolástica C, Munekata PES, Feng X, Liu Y, Bastianello Campagnol PC, Lorenzo JM. Active edible coatings and films with Mediterranean herbs to improve food shelf-life. Crit Rev Food Sci Nutr 2020; 62:2391-2403. [DOI: 10.1080/10408398.2020.1853036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Paulo E. S. Munekata
- Parque Tecnológico de Galicia, Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, USA
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Jose M. Lorenzo
- Parque Tecnológico de Galicia, Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
32
|
Dong X, Cheng Q, Long Y, Xu C, Fang H, Chen Y, Dai H. A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Wong LW, Loke XJ, Chang CK, Ko WC, Hou CY, Hsieh CW. Use of the plasma-treated and chitosan/gallic acid-coated polyethylene film for the preservation of tilapia (Orechromis niloticus) fillets. Food Chem 2020; 329:126989. [DOI: 10.1016/j.foodchem.2020.126989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/25/2023]
|
34
|
Desvita H, Faisal M, Mahidin, Suhendrayatna. Preservation of meatballs with edible coating of chitosan dissolved in rice hull-based liquid smoke. Heliyon 2020; 6:e05228. [PMID: 33102852 PMCID: PMC7575884 DOI: 10.1016/j.heliyon.2020.e05228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/11/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to determine the effectiveness of edible coatings of chitosan dissolved with liquid smoke in preserving meatballs. The liquid smoke was derived from rice hulls pyrolyzed at 340 °C. The edible coating was made by dissolving 0.5%, 1%, and 1.5% chitosan in 100 ml of liquid smoke at concentrations of 3% and 5%. Preservation was carried out by soaking the meatballs in the edible coating solution for 15 min and storing them at room temperature with observations every 6 h. Food resistance was examined using the Antibacterial Activity Test, Total Plate Count (TPC), and Total Volatile Base Nitrogen (TVB-N). The results of the antibacterial activity test showed that chitosan-dissolved liquid smoke had inhibition zones ranging from 6.49–7.07 mm against E. coli and 6.52–7.26 mm against Salmonella bacteria. The use of 5% concentrated liquid smoke reduced the number of bacterial colonies, with TPC values not below the SNI threshold after 48-hour storage. This indicates that liquid smoke has potential as an antibacterial. The TVB-N value doubled after 24 h, but the meatballs still had good freshness. After 54 h of storage time, the TVB-N value in all treatments exceeded the SNI threshold of 0.254 mgN/100 g, and the meatballs were no longer suitable for consumption.
Collapse
Affiliation(s)
- Hera Desvita
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Jalan Tengku Syech Abdur Rauf No. 7, Darussalam, Banda Aceh, 23111, Indonesia
| | - Muhammad Faisal
- Chemical Engineering Department, Faculty of Engineering, Universitas Syiah Kuala, Jalan Tengku Syech Abdur Rauf No. 7, Darussalam, Banda Aceh, 23111, Indonesia
| | - Mahidin
- Chemical Engineering Department, Faculty of Engineering, Universitas Syiah Kuala, Jalan Tengku Syech Abdur Rauf No. 7, Darussalam, Banda Aceh, 23111, Indonesia
| | - Suhendrayatna
- Chemical Engineering Department, Faculty of Engineering, Universitas Syiah Kuala, Jalan Tengku Syech Abdur Rauf No. 7, Darussalam, Banda Aceh, 23111, Indonesia
| |
Collapse
|
35
|
Kapp K, Orav A, Roasto M, Raal A, Püssa T, Vuorela H, Tammela P, Vuorela P. Composition and Antibacterial Effect of Mint Flavorings in Candies and Food Supplements. PLANTA MEDICA 2020; 86:1089-1096. [PMID: 32365392 DOI: 10.1055/a-1158-1699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mint flavorings are widely used in confections, beverages, and dairy products. For the first time, mint flavoring composition of mint candies and food supplements (n = 45), originating from 16 countries, as well as their antibacterial properties, was analyzed. The flavorings were isolated by Marcusson's type micro-apparatus and analyzed by GC-MS. The total content of the mint flavoring hydrodistilled extracts was in the range of 0.01 - 0.9%. The most abundant compounds identified in the extracts were limonene, 1,8-cineole, menthone, menthofuran, isomenthone, menthol and its isomers, menthyl acetate. The antimicrobial activity of 13 reference substances and 10 selected mint flavoring hydrodistilled extracts was tested on Escherichia coli and Staphylococcus aureus by broth dilution method. Linalool acetate and (-)-carvone, as most active against both bacteria, had the lowest MIC90 values. (+)-Menthyl acetate, (-)-menthyl acetate, and limonene showed no antimicrobial activity. Three of the tested extracts had antimicrobial activity against E. coli and 8 extracts against S. aureus. Their summary antimicrobial activity was not always in concordance with the activities of respective reference substances.
Collapse
Affiliation(s)
- Karmen Kapp
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Anne Orav
- Institute of Chemistry, Tallinn University of Technology, Estonia
| | - Mati Roasto
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Estonia
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Estonia
| | - Tõnu Püssa
- Chair of Food Hygiene and Veterinary Public Health, Estonian University of Life Sciences, Estonia
| | - Heikki Vuorela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Pia Vuorela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
36
|
Habibi A, Karami S, Varmira K, Hadadi M. Key parameters optimization of chitosan production from Aspergillus terreus using apple waste extract as sole carbon source. Bioprocess Biosyst Eng 2020; 44:283-295. [PMID: 32959145 DOI: 10.1007/s00449-020-02441-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Chitosan is commonly obtained from shrimp and crab shell chitin by deacetylation; however, such supplies appear limitation. An alternative source of chitosan is cell wall in certain fungi. In this study, chitosan production through submerged fermentation of Aspergillus terreus on apple waste extract as sole carbon source was investigated. Monod equation with a maximum specific growth rate of 0.083 h-1 and half-saturation constant of 6.67 w/v% was best described the kinetic of growth. Results of response surface methodology showed the highest chitosan to substrate yield of 49.32 mg gsubstrate-1, chitosan to fungal biomass yield of 140.9 mg gcell-1, and fungal biomass to substrate yield of 0.387 gcell gsubstrate-1 were simultaneously obtained at temperature 30.0 °C, initial pH 5.98, and ammonium nitrate concentration 5.0 g L-1. The chitosan produced at the optimum condition was characterized by FTIR, TGA, and DSC analysis, and degree of deacetylation was 88.2%.
Collapse
Affiliation(s)
- Alireza Habibi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran.
| | - Salar Karami
- Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Hadadi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
37
|
Yuan B, Jia H, Bu W, Yang T, Han-meng L, Ju XY, Li RP. A new chitosan sub-micron and encapsulated Iturin A with enhanced antifungal activity against Ceratocystis fimbriata and Rhizopus strolonifer. Int J Biol Macromol 2020; 159:995-1003. [DOI: 10.1016/j.ijbiomac.2020.05.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
|
38
|
Ahmed F, Soliman FM, Adly MA, Soliman HA, El‐Matbouli M, Saleh M. In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. JOURNAL OF FISH DISEASES 2020; 43:1049-1063. [PMID: 32632933 PMCID: PMC7496833 DOI: 10.1111/jfd.13212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 05/05/2023]
Abstract
Nanotechnology is an emerging avenue employed in disease prevention and treatment. This study evaluated the antimicrobial efficacy of chitosan nanoparticles (CSNPs) against major bacterial and oomycete fish pathogens in comparison with chitosan suspension. Initially, the minimum inhibitory concentrations (MIC, MIC90 ) were determined and the per cent inhibition of bacterial growth was calculated. Subsequently, the minimum bactericidal concentrations (MBCs) were determined. The time-dependent disruptions of CSNP-treated pathogens were observed via transmission electron microscopy (TEM), and the effect of CSNPs on the viability of two fish cell lines was assessed. No antimicrobial effect was observed with chitosan, while CSNPs (105 nm) exhibited a dose-dependent and species-specific antimicrobial properties. They were bactericidal against seven bacterial isolates recording MBC values from 1 to 7 mg/ml, bacteriostatic against four further isolates recording MIC values from 0.125 to 5 mg/ml and fungistatic against oomycetes recording MIC90 values of 3 and 4 mg/ml. TEM micrographs showed the attachment of CSNPs to the pathogenic cell membranes disrupting their integrity. No significant cytotoxicity was observed using 1 mg/ml CSNPs, while low dose-dependent cytotoxicity was elicited by the higher doses. Therefore, it is anticipated that CSNPs are able to compete and reduce using antibiotics in aquaculture.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish MedicineUniversity of Veterinary MedicineViennaAustria
- Department of ZoologyFaculty of ScienceSohag UniversitySohagEgypt
| | - Faiza M. Soliman
- Department of ZoologyFaculty of ScienceSohag UniversitySohagEgypt
| | - Mohamed A. Adly
- Department of ZoologyFaculty of ScienceSohag UniversitySohagEgypt
| | | | - Mansour El‐Matbouli
- Clinical Division of Fish MedicineUniversity of Veterinary MedicineViennaAustria
| | - Mona Saleh
- Clinical Division of Fish MedicineUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
39
|
Priyadarshi R, Rhim JW. Chitosan-based biodegradable functional films for food packaging applications. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102346] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Venkatachalam K, Lekjing S. A chitosan-based edible film with clove essential oil and nisin for improving the quality and shelf life of pork patties in cold storage. RSC Adv 2020; 10:17777-17786. [PMID: 35515609 PMCID: PMC9053596 DOI: 10.1039/d0ra02986f] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
This study assessed chitosan (CS)-based edible films with clove essential oil (CO) and nisin (NI) singly or in combination, for improving quality and shelf life of pork patties stored in cold conditions. The treatments were control (without chitosan film coating), CS, CS-CO, CS-NI, and CS-CO-NI, and these were tested for physicochemical, microbiological and sensory qualities for 15 days (3 days per interval) on samples in cold storage (4 ± 2 °C). Overall, the results showed that the lightness (L* value) (53.47 to 67.58), yellowness (b* value) (1.32 to 2.88), pH (5.31 to 7.98), metmyoglobin (MetMb) content (54.10 to 63.36%), free fatty acid (FFA) (0.67 to 3.17%), peroxide value (PV) (0.80 to 3.67 milliequivalent/100 g), thiobarbituric acid reactive substances (TBARS) (0.69 to 3.27 mg MDA per kg), total viable count (TVC) (2.97 to 7.63 log CFU g-1), psychotrophic bacteria count (psychrotrophs) (2.94 to 6.59 log CFU g-1), Enterobacteriaceae (2.59 to 6.57 log CFU g-1), lactic acid bacteria (LAB) (2.53 to 6.81 log CFU g-1) and sensory scores (red non-discolored part (1 to 4.70), discoloration (1 to 4.40) and off-odor (1 to 5.00)) were gradually increased during storage and whereas redness (a* value) (16.43 to 8.62) and redness index (12.54 to 3.01) were decreased. However, the quality changes were minimal in the pork patties treated with CS-CO-NI. Based on sensory and microbiological evaluations, the shelf life of treated pork patties was 6 days for control, 9 days for CS and CS-NI, and 12 days for CS-CO and CS-CO-NI.
Collapse
Affiliation(s)
- Karthikeyan Venkatachalam
- Department of Food Technology, Faculty of Science and Industrial Technology, Prince of Songkla University Surat Thani Campus, Makhamtia, Muang Surat Thani 84000 Thailand
| | - Somwang Lekjing
- Department of Food Technology, Faculty of Science and Industrial Technology, Prince of Songkla University Surat Thani Campus, Makhamtia, Muang Surat Thani 84000 Thailand
| |
Collapse
|
41
|
İncili GK, Karatepe P, İlhak Oİ. Effect of chitosan and Pediococcus acidilactici on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in meatballs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019; 24:E4132. [PMID: 31731614 PMCID: PMC6891691 DOI: 10.3390/molecules24224132] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, great interest has been focused on using natural antioxidants in food products, due to studies indicating possible adverse effects that may be related to the consumption of synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants, such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is not only due to their biological value, but also to their economic impact, as most of them may be extracted from food by-products and under-exploited plant species. This article provides an overview of current knowledge on natural antioxidants: their sources, extraction methods and stabilization processes. In addition, recent studies on their applications in the food industry are also addressed; namely, as preservatives in different food products and in active films for packaging purposes and edible coatings.
Collapse
Affiliation(s)
| | | | - Vítor D. Alves
- LEAF, Linking, Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (S.C.L.); (M.M.-M.)
| |
Collapse
|
43
|
Bhoir SA, Jhaveri M, Chawla SP. Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shraddha A. Bhoir
- Food Technology DivisionBhabha Atomic Research Centre, Trombay India
| | - Mitali Jhaveri
- Department of BiotechnologyS. I. E. S. College of Arts, Science and Commerce, Sion India
| | | |
Collapse
|
44
|
Mehdizadeh T, Mojaddar Langroodi A. Chitosan coatings incorporated with propolis extract and Zataria multiflora Boiss oil for active packaging of chicken breast meat. Int J Biol Macromol 2019; 141:401-409. [PMID: 31487519 DOI: 10.1016/j.ijbiomac.2019.08.267] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
The impact of dipping in combination of propolis extract (PE) and chitosan (CH) coating enriched with Zataria multiflora essential oil (ZEO) on chemical, microbial and organoleptic properties of poultry meat was determined at 4 °C. GC-MS analysis showed that the most components of PE were Dihydrochrysin (9.69%) and b- Pinostrobin (7.41%). The results of mesophilic total viable plate counts (TVC), lactic acid bacteria (LAB), Psychotropic bacteria and Pseudomonas spp. showed detectably lower (p < 0.05) microbial count in CH-PE 1%-Z 0.5% and CH-PE 1%-Z 1% samples at the last day of storage. The results of chemical characteristics (pH, total volatile base nitrogen (TVB-N), 2-thiobarbituric acid reactive substances (TBARS)) in all treated samples compared with the control, revealed that there is a synergistic effect between CH, PE and ZEO. In the sensorial assessment, treatments containing 1% PE- 0.5% ZEO and 1% PE- 1% ZEO were mostly acceptable by the sensory analyst. These results offer a successful approach that chitosan coating enriched with combination of ZEO and PE can be an improving method to reducing deterioration of fresh packed chicken meat.
Collapse
Affiliation(s)
- Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| |
Collapse
|
45
|
García MA, de la Paz N, Castro C, Rodríguez JL, Rapado M, Zuluaga R, Gañán P, Casariego A. Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario A. García
- Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, Havana, ZC 13600, Cuba
| | - Nilia de la Paz
- Drug Research and Development Center, Ave. 26 No. 1605, Havana, Cuba
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - José L. Rodríguez
- Food Industry Research Institute, Carretera al Guatao km 3 ½, Havana, CP 19200, Cuba
| | - Manuel Rapado
- Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana, Cuba
| | - Robin Zuluaga
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - Piedad Gañán
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - Alicia Casariego
- Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, Havana, ZC 13600, Cuba
| |
Collapse
|
46
|
Ortiz de Elguea-Culebras G, Bourbon AI, Costa MJ, Muñoz-Tebar N, Carmona M, Molina A, Sánchez-Vioque R, Berruga MI, Vicente AA. Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Ceylan S, Cetin S, Camadan Y, Saral O, Ozsen O, Tutus A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir J Med Sci 2019; 188:1303-1309. [DOI: 10.1007/s11845-019-01993-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/16/2019] [Indexed: 11/28/2022]
|
48
|
Hauzoukim, Martin Xavier K, Kannuchamy N, Balange A, Gudipati V. Development of enrobed fish products: Improvement of functionality of coated materials by added aquatic polymers. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.12999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hauzoukim
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - K.A. Martin Xavier
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - Nagalakshmi Kannuchamy
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - Amjad Balange
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | | |
Collapse
|
49
|
Ghosh M, Sadhukhan S, Dey KK. Elucidating the internal structure and dynamics of α-chitin by 2DPASS-MAS-NMR and spin-lattice relaxation measurements. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 97:7-16. [PMID: 30468954 DOI: 10.1016/j.ssnmr.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
The structure and dynamics of the second most abundant biopolymer α-chitin were studied by high resolution solid state 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP-MAS-NMR) spectral analysis, 13C relaxation measurements at eight chemically different carbon sites and chemical shift anisotropy measurement by two-dimensional phase-adjusted spinning sidebands (2DPASS) magic angle spinning (MAS) solid state NMR method.13C spin-lattice relaxation time was measured by high resolution Torchia CP method. Spin-lattice relaxation rate (1/T1) of side chain carbon nuclei were remarkably high, because those nuclei possess higher degree of motional freedom. Chemical shift anisotropy parameters of eight chemically different carbon nuclei were determined by 2DPASS-MAS-NMR experiment. Large value of chemical shift anisotropy was observed for carbonyl group carbon (C7) nuclei, because of electrostatic effect, hydrogen bonding and molecular magnetic susceptibility. 13C relaxation mechanism is mainly governed by chemical shift anisotropy interaction, especially at high value of external magnetic field (11.74 T). Thus, the correlation time at different carbon sites were also calculated by using the spin-lattice relaxation times and chemical shift anisotropy values. The correlation time of side chain carbon (C8) was two orders of magnitude less than the carbonyl group carbon. These types of investigations would enlighten the correlation between the structure and dynamics of long polysaccharide chain compound.
Collapse
Affiliation(s)
- Manasi Ghosh
- Department of Physics, Dr. Hari Singh Gour Central University, Sagar-470003, Madhya-Pradesh, India.
| | - Sourav Sadhukhan
- Department of Physics, Dr. Hari Singh Gour Central University, Sagar-470003, Madhya-Pradesh, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Hari Singh Gour Central University, Sagar-470003, Madhya-Pradesh, India.
| |
Collapse
|
50
|
Butnaru E, Stoleru E, Brebu MA, Darie-Nita RN, Bargan A, Vasile C. Chitosan-Based Bionanocomposite Films Prepared by Emulsion Technique for Food Preservation. MATERIALS 2019; 12:ma12030373. [PMID: 30691000 PMCID: PMC6384585 DOI: 10.3390/ma12030373] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/04/2022]
Abstract
Biopolymer nanocomposite films were prepared by casting film-forming emulsions based on chitosan/Tween 80/rosehip seed oil and dispersed montmorillonite nanoclay C30B. The effect of composition on structural, morphological characteristics and, mechanical, barrier, antimicrobial and antioxidant properties was studied. The presence of rosehip seed oil in chitosan films led to the formation of flexible films with improved mechanical, gas and water vapour barrier properties and antioxidant activity. The in vitro antibacterial tests against Escherichia coli, Salmonella typhymurium, and Bacillus cereus showed that the chitosan/rosehip seed oil/montmorillonite nanoclay composites effectively inhibited all the three microorganisms.
Collapse
Affiliation(s)
- Elena Butnaru
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| | - Mihai Adrian Brebu
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| | - Raluca Nicoleta Darie-Nita
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| | - Alexandra Bargan
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO 700487 Iasi, Romania.
| |
Collapse
|