1
|
Wang H, Hunter R, Zhang Q, Yu H, Wang J, Yue Y, Geng L, Wu N. The application of marine polysaccharides to antitumor nanocarriers. Carbohydr Polym 2024; 342:122407. [PMID: 39048201 DOI: 10.1016/j.carbpol.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Nanotechnology has revolutionized the diagnosis, monitoring and treatment of biomedical diseases, in which nanocarriers have greatly improved the targeting and bioavailability of antitumor drugs. The marine natural polysaccharides fucoidan, chitosan, alginate, carrageenan and porphyran have broad-spectrum bioactivities and unique physicochemical properties such as excellent non-toxicity, biocompatibility, biodegradability and reproducibility, which have placed them as a principal focus in the nanocarrier field. Nanocarriers based on different types of marine polysaccharides are distinctive in addressing antitumor therapeutic challenges such as targeting, environmental responsiveness, drug resistance, tissue toxicity, enhancing diagnostic imaging, overcoming the first-pass effect and innovative 3D binding. Additionally, they all share the possibility of relatively easy chemical modification, while their separation into well-defined derivatives provide innovative structure-activity relationship possibilities. Liposomes, nanoparticles and polymer-micelles constructed from them can efficiently deliver drugs such as paclitaxel, gemcitabine, siRNA and others, which are widely used in radiotherapy, chemotherapy, immunotherapy, nucleic acid therapy and photothermal therapy, yet there are still infinite possibilities for innovation and exploration. This article reviews the recent advances and challenges of marine polysaccharide-based delivery systems as oncology drug nanocarriers.
Collapse
Affiliation(s)
- Hui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Roger Hunter
- Chemistry Department, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyu Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Gupta D, Martinez DC, Puertas-Mejía MA, Hearnden VL, Reilly GC. The Effects of Fucoidan Derived from Sargassum filipendula and Fucus vesiculosus on the Survival and Mineralisation of Osteogenic Progenitors. Int J Mol Sci 2024; 25:2085. [PMID: 38396762 PMCID: PMC10889223 DOI: 10.3390/ijms25042085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10-50 kDa), medium-molecular-weight (MMW, 50-100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
- Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warszawa, Poland
| | - Miguel Angel Puertas-Mejía
- Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Vanessa L. Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.C.M.); (G.C.R.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
4
|
Carletti A, Gavaia PJ, Cancela ML, Laizé V. Metabolic bone disorders and the promise of marine osteoactive compounds. Cell Mol Life Sci 2023; 81:11. [PMID: 38117357 PMCID: PMC10733242 DOI: 10.1007/s00018-023-05033-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Metabolic bone disorders and associated fragility fractures are major causes of disability and mortality worldwide and place an important financial burden on the global health systems. These disorders result from an unbalance between bone anabolic and resorptive processes and are characterized by different pathophysiological mechanisms. Drugs are available to treat bone metabolic pathologies, but they are either poorly effective or associated with undesired side effects that limit their use. The molecular mechanism underlying the most common metabolic bone disorders, and the availability, efficacy, and limitations of therapeutic options currently available are discussed here. A source for the unmet need of novel drugs to treat metabolic bone disorders is marine organisms, which produce natural osteoactive compounds of high pharmaceutical potential. In this review, we have inventoried the marine osteoactive compounds (MOCs) currently identified and spotted the groups of marine organisms with potential for MOC production. Finally, we briefly examine the availability of in vivo screening and validation tools for the study of MOCs.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paulo Jorge Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
- Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal.
| |
Collapse
|
5
|
Dalavi PA, Prabhu A, M S, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces 2023; 232:113595. [PMID: 37913705 DOI: 10.1016/j.colsurfb.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Our regular life can be more challenging by bone abnormalities. Bone tissue engineering is used for repairing, regenerating, or replacing bone tissue that has been injured or infected. It is effective in overcoming the drawbacks of conventional bone grafting methods like autograft and allograft by enhancing the effectiveness of bone regeneration. Recent discoveries have shown that the exfoliation of transition metal dichalcogenides (TMDs) with protein is in great demand for bone tissue engineering applications. WS2 nanosheets were developed using casein and subsequently characterized with different analytical techniques. Strong absorption peaks were observed in the UV-visible spectra at 520 nm and 630 nm. Alginate and alginate-casein WS2 microspheres were developed. Stereomicroscopic images of the microspheres are spherical in shape and have an average diameter of around 0.8 ± 0.2 mm. The alginate-casein WS2 microspheres show higher content of water absorption and retention properties than only alginate-containing microspheres. The apatite formation in the simulated bodily fluid solution was facilitated more effectively by the alginate-casein-WS2 microspheres. Additionally, alginate-casein-WS2 microspheres have a compressive strength is 58.01 ± 4 MPa. Finally, in vitro cell interaction studies reveals that both the microspheres are biocompatible with the C3H10T1/2 cells, and alginate-casein-WS2-based microspheres promote cell growth more significantly. Alginate-casein-WS2 microspheres promote alkaline phosphatase activity, and mineralization process. Additionally, alginate-casein-WS2-based microspheres exponentially enhance the genes for ALP, BMP-2, OCN, and Collage type-1. The produced alginate-casein-WS2 microspheres could be a suitable synthetic graft for a bone transplant replacement.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Venkatesan Jayachandran
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
6
|
Lu HT, Lin C, Wang YJ, Hsu FY, Hsu JT, Tsai ML, Mi FL. Sequential deacetylation/self-gelling chitin hydrogels and scaffolds functionalized with fucoidan for enhanced BMP-2 loading and sustained release. Carbohydr Polym 2023; 315:121002. [PMID: 37230625 DOI: 10.1016/j.carbpol.2023.121002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Bone morphogenetic protein 2 (BMP-2) is a potent osteoinductive factor that promotes bone formation. A major obstacle to the clinical application of BMP-2 is its inherent instability and complications caused by its rapid release from implants. Chitin based materials have excellent biocompatibility and mechanical properties, making them ideal for bone tissue engineering applications. In this study, a simple and easy method was developed to spontaneously form deacetylated β-chitin (DAC-β-chitin) gels at room temperature through a sequential deacetylation/self-gelation process. The structural transformation of β-chitin to DAC-β-chitin leads to the formation of self-gelling DAC-β-chitin, from which hydrogels and scaffolds were prepared. Gelatin (GLT) accelerated the self-gelation of DAC-β-chitin and increased the pore size and porosity of the DAC-β-chitin scaffold. The DAC-β-chitin scaffolds were then functionalized with a BMP-2-binding sulfate polysaccharide, fucoidan (FD). Compared with β-chitin scaffolds, FD-functionalized DAC-β-chitin scaffolds showed higher BMP-2 loading capacity and more sustainable release of BMP-2, and thus had better osteogenic activity for bone regeneration.
Collapse
Affiliation(s)
- Hsien-Tsung Lu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan, ROC
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Yi-Ju Wang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC
| | - Ju-Ting Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Min-Lang Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan, ROC; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, ROC.
| |
Collapse
|
7
|
Aslam B, Augustyniak A, Clarke SA, McMahon H. Development of a Novel Marine-Derived Tricomposite Biomaterial for Bone Regeneration. Mar Drugs 2023; 21:473. [PMID: 37755086 PMCID: PMC10532529 DOI: 10.3390/md21090473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Bone tissue engineering is a promising treatment for bone loss that requires a combination of porous scaffold and osteogenic cells. The aim of this study was to evaluate and develop a tricomposite, biomimetic scaffold consisting of marine-derived biomaterials, namely, chitosan and fucoidan with hydroxyapatite (HA). The effects of chitosan, fucoidan and HA individually and in combination on the proliferation and differentiation of human mesenchymal stem cells (MSCs) were investigated. According to the SEM results, the tricomposite scaffold had a uniform porous structure, which is a key requirement for cell migration, proliferation and vascularisation. The presence of HA and fucoidan in the chitosan tricomposite scaffold was confirmed using FTIR, which showed a slight decrease in porosity and an increase in the density of the tricomposite scaffold compared to other formulations. Fucoidan was found to inhibit cell proliferation at higher concentrations and at earlier time points when applied as a single treatment, but this effect was lost at later time points. Similar results were observed with HA alone. However, both HA and fucoidan increased MSC mineralisation as measured by calcium deposition. Differentiation was significantly enhanced in MSCs cultured on the tricomposite, with increased alkaline phosphatase activity on days 17 and 25. In conclusion, the tricomposite is biocompatible, promotes osteogenesis, and has the structural and compositional properties required of a scaffold for bone tissue engineering. This biomaterial could provide an effective treatment for small bone defects as an alternative to autografts or be the basis for cell attachment and differentiation in ex vivo bone tissue engineering.
Collapse
Affiliation(s)
- Bilal Aslam
- Circular Bioeconomy Research Group (CIRCBIO), Shannon Applied Biotechnology Centre, Munster Technology University, V92CX88 Tralee, Ireland; (B.A.); (A.A.)
| | - Aleksandra Augustyniak
- Circular Bioeconomy Research Group (CIRCBIO), Shannon Applied Biotechnology Centre, Munster Technology University, V92CX88 Tralee, Ireland; (B.A.); (A.A.)
| | - Susan A. Clarke
- School of Nursing and Midwifery, Medical Biology Centre, Queen’s University of Belfast, Belfast BT9 7BL, UK;
| | - Helena McMahon
- Circular Bioeconomy Research Group (CIRCBIO), Shannon Applied Biotechnology Centre, Munster Technology University, V92CX88 Tralee, Ireland; (B.A.); (A.A.)
| |
Collapse
|
8
|
Eshwar S, Konuganti K, Manvi S, Bharadwaj AN, Sajjan S, Boregowda SS, Jain V. Evaluation of Osteogenic Potential of Fucoidan Containing Chitosan Hydrogel in the Treatment of Periodontal Intra-Bony Defects-A Randomized Clinical Trial. Gels 2023; 9:573. [PMID: 37504452 PMCID: PMC10379738 DOI: 10.3390/gels9070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontal diseases significantly impact about half of the global population, and their treatment often encompasses relieving symptoms as well as regenerating the destroyed tissues. Revolutionary research in the management of periodontal disease includes biomaterials, a boon to re-generative dentistry owing to their excellent biological properties: non-toxicity, anti-inflammatory, biocompatibility, biodegradability, and adhesion. This study aimed to fabricate an injectable fucoidan containing chitosan hydrogel and prove its effectiveness in periodontal bone regeneration. The injectable hydrogel was prepared using the sol-gel method and was subjected to various physical, chemical, and biological characterizations to understand its efficacy in formation of new bone. The effectiveness of the developed hydrogel was assessed in periodontal bony defects to study the soft and hard tissue changes. A total of 40 periodontitis patients with bony defects were recruited and randomized into two groups to receive fucoidan-chitosan hydrogel and concentrated growth factor, respectively. Customized acrylic stents were used to guide the hydrogel placement into the defect site. Post-surgical changes in clinical parameters were assessed at 3, 6, and 9 months to appreciate the soft and hard tissue changes using repeated measures analysis of variance and Bonferroni's post hoc test. Significance was kept at 5%. The porosity, water uptake of the prepared hydrogel showed good efficacy, with particle size of the fucoidan containing chitosan hydrogel of 6.000 nm. The MG-63 osteoblasts cell line revealed biocompatibility, biodegradability and showed slow and sustained drug release, increased cell proliferation, and enhanced alkaline phosphatase secretion. Mineralization assay was greatest in the fucoidan containing chitosan hydrogel. Clinically, it exhibited significantly lower probing depth values and a higher mean improvement in clinical attachment level as compared to the concentrated growth factor (CGF) group at the end of 3 and 6 months (p < 0.05). The mean of the defect fills in the fucoidan containing chitosan group was 1.20 at the end of 9 months (p < 0.001) as compared with defect fills observed in the CGF group. The presence of fucoidan in the hydrogel significantly contributed to bone regeneration in humans, thus strengthening its potential in tissue engineering. Fucoidan-chitosan will be a promising biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- Shruthi Eshwar
- KLE Society's Institute of Dental Sciences, Bengaluru 560022, India
| | - Kranti Konuganti
- Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru 560054, India
| | - Supriya Manvi
- KLE Society's Institute of Dental Sciences, Bengaluru 560022, India
| | | | - Sudarshan Sajjan
- KLE Society's Institute of Dental Sciences, Bengaluru 560022, India
| | | | - Vipin Jain
- KLE Society's Institute of Dental Sciences, Bengaluru 560022, India
| |
Collapse
|
9
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
10
|
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydr Polym 2022; 300:120267. [DOI: 10.1016/j.carbpol.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
11
|
Park B, Yu SN, Kim SH, Lee J, Choi SJ, Chang JH, Yang EJ, Kim KY, Ahn SC. Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand. J Microbiol Biotechnol 2022; 32:1017-1025. [PMID: 35879294 PMCID: PMC9628933 DOI: 10.4014/jmb.2203.03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.
Collapse
Affiliation(s)
- Bobae Park
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Sun Nyoung Yu
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 065510, USA
| | - Junwon Lee
- Department of Biomedicinal Science and Biotechnology, Pai Chai University, Daejeon 35345, Republic of Korea
| | - Sung Jong Choi
- Spine Center, Bone Barun Hospital, Yangsan 50612, Republic of Korea
| | - Jeong Hyun Chang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Kwang-Youn Kim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Soon-Cheol Ahn
- Department of Microbiology & Immunology, Pusan National University School of Medicine, Yangsan 50611, Republic of Korea,Corresponding author Phone: +82-51-510-8092 E-mail:
| |
Collapse
|
12
|
López-Rodríguez R, Domínguez L, Fernández-Ruiz V, Cámara M. Extracts Rich in Nutrients as Novel Food Ingredients to Be Used in Food Supplements: A Proposal Classification. Nutrients 2022; 14:3194. [PMID: 35956370 PMCID: PMC9370228 DOI: 10.3390/nu14153194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Consumers' commitment to healthy lifestyles and a varied diet has experienced rapid growth in recent decades, causing an increase in the demand of better food quality and variety. The food industry has opted for innovation and the search for new sources of food, and these trends led to the need to develop a European regulatory framework. Novel foods are under Regulation (EU) 2015/2283 (formerly Regulation (EC) No 258/97), and this concept includes all food not used in an important measure for human consumption in the EU before 15 May 1997, and which is included in any of the food categories established. Currently, there are 26 extracts authorized as novel foods or ingredients, being one of the most numerous groups. These extracts are concentrated sources of nutrients, and 23 of them can be used in food supplements. Given their heterogeneous composition and the perceptive risk assessments performed, sometimes, the authorizations are limited to certain population groups. The present work is a comprehensive review of the extracts rich in nutrients authorized as novel ingredients to be used in food supplements within the EU. A classification is proposed according to their source of origin, resulting in four main groups: extracts of plant, animal, algae, and fungal origins. A description of each extract as well as the evaluation of the potential use restriction and health benefits are also addressed.
Collapse
Affiliation(s)
| | | | | | - Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, E-28040 Madrid, Spain
| |
Collapse
|
13
|
Appana Dalavi P, Prabhu A, M S, Chatterjee K, Venkatesan J. Casein-Coated Molybdenum Disulfide Nanosheets Augment the Bioactivity of Alginate Microspheres for Orthopedic Applications. ACS OMEGA 2022; 7:26092-26106. [PMID: 35936459 PMCID: PMC9352227 DOI: 10.1021/acsomega.2c00995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
Defects and disorders of the bone due to disease, trauma, or abnormalities substantially affect a person's life quality. Research in bone tissue engineering is motivated to address these clinical needs. The present study demonstrates casein-mediated liquid exfoliation of molybdenum disulfide (MoS2) and its coupling with alginate to create microspheres to engineer bone graft substitutes. Casein-exfoliated nano-MoS2 was chemically characterized using different analytical techniques. The UV-visible spectrum of nano-MoS2-2 displayed strong absorption peaks at 610 and 668 nm. In addition, the XPS spectra confirmed the presence of the molybdenum (Mo, 3d), sulfur (S, 2p), carbon (C, 1s), oxygen (O, 1s), and nitrogen (N, 1s) elements. The exfoliated MoS2 nanosheets were biocompatible with the MG-63, MC3T3-E1, and C2C12 cells at 250 μg/mL concentration. Further, microspheres were created using alginate, and they were characterized physiochemically and biologically. Stereomicroscopic images showed that the microspheres were spherical with an average diameter of 1 ± 0.2 mm. The dispersion of MoS2 in the alginate matrix was uniform. The alginate-MoS2 microspheres promoted apatite formation in the SBF (simulated body fluid) solution. Moreover, the alginate-MoS2 was biocompatible with MG-63 cells and promoted cell proliferation. Higher alkaline phosphatase activity and mineralization were observed on the alginate-MoS2 with the MG-63 cells. Hence, the developed alginate-MoS2 microsphere could be a potential candidate for a bone graft substitute.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kaushik Chatterjee
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Jayachandran Venkatesan
- Biomaterials
Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
14
|
Devi G.V Y, Nagendra AH, Shenoy P S, Chatterjee K, Venkatesan J. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
15
|
Wu MH, Lee MH, Wu C, Tsai PI, Hsu WB, Huang SI, Lin TH, Yang KY, Chen CY, Chen SH, Lee CY, Huang TJ, Tsau FH, Li YY. In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages. MATERIALS 2022; 15:ma15103670. [PMID: 35629694 PMCID: PMC9147460 DOI: 10.3390/ma15103670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Autogenous bone grafts are the gold standard for interbody fusion implant materials; however, they have several disadvantages. Tantalum (Ta) and titanium (Ti) are ideal materials for interbody cages because of their biocompatibility, particularly when they are incorporated into a three-dimensional (3D) porous structure. We conducted an in vitro investigation of the cell attachment and osteogenic markers of self-fabricated uniform porous Ti (20%, 40%, 60%, and 80%), nonporous Ti, and porous Ta cages (n = 6) in each group. Cell attachment, osteogenic markers, and alkaline phosphatase (ALP) were measured. An in vivo study was performed using a pig-posterior-instrumented anterior interbody fusion model to compare the porous Ti (60%), nonporous Ti, and porous Ta interbody cages in 12 pigs. Implant migration and subsidence, determined using plain radiographs, were recorded before surgery, immediately after surgery, and at 1, 3, and 6 months after surgery. Harvested implants were assessed for bone ingrowth and attachment. Relative to the 20% and 40% porous Ti cages, the 60% and 80% cages achieved superior cellular migration into cage pores. Among the cages, osteogenic marker and ALP activity levels were the highest in the 60% porous Ti cage, osteocalcin expression was the highest in the nonporous Ti cage, and the 60% porous Ti cage exhibited the lowest subsidence. In conclusion, the designed porous Ti cage is biocompatible and suitable for lumbar interbody fusion surgery and exhibits faster fusion with less subsidence compared with porous Ta and nonporous Ti cages.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Ming-Hsueh Lee
- Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Christopher Wu
- College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Pei-I Tsai
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Shin-I Huang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan;
| | - Kuo-Yi Yang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu County 310401, Taiwan; (P.-I.T.); (S.-I.H.); (K.-Y.Y.)
| | - Chih-Yu Chen
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- TMU Biodesign Center, Taipei Medical University, Taipei 110301, Taiwan
- Department of Orthopedics, Shuang-Ho Hospital, Taipei Medical University, Taipei 235041, Taiwan
| | - Shih-Hao Chen
- Department of Orthopedic Surgery, Buddhist Tzu-Chi General Hospital, Taichung Branch, Taichung 427213, Taiwan;
- Department of Orthopedic Surgery, Tzu-Chi University, Hualien 970374, Taiwan
| | - Ching-Yu Lee
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; (M.-H.W.); (C.-Y.C.); (C.-Y.L.); (T.-J.H.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Fang-Hei Tsau
- Laser and Additive Manufacturing Technology Center, Southern Region Campus, Industrial Technology Research Institute, Tainan 734045, Taiwan;
| | - Yen-Yao Li
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Correspondence: ; Tel.: +88653621000 (ext. 2855)
| |
Collapse
|
16
|
Role of sulfated polysaccharides from seaweeds in bone regeneration: A systematic review. Carbohydr Polym 2022; 284:119204. [DOI: 10.1016/j.carbpol.2022.119204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
|
17
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
18
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Chakraborty K, Antony T, Dhara S. Marine Macroalgal Polygalactan-Built Nanoparticle Construct for Osteogenesis. Biomacromolecules 2021; 22:2197-2210. [PMID: 33890786 DOI: 10.1021/acs.biomac.1c00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Naturally derived polysaccharide biopolymer-based nanoparticles with their size and drug release potentials have appeared as promising biomaterials for osteogenic differentiation. A metallic nanoparticle (GS-AgNP) prepared from a sulfated polygalactan characterized as →3)-2-O-methyl-O-6-sulfonato-β-d-galactopyranosyl-(1 → 4)-2-O-methyl-3,6-anhydro-α-d-galactopyranose-(1→ isolated from the marine macroalga Gracilaria salicornia exhibited a prospective osteogenic effect. Upon treatment with the studied GS-AgNP, alkaline phosphatase activity (88.9 mU/mg) was significantly elevated in human mesenchymal osteoblast stem cells (hMSCs) compared to that in the normal control (33.7 mU/mg). A mineralization study of GS-AgNPs demonstrated an intense mineralized nodule formation on the hMSC surface. A fluorescence-activated cell sorting study of osteocalcin and bone morphogenic protein-2 (BMP-2) expression resulted in an increased population of osteocalcin (78.64%) and BMP-2-positive cells (46.10%) after treatment with GS-AgNPs (250 μg/mL) on M2 macrophages. A time-dependent cell viability study of GS-AgNPs exhibited its non-cytotoxic nature. The studied polygalactan-built nanoparticle could be developed as a promising bioactive pharmacophore against metabolic bone disorder and the treatment for osteogenesis therapy.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala State, India
| | - Tima Antony
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala State, India
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka State, India
| | - Shubhajit Dhara
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North P.O., P.B. No. 1603, Cochin 682018, Kerala State, India
| |
Collapse
|
20
|
Hsu FY, Chen JJ, Sung WC, Hwang PA. Preparation of a Fucoidan-Grafted Hyaluronan Composite Hydrogel for the Induction of Osteoblast Differentiation in Osteoblast-Like Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1168. [PMID: 33801348 PMCID: PMC7958341 DOI: 10.3390/ma14051168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
A suitable bone substitute is necessary in bone regenerative medicine. Hyaluronan (HA) has excellent biocompatibility and biodegradability and is widely used in tissue engineering. Additionally, research on fucoidan (Fu), a fucose- and sulfate-rich polysaccharide from brown seaweed, for the promotion of bone osteogenic differentiation has increased exponentially. In this study, HA and Fu were functionalized by grafting methacrylic groups onto the backbone of the chain. Methacrylate-hyaluronan (MHA) and methacrylate-fucoidan (MFu) were characterized by FTIR and 1H NMR spectroscopy to confirm functionalization. The degrees of methacrylation (DMs) of MHA and MFu were 9.2% and 98.6%, respectively. Furthermore, we evaluated the mechanical properties of the hydrogels formed from mixtures of photo-crosslinkable MHA (1%) with varying concentrations of MFu (0%, 0.5%, and 1%). There were no changes in the hardness values of the hydrogels, but the elastic modulus decreased upon the addition of MFu, and these mechanical properties were not significantly different with or without preosteoblastic MG63 cell culture for up to 28 days. Furthermore, the cell morphologies and viabilities were not significantly different after culture with the MHA, MHA-MFu0.5, or MHA-MFu1.0 hydrogels, but the specific activity and mineralization of alkaline phosphatase (ALP) were significantly higher in the MHA-MFu1.0 hydrogel group compared to the other hydrogels. Hence, MHA-MFu composite hydrogels are potential bone graft materials that can provide a flexible structure and favorable niche for inducing bone osteogenic differentiation.
Collapse
Affiliation(s)
- Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
| | - Jheng-Jie Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
| | - Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan;
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City 20224, Taiwan; (F.-Y.H.); (J.-J.C.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| |
Collapse
|
21
|
Ohmes J, Xiao Y, Wang F, Mikkelsen MD, Nguyen TT, Schmidt H, Seekamp A, Meyer AS, Fuchs S. Effect of Enzymatically Extracted Fucoidans on Angiogenesis and Osteogenesis in Primary Cell Culture Systems Mimicking Bone Tissue Environment. Mar Drugs 2020; 18:E481. [PMID: 32967359 PMCID: PMC7550999 DOI: 10.3390/md18090481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from existing ones, is an essential process for successful bone regeneration. Further, angiogenesis is a key factor for the development of bone-related disorders like osteosarcoma or arthritis. Fucoidans, sulfated polysaccharides from brown algae, have been shown to affect angiogenesis as well as a series of other physiological processes including inflammation or infection. However, the chemical properties of fucoidan which define the biological activity vary tremendously, making a prediction of the bioactivity or the corresponding therapeutic effect difficult. In this study, we compare the effect of four chemically characterized high molecular weight fucoidan extracts from Fucus distichus subsp. evanescens (FE_crude and fractions F1, F2, F3) on angiogenic and osteogenic processes in bone-related primary mono- and co-culture cell systems. By determining the gene expression and protein levels of the regulatory molecules vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG-1), ANG-2 and stromal-derived factor 1 (SDF-1), we show that the extracted fucoidans negatively influence angiogenic and osteogenic processes in both the mono- and co-culture systems. We demonstrate that purer fucoidan extracts with a high fucose and sulfate content show stronger effects on these processes. Immunocytochemistry of the co-culture system revealed that treatment with FE_F3, containing the highest fucose and sulfate content, impaired the formation of angiogenic tube-like structures, indicating the anti-angiogenic properties of the tested fucoidans. This study highlights how chemical properties of fucoidan influence its bioactivity in a bone-related context and discusses how the observed phenotypes can be explained on a molecular level-knowledge that is indispensable for future therapies based on fucoidans.
Collapse
Affiliation(s)
- Julia Ohmes
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (Y.X.); (F.W.); (A.S.)
| | - Yuejun Xiao
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (Y.X.); (F.W.); (A.S.)
| | - Fanlu Wang
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (Y.X.); (F.W.); (A.S.)
| | - Maria Dalgaard Mikkelsen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.T.N.); (A.S.M.)
| | - Thuan Thi Nguyen
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.T.N.); (A.S.M.)
| | | | - Andreas Seekamp
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (Y.X.); (F.W.); (A.S.)
| | - Anne S. Meyer
- Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 221, 2800 Kongens Lyngby, Denmark; (M.D.M.); (T.T.N.); (A.S.M.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (J.O.); (Y.X.); (F.W.); (A.S.)
| |
Collapse
|
22
|
Lactobacillus plantarum GKM3 and Lactobacillus paracasei GKS6 Supplementation Ameliorates Bone Loss in Ovariectomized Mice by Promoting Osteoblast Differentiation and Inhibiting Osteoclast Formation. Nutrients 2020; 12:nu12071914. [PMID: 32605314 PMCID: PMC7401263 DOI: 10.3390/nu12071914] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis, an imbalance in the bone-forming process mediated by osteoblasts and the bone-resorbing function mediated by osteoclasts, is a bone degenerative disease prevalent among the aged population. Due to deleterious side effects of currently available medications, probiotics as a potential treatment of osteoporosis is an appealing approach. Hence, this study aims to evaluate the beneficial effects of two novel Lactobacilli strain probiotics on bone health in ovariectomized (OVX) induced osteoporotic mice model and its underlying mechanisms. Forty-five 9-week-old Institute of Cancer Research (ICR) mice underwent either a sham-operation (n = 9) or OVX (n = 36). Four days after the operation, OVX mice were further divided into four groups and received either saline alone, Lactobacillus plantarum GKM3, Lactobacillus paracasei GKS6 or alendronate per day for 28 days. After sacrifice by decapitation, right distal femur diaphysis was imaged via micro-computed tomography (MCT) and parameters including bone volume/tissue volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and bone mineral density (BMD) were measured. Moreover, GKM3 and GKS6 on RANKL-induced osteoclast formation and osteoblast differentiation using in vitro cultures were also investigated. The results showed that both probiotics strains inhibited osteoporosis in the OVX mice model, with L. paracasei GKS6 outperforming L. plantarum GKM3. Besides this, both GKS6 and GKM3 promoted osteoblast differentiation and inhibited RANKL-induced osteoclast differentiation via the Bone Morphogenetic Proteins (BMP) and RANKL pathways, respectively. These findings suggested that both strains of Lactobacilli may be pursued as potential candidates for the treatment and management of osteoporosis, particularly in postmenopausal osteoporosis.
Collapse
|
23
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
24
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
25
|
Fucoidan-based nanostructures: A focus on its combination with chitosan and the surface functionalization of metallic nanoparticles for drug delivery. Int J Pharm 2020; 575:118956. [DOI: 10.1016/j.ijpharm.2019.118956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
|
26
|
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110698. [PMID: 32204012 DOI: 10.1016/j.msec.2020.110698] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/02/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
The goal of a biomaterial is to support the bone tissue regeneration process at the defect site and eventually degrade in situ and get replaced with the newly generated bone tissue. Nanocomposite biomaterials are a relatively new class of materials that incorporate a biopolymeric and biodegradable matrix structure with bioactive and easily resorbable fillers which are nano-sized. This article is a review of a few polymeric nanocomposite biomaterials which are potential candidates for bone tissue regeneration. These nanocomposites have been broadly classified into two groups viz. natural and synthetic polymer based. Natural polymer-based nanocomposites include materials fabricated through reinforcement of nanoparticles and/or nanofibers in a natural polymer matrix. Several widely used natural biopolymers, such as chitosan (CS), collagen (Col), cellulose, silk fibroin (SF), alginate, and fucoidan, have been reviewed regarding their present investigation on the incorporation of nanomaterial, biocompatibility, and tissue regeneration. Synthetic polymer-based nanocomposites that have been covered in this review include polycaprolactone (PCL), poly (lactic-co-glycolic) acid (PLGA), polyethylene glycol (PEG), poly (lactic acid) (PLA), and polyurethane (PU) based nanocomposites. An array of nanofillers, such as nano hydroxyapatite (nHA), nano zirconia (nZr), nano silica (nSi), silver nano particles (AgNPs), nano titanium dioxide (nTiO2), graphene oxide (GO), that is used widely across the bone tissue regeneration research platform are included in this review with respect to their incorporation into a natural and/or synthetic polymer matrix. The influence of nanofillers on cell viability, both in vitro and in vivo, along with cytocompatibility and new tissue generation has been encompassed in this review. Moreover, nanocomposite material characterization using some commonly used analytical techniques, such as electron microscopy, spectroscopy, diffraction patterns etc., has been highlighted in this review. Biomaterial physical properties, such as pore size, porosity, particle size, and mechanical strength which strongly influences cell attachment, proliferation, and subsequent tissue growth has been covered in this review. This review has been sculptured around a case by case basis of current research that is being undertaken in the field of bone regeneration engineering. The nanofillers induced into the polymeric matrix render important properties, such as large surface area, improved mechanical strength as well as stability, improved cell adhesion, proliferation, and cell differentiation. The selection of nanocomposites is thus crucial in the analysis of viable treatment strategies for bone tissue regeneration for specific bone defects such as craniofacial defects. The effects of growth factor incorporation on the nanocomposite for controlling new bone generation are also important during the biomaterial design phase.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
27
|
Bilal M, Iqbal HMN. Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector. Mar Drugs 2019; 18:md18010007. [PMID: 31861644 PMCID: PMC7024278 DOI: 10.3390/md18010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Seaweed-derived polysaccharides with unique structural and functional entities have gained special research attention in the current medical sector. Seaweed polysaccharides have been or being used to engineer novel cues with biomedical values to tackle in practice the limitations of counterparts which have become ineffective for 21st-century settings. The inherited features of seaweed polysaccharides, such as those of a biologically tunable, biocompatible, biodegradable, renewable, and non-toxic nature, urge researchers to use them to design therapeutically effective, efficient, controlled delivery, patient-compliant, and age-compliant drug delivery platforms. Based on their significant retention capabilities, tunable active units, swelling, and colloidal features, seaweed polysaccharides have appeared as highly useful materials for modulating drug-delivery and tissue-engineering systems. This paper presents a standard methodological approach to review the literature using inclusion-exclusion criteria, which is mostly ignored in the reported literature. Following that, numerous marine-based seaweed polysaccharides are discussed with suitable examples. For the applied perspectives, part of the review is focused on the biomedical values, i.e., targeted drug delivery, wound-curative potential, anticancer potentialities, tissue-engineering aspects, and ultraviolet (UV) protectant potential of seaweed polysaccharides based engineered cues. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
28
|
Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:127-185. [PMID: 32402443 DOI: 10.1016/bs.afnr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.
Collapse
|
29
|
Filho GC, de Sousa A, Viana R, Rocha H, de Medeiros SB, Moreira S. Osteogenic activity of non-genotoxic sulfated polysaccharides from the green seaweed Caulerpa sertularioides. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Minetti M, Bernardini G, Biazzo M, Gutierrez G, Geminiani M, Petrucci T, Santucci A. Padina pavonica Extract Promotes In Vitro Differentiation and Functionality of Human Primary Osteoblasts. Mar Drugs 2019; 17:E473. [PMID: 31443264 PMCID: PMC6724011 DOI: 10.3390/md17080473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Marine algae have gained much importance in the development of nutraceutical products due to their high content of bioactive compounds. In this work, we investigated the activity of Padina pavonica with the aim to demonstrate the pro-osteogenic ability of its extract on human primary osteoblast (HOb). Our data indicated that the acetonic extract of P. pavonica (EPP) is a safe product as it did not show any effect on osteoblast viability. At the same time, EPP showed to possess a beneficial effect on HOb functionality, triggering their differentiation and mineralization abilities. In particular EPP enhanced the expression of the earlier differentiation stage markers: a 5.4-fold increase in collagen type I alpha 1 chain (COL1A1), and a 2.3-fold increase in alkaline phosphatase (ALPL), as well as those involved in the late differentiation stage: a 3.7-fold increase in osteocalcin (BGLAP) expression and a 2.8-fold in osteoprotegerin (TNFRSF11B). These findings were corroborated by the enhancement in ALPL enzymatic activity (1.7-fold increase) and by the reduction of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) ratio (0.6-fold decrease). Moreover, EPP demonstrated the capacity to enhance the bone nodules formation by 3.2-fold in 4 weeks treated HOb. Therefore, EPP showed a significant capability of promoting osteoblast phenotype. Given its positive effect on bone homeostasis, EPP could be used as a useful nutraceutical product that, in addition to a healthy lifestyle and diet, can be able to contrast and prevent bone diseases, especially those connected with ageing, such as osteoporosis (OP).
Collapse
Affiliation(s)
- Mariagiulia Minetti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Manuele Biazzo
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Gilles Gutierrez
- Institute of Cellular Pharmacology (ICP Ltd.), F24, Triq Valletta, Mosta Technopark, Mosta MST 3000, Malta
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Teresa Petrucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
31
|
da Silva FRP, e Silva Conceição Pinto M, de Carvalho França LF, Alves EHP, dos Santos Carvalho J, Di Lenardo D, Brito TV, Medeiros JVR, de Oliveira JS, Freitas ALP, Barros FCN, dos Reis Barbosa AL, Vasconcelos DFP. Sulfated polysaccharides from the marine algae Gracilaria caudata prevent tissue damage caused by ligature-induced periodontitis. Int J Biol Macromol 2019; 132:1-8. [DOI: 10.1016/j.ijbiomac.2019.03.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
|
32
|
Lu SH, Hsia YJ, Shih KC, Chou TC. Fucoidan Prevents RANKL-Stimulated Osteoclastogenesis and LPS-Induced Inflammatory Bone Loss via Regulation of Akt/GSK3β/PTEN/NFATc1 Signaling Pathway and Calcineurin Activity. Mar Drugs 2019; 17:E345. [PMID: 31185702 PMCID: PMC6627629 DOI: 10.3390/md17060345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/04/2023] Open
Abstract
Excessive osteoclast differentiation and/or function plays a pivotal role in the pathogenesis of bone diseases such as osteoporosis and rheumatoid arthritis. Here, we examined whether fucoidan, a sulfated polysaccharide present in brown algae, attenuates receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclastogenesis in vitro and lipopolysaccharide (LPS)-induced bone resorption in vivo, and investigated the molecular mechanisms involved. Our results indicated that fucoidan significantly inhibited osteoclast differentiation in RANKL-stimulated macrophages and the bone resorbing activity of osteoclasts. The effects of fucoidan may be mediated by regulation of Akt/GSK3β/PTEN signaling and suppression of the increase in intracellular Ca2+ level and calcineurin activity, thereby inhibiting the translocation of nuclear factor-activated T cells c1 (NFATc1) into the nucleus. However, fucoidan-mediated NFATc1 inactivation was greatly reversed by kenpaullone, a GSK3β inhibitor. In addition, using microcomputer tomography (micro-CT) scanning and bone histomorphometry, we found that fucoidan treatment markedly prevented LPS-induced bone erosion in mice. Collectively, we demonstrated that fucoidan was capable of inhibiting osteoclast differentiation and inflammatory bone loss, which may be modulated by regulation of Akt/GSK3β/PTEN/NFATc1 and Ca2+/calcineurin signaling cascades. These findings suggest that fucoidan may be a potential agent for the treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Sheng-Hua Lu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Yi-Jan Hsia
- Dental Department and Devision of Oral and Maxillofacial Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan.
| | - Tz-Chong Chou
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
- China Medical University Hospital, China Medical University, Taichung 400, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Department of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
33
|
Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Mar Drugs 2019; 17:E183. [PMID: 30897733 PMCID: PMC6471298 DOI: 10.3390/md17030183] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
The marine acid polysaccharide fucoidan has attracted attention from both the food and pharmaceutical industries due to its promising therapeutic effects. Fucoidan is a polysaccharide that mainly consists of L-fucose and sulphate groups. Its excellent biological function is attributed to its unique biological structure. Classical activities include antitumor, antioxidant, anticoagulant, antithrombotic, immunoregulatory, antiviral and anti-inflammatory effects. More recently, fucoidan has been shown to alleviate metabolic syndrome, protect the gastrointestinal tract, benefit angiogenesis and bone health. This review focuses on the progress in our understanding of the biological activities of fucoidan, highlighting its benefits for the treatment of human disease. We hope that this review can provide some theoretical basis and inspiration for the product development of fucoidan.
Collapse
Affiliation(s)
- Yu Wang
- Marine College, Shandong University, Weihai 264209, China.
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
34
|
van Weelden G, Bobiński M, Okła K, van Weelden WJ, Romano A, Pijnenborg JMA. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar Drugs 2019; 17:E32. [PMID: 30621045 PMCID: PMC6356449 DOI: 10.3390/md17010032] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Fucoidan is a natural derived compound found in different species of brown algae and in some animals, that has gained attention for its anticancer properties. However, the exact mechanism of action is currently unknown. Therefore, this review will address fucoidans structure, the bioavailability, and all known different pathways affected by fucoidan, in order to formulate fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity of fucoidan is difficult to establish due to factors like species-related structural diversity, growth conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT, the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion, the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is a need for more specified studies of the structure⁻activity relationship of fucoidan from the most promising seaweed species.
Collapse
Affiliation(s)
- Geert van Weelden
- Faculty of Science, (Medical) Biology, Radboud University, 6525 XZ Nijmegen, The Netherlands.
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands.
| | - Johanna M A Pijnenborg
- Department of Obstetrics & Gynecology, Radboud University Nijmegen, Medical Centre, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Venkatesan J, Anil S, Rao S, Bhatnagar I, Kim SK. Sulfated Polysaccharides from Macroalgae for Bone Tissue Regeneration. Curr Pharm Des 2019; 25:1200-1209. [PMID: 31465280 DOI: 10.2174/1381612825666190425161630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Utilization of macroalgae has gained much attention in the field of pharmaceuticals, nutraceuticals, food and bioenergy. Macroalgae has been widely consumed in Asian countries as food from ancient days and proved that it has potential bioactive compounds which are responsible for its nutritional properties. Macroalgae consists of a diverse range of bioactive compounds including proteins, lipids, pigments, polysaccharides, etc. Polysaccharides from macroalgae have been utilized in food industries as gelling agents and drug excipients in the pharmaceutical industries owing to their biocompatibility and gel forming properties. Exploration of macroalgae derived sulfated polysaccharides in biomedical applications is increasing recently. METHODS In the current review, we have provided information of three different sulfated polysaccharides such as carrageenan, fucoidan and ulvan and their isolation procedure (enzymatic precipitation, microwave assisted method, and enzymatic hydrolysis method), structural details, and their biomedical applications exclusively for bone tissue repair and regeneration. RESULTS From the scientific results on sulfated polysaccharides from macroalgae, we conclude that sulfated polysaccharides have exceptional properties in terms of hydrogel-forming ability, scaffold formation, and mimicking the extracellular matrix, increasing alkaline phosphatase activity, enhancement of biomineralization ability and stem cell differentiation for bone tissue regeneration. CONCLUSION Overall, sulfated polysaccharides from macroalgae may be promising biomaterials in bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Hamad Medical Corporation, PO box 3050, Doha, Qatar
| | - Sneha Rao
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Ira Bhatnagar
- CSIR-Center for Cellular and Molecular Biology, Clinical Research Facility, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Se-Kwon Kim
- Department of Marine Life Sciences, Korean Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 49112, Korea
| |
Collapse
|
36
|
Screening for osteogenic activity in extracts from Irish marine organisms: The potential of Ceramium pallidum. PLoS One 2018; 13:e0207303. [PMID: 30485314 PMCID: PMC6261572 DOI: 10.1371/journal.pone.0207303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
Extracts and compounds derived from marine organisms have reportedly shown some osteogenic potential. As such, these bioactives may aid in the treatment of musculoskeletal conditions such as osteoporosis; helping to address inefficacies with current treatment options. In this study, 72 fractions were tested for their in vitro osteogenic activity using a human foetal osteoblast (hFOB) cell line and bone marrow derived mesenchymal stem cells (MSCs), focusing on their cytotoxic, proliferative and differentiation effects. Extracts dissolved in dimethyl sulfoxide and ethanol showed no significant osteogenic potential. However, two extracts derived from powder residues (left over from original organic extractions) caused a significant promotion of MSC differentiation. Bioactivity from powder residues derived from the epiphytic red algae Ceramium pallidum is described in detail to highlight its treatment potential. In vitro, C. pallidum was shown to promote MSC differentiation and extracellular matrix mineralisation. In vivo, this extract caused a significant increase in opercular bone growth of zebrafish larvae and a significant increase in bone density of regenerated adult caudal fins. Our findings therefore show the importance of continued screening efforts, particularly of novel extract sources, and the presence of bioactive compounds in C. pallidum extract.
Collapse
|
37
|
Carson MA, Nelson J, Cancela ML, Laizé V, Gavaia PJ, Rae M, Heesch S, Verzin E, Maggs C, Gilmore BF, Clarke SA. Red algal extracts from Plocamium lyngbyanum and Ceramium secundatum stimulate osteogenic activities in vitro and bone growth in zebrafish larvae. Sci Rep 2018; 8:7725. [PMID: 29769706 PMCID: PMC5956103 DOI: 10.1038/s41598-018-26024-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Through the current trend for bioprospecting, marine organisms - particularly algae - are becoming increasingly known for their osteogenic potential. Such organisms may provide novel treatment options for osteoporosis and other musculoskeletal conditions, helping to address their large healthcare burden and the limitations of current therapies. In this study, extracts from two red algae – Plocamium lyngbyanum and Ceramium secundatum – were tested in vitro and in vivo for their osteogenic potential. In vitro, the growth of human bone marrow stromal cells (hBMSCs) was significantly greater in the presence of the extracts, particularly with P. lyngbyanum treatment. Osteogenic differentiation was promoted more by C. secundatum (70 µg/ml), though P. lyngbyanum had greater in vitro mineralisation potential. Both species caused a marked and dose-dependent increase in the opercular bone area of zebrafish larvae. Our findings therefore indicate the presence of bioactive components in P. lyngbyanum and C. secundatum extracts, which can promote both in vitro and in vivo osteogenic activity.
Collapse
Affiliation(s)
- Matthew A Carson
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom.
| | - John Nelson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Margaret Rae
- Marine Institute and Irish Seaweed Research Group, Rinville, Oranmore, Co., Galway, Ireland
| | - Svenja Heesch
- Irish Seaweed Research Group, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Eugene Verzin
- Orthopaedic department, Royal Victoria Hospital, Belfast, United Kingdom
| | - Christine Maggs
- Faculty of Science and Technology, Bournemouth University, Bournemouth, United Kingdom
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Susan A Clarke
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
38
|
Chaves Filho GP, de Sousa AFG, Câmara RBG, Rocha HAO, de Medeiros SRB, Moreira SMG. Genotoxicity and osteogenic potential of sulfated polysaccharides from Caulerpa prolifera seaweed. Int J Biol Macromol 2018; 114:565-571. [PMID: 29578018 DOI: 10.1016/j.ijbiomac.2018.03.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
Abstract
Marine algae are sources of novel bioactive molecules and present a great potential for biotechnological and biomedical applications. Although green algae are the least studied type of seaweed, several of their biological activities have already been described. Here, we investigated the osteogenic potential of Sulfated Polysaccharide (SP)-enriched samples extracted from the green seaweed Caulerpa prolifera on human mesenchymal stem cells isolated from Wharton jelly (hMSC-WJ). In addition, the potential genotoxicity of these SPs was determined by cytokinesis-block micronucleus (CBMN) assay. SP-enriched samples did not show significant cytotoxicity towards hMSCs-WJ at a concentration of up to 10μg/mL, and after 72h of exposure. SP enrichment also significantly increased alkaline phosphatase (ALP) activity, promoting calcium accumulation in the extracellular matrix. Among the SP-enriched samples, the CP0.5 subfraction (at 5μg/mL) presented the most promising results. In this sample, ALP activity was increased approximately by 60%, and calcium accumulation was approximately 6-fold above the negative control, indicating high osteogenic potential. This subfraction also proved to be non-genotoxic, according to the CBMN assay, as it did not induce micronuclei. The results of this study highlight, for the first time, the potential of these SPs for the development of new therapies for bone regeneration.
Collapse
|
39
|
Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. Int J Biol Macromol 2018; 106:1032-1040. [DOI: 10.1016/j.ijbiomac.2017.08.111] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
40
|
Venkatesan J, Anil S, Kim SK, Shim MS. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. Int J Biol Macromol 2017; 104:1383-1397. [PMID: 28109812 DOI: 10.1016/j.ijbiomac.2017.01.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/04/2023]
Abstract
The replacement of conventional autografts and allografts by bone fragments constructed from alternate materials, cells, and molecules (growth factors, drugs, etc.) is an exciting prospect in the field of bone tissue engineering. Bone morphogenetic protein-2 (BMP-2) is a growth factor that has been extensively studied from this point of view. This review analyzes the relevance of chitosan and its derivatives and composites with various materials such as ceramics, heparin, silica, stem cells, titanium implants, etc., in terms of delivering BMP-2 for the purpose of bone regeneration. Chitosan offers the versatility to be modified into any shapes or sizes including conversion to nanoparticles, microspheres, nanofibers, porous scaffolds, and films. The results presented in this review clearly demonstrate that chitosan-based materials are biocompatible and have the potential to systematically and sustainably release BMP-2 where required. This release results in enhanced cell proliferation levels, enhancement of alkaline phosphatase activity, increased differentiation as well as increased mineralization under in vitro and in vivo conditions. This review also shines a spotlight on the currently developed chitosan-based products that are being used for BMP-2 delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 153, AIkharj, 11942, Riyadh, Saudi Arabia
| | - Se-Kwon Kim
- Institute for Life Science of Seogo (ILSS), Kolmar Korea Co, Seoul 137-876, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
41
|
Phull AR, Kim SJ. Fucoidan from Undaria pinnatifida regulates type II collagen and COX-2 expression via MAPK and PI3K pathways in rabbit articular chondrocytes. Biologia (Bratisl) 2017; 72:1362-1369. [DOI: 10.1515/biolog-2017-0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/23/2017] [Indexed: 07/06/2024]
|
42
|
Facile production of seaweed-based biomaterials with antioxidant and anti-inflammatory activities. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Kim B, Yang S, You H, Shin H, Lee J. Fucoidan‐induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair. J Tissue Eng Regen Med 2017; 12:e1311-e1324. [DOI: 10.1002/term.2509] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 02/12/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Beom‐Su Kim
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
- Bonecell Biotech Inc. Daejeon Republic of Korea
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN)Chonbuk National University 567 Baekje‐daero, Deokjin‐gu Jeonju‐si Jeollabuk‐do 54896 Republic of Korea
| | - Sun‐Sik Yang
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
| | - Hyung‐Keun You
- Department of Periodontology, School of DentistryWonkwang University Iksan Jeonbuk Republic of Korea
| | - Hong‐In Shin
- IHBR, Department of Oral Pathology, School of DentistryKyungpook National University Daegu Republic of Korea
| | - Jun Lee
- Wonkwang Bone Regeneration Research InstituteWonkwang University Iksan Jeonbuk Republic of Korea
- Departments of Oral and Maxillofacial SurgeryWonkwang University Iksan Jeonbuk South Korea
| |
Collapse
|
44
|
Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts. Orthop Surg 2017; 9:13-19. [PMID: 28276640 DOI: 10.1111/os.12304] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Stem cell research has been a popular topic in the past few decades. This review aims to discuss factors that help regulate, induce, and enhance mesenchymal stem cell (MSC) differentiation into osteoblasts for bone regeneration. The factors analyzed include bone morphogenic protein (BMP), transforming growth factor β (TGF-β), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor type 1 (IGF-1), histone demethylase JMJD3, cyclin dependent kinase 1 (CDK1), fucoidan, Runx2 transcription factor, and TAZ transcriptional coactivator. Methods promoting bone healing are also evaluated in this review that have shown promise in previous studies. Methods tested using animal models include low intensity pulsed ultrasound (LIPUS) with MSC, micro motion, AMD3100 injections, BMP delivery, MSC transplantation, tissue engineering utilizing scaffolds, anti-IL-20 monoclonal antibody, low dose photodynamic therapy, and bone marrow stromal cell transplants. Human clinical trial methods analyzed include osteoblast injections, bone marrow grafts, bone marrow and platelet rich plasma transplantation, tissue engineering using scaffolds, and recombinant human BMP-2. These methods have been shown to promote and accelerate new bone formation. These various methods for enhanced bone regeneration have the potential to be used, following further research, in clinical practice.
Collapse
Affiliation(s)
- Priyanka Garg
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Matthew M Mazur
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Amy C Buck
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Meghan E Wandtke
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Jiayong Liu
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Nabil A Ebraheim
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, Ohio, USA
| |
Collapse
|
45
|
Lowe B, Venkatesan J, Anil S, Shim MS, Kim SK. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 2016; 93:1479-1487. [PMID: 26921504 DOI: 10.1016/j.ijbiomac.2016.02.054] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 02/07/2023]
Abstract
Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Baboucarr Lowe
- Marine Bioprocess Research Center and Department of Marine-Bio Convergence Science, Pukyong National University, Busan 608-737, South Korea
| | | | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, P.O Box 114, Jazan 45142, Saudi Arabia
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, South Korea.
| | - Se-Kwon Kim
- Marine Bioprocess Research Center and Department of Marine-Bio Convergence Science, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
46
|
Tae Young A, Kang JH, Kang DJ, Venkatesan J, Chang HK, Bhatnagar I, Chang KY, Hwang JH, Salameh Z, Kim SK, Kim HT, Kim DG. Interaction of stem cells with nano hydroxyapatite-fucoidan bionanocomposites for bone tissue regeneration. Int J Biol Macromol 2016; 93:1488-1491. [DOI: 10.1016/j.ijbiomac.2016.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
|
47
|
Kim H, Jeon TJ. Fucoidan Induces Cell Aggregation and Apoptosis in Osteosarcoma MG-63 Cells. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1215349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Jeong YT, Baek SH, Jeong SC, Yoon YD, Kim OH, Oh BC, Jung JW, Kim JH. Osteoprotective Effects of Polysaccharide-Enriched Hizikia fusiforme Processing Byproduct In Vitro and In Vivo Models. J Med Food 2016; 19:805-14. [PMID: 27458685 DOI: 10.1089/jmf.2015.3646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The traditional manufacturing method used to produce goods from Hizikia fusiforme, utilizes extraction steps with hot water. The byproduct (of hot water extraction) is rich in polysaccharide and is considered a waste. To evaluate the osteogenic effects of the byproduct of H. fusiforme (HFB), osteogenic cells and animal models were used to test it effects on osteogenesis. The HFB-treated mouse myoblast C2C12 cells exhibited significant dose dependently elevated alkaline phosphatase (ALP) activity and slightly increased bone morphogenetic protein-2 (BMP-2). HFB also suppressed the formation of tartrate-resistant acid phosphatase (TRAP) activity and TRAP staining in the bone marrow-derived macrophages (BMM) cells that had been stimulated with the receptor activator of the nuclear factor kB ligand/macrophage colony-stimulating factor kB ligand. In addition, HFB also increased the phosphorylation of extracellular signal-regulated protein kinase (p-ERK) level. Finally, osteogenic effects of HFB were clearly confirmed in the three in vivo models: zebrafish, ovariectomized mice, and mouse calvarial bones. HFB accelerated the rate of skeletal development in zebrafish and prevented much of the mouse femoral bone density loss of ovariectomized mice. Moreover, HFB enhanced woven bone formation over the periosteum of mouse calvarial bones. Our result showed that HFB functions as a bone resorption inhibitor as well as an activator of bone formation in vivo and in osteogenic in vitro cell systems.
Collapse
Affiliation(s)
- Yong Tae Jeong
- 1 HK Bio, Business Incubator, Daegu Haany University , Gyeongsan, Korea
| | - Seung Hwa Baek
- 2 Department of Food Science & Biotechnology, Graduate School, Kyungpook National University , Daegu, Korea
| | - Sang Chul Jeong
- 3 Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources , SangJu, Korea
| | - Yeo Dae Yoon
- 4 Korea Research Institute of Bioscience and Biotechnology , Yuseong, Daejeon, Korea
| | - Ok Hee Kim
- 5 Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine , Yeonsu-ku, Incheon, Korea
| | - Byung Chul Oh
- 5 Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine , Yeonsu-ku, Incheon, Korea
| | - Ji Wook Jung
- 6 Department of Natural Cosmetic Ingredient, Daegu Haany University , Gyeongsan, Korea
| | - Jin Hee Kim
- 7 College of Herbal Bio-Industry, Daegu Haany University , Gyeongsan, Korea
| |
Collapse
|
49
|
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016; 21:molecules21050551. [PMID: 27128892 PMCID: PMC6273702 DOI: 10.3390/molecules21050551] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy.
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80131 Napoli, Italy.
| | - Stefano Guariniello
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, 80131 Napoli, Italy.
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
50
|
Wang X, Gu Z, Jiang B, Li L, Yu X. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomater Sci 2016; 4:678-88. [PMID: 26870855 DOI: 10.1039/c5bm00482a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.
Collapse
Affiliation(s)
- Xu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | | | | | | | | |
Collapse
|