1
|
Mouguech N, Taillandier P, Bouajila J, Romdhane M, Etteyeb N. Enhanced Biological Potential and Phytochemical Profiling of Phoenix Dactylifera Leaves (Deglet Nour and Alig) by Kombucha Fermentation: Focus on Polyphenols, Antioxidant, Antidiabetic, and Cytotoxic Activities. Chem Biodivers 2025; 22:e202401592. [PMID: 39400937 DOI: 10.1002/cbdv.202401592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The date palm, scientifically known as Phoenix dactylifera, is an important cultural and economic source of wealth in southern Tunisia. It produces considerable agricultural waste, including palm leaves, the disposal of which is often a challenge. Our study addresses the sustainable conversion of date palm leaves into a valuable product through kombucha fermentation, focusing on two widely used varieties in Tunisia: Deglet Nour and Alig. HPLC-RI analysis showed a significant difference in the fermentation process between the treated samples, which is reflected in the highest sugar consumption and metabolite production in Alig palm. Unfermented and fermented date palm leaves were sequentially extracted with solvents of increasing polarity (ethyl acetate and butanol) to evaluate their chemical composition and bioactivity. The results showed that kombucha fermentation significantly increased the total phenolic content, with the highest amounts in the ethyl acetate fraction. In terms of antioxidant activity, the ethyl acetate extracts showed a high percentage inhibitory activity (82.76 %) against the DPPH radical found in fermented Palm Alig, which also exhibited the most important antidiabetic capacity (resulting in an IC50 value of 20 μg/mL). The chemical analyses resulted in the detection of 19 compounds by HPLC-DAD and 50 volatiles by GC-MS, which are mainly found in kombucha extracts.
Collapse
Affiliation(s)
- Najet Mouguech
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Mehrez Romdhane
- Laboratoire: Energie, Eau, Environnement et Procédés (LR18ES35), Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| | - Naceur Etteyeb
- Laboratoire de Recherche, Biodiversité, Molécule et Application, Institut Supérieur de Biologie Appliquée de Médenine, Université de Gabès, Gabès, 6072, Tunisie
- Laboratoire de Recherche: Matériaux, Electrochimie et Environnement (LR24ES18), Faculté des Sciences de Gabès, Université de Gabès, Gabes, 6072, Tunisie
| |
Collapse
|
2
|
da Silva C, Schmitz JA, Raspe DT, Stevanato N, Hoscheid J, Gimenes ML, Bolanho Barros BC, Cardozo-Filho L. Application of the Biorefinery Concept in the Processing of Crambe ( Crambe abyssinica Hochst) Seed Defatted Meal in a Pressurized Medium. PLANTS (BASEL, SWITZERLAND) 2025; 14:326. [PMID: 39942888 PMCID: PMC11821204 DOI: 10.3390/plants14030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
The valorization of byproducts such as defatted meal (DM) is essential for the implementation of a biorefinery structure and can be achieved through the application of emerging technologies, such as pressurized liquid extraction. This work aimed to apply pressurized liquid extraction to obtain products derived from the DM of crambe (Crambe abyssinica Hochst) seeds. The experiments investigated the effect of ethanol percentage in the hydroalcoholic solvent (25%, 50% and 75%, v/v) on the mass extract yield (MEY) and on the composition of the products obtained: phytochemical extract (PE) and processed flour (PF). The PE obtained using 25% ethanolic solvent had the highest MEY (23.48 wt%) and phenolic compounds, composed of caffeic, gallic and ferulic acids, which conferred activity against the fungus C. albicans. The solvents tested did not influence the content of soluble proteins. The solvent with 75% ethanol promoted the highest levels of glucosinolates (258.94 μmol/g) and tannins (8.80 mg/g) in the PE, reducing 96% and 98% of these contents in the PF produced. The PF obtained in the extraction with 75% ethanol contained phenolic compounds (~23 mg/100 g), dietary fibers (54.25 g/100 g) and soluble proteins (26.39 wt%), mainly composed of glutelin fraction. The PF also presented adequate functional properties, such as water solubility and absorption, which suggest potential use in pet food formulations.
Collapse
Affiliation(s)
- Camila da Silva
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (D.T.R.); (N.S.); (M.L.G.); (L.C.-F.)
| | - Jefferson Alessandro Schmitz
- Departamento de Tecnologia, Universidade Estadual de Maringá (UEM), Av. Angelo Moreira da Fonseca 1800, Umuarama 87506-370, PR, Brazil; (J.A.S.J.); (B.C.B.B.)
| | - Djéssica Tatiane Raspe
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (D.T.R.); (N.S.); (M.L.G.); (L.C.-F.)
| | - Natália Stevanato
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (D.T.R.); (N.S.); (M.L.G.); (L.C.-F.)
| | - Jaqueline Hoscheid
- Programa de Mestrado Profissional em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense, Umuarama 87502-210, PR, Brazil;
| | - Marcelino Luiz Gimenes
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (D.T.R.); (N.S.); (M.L.G.); (L.C.-F.)
| | - Beatriz Cervejeira Bolanho Barros
- Departamento de Tecnologia, Universidade Estadual de Maringá (UEM), Av. Angelo Moreira da Fonseca 1800, Umuarama 87506-370, PR, Brazil; (J.A.S.J.); (B.C.B.B.)
| | - Lúcio Cardozo-Filho
- Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá 87020-900, PR, Brazil; (D.T.R.); (N.S.); (M.L.G.); (L.C.-F.)
| |
Collapse
|
3
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
4
|
Hachemaoui S, Ardjani TEA, Brahim H, Alvarez-Idaboy JR. Radical scavenging activity of bromophenol analogs: analysis of kinetics and mechanisms. J Mol Model 2024; 30:205. [PMID: 38867098 DOI: 10.1007/s00894-024-06010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
CONTEXT This theoretical study explores the antioxidant activity of five bromophenol analogs, with a particular focus on their interaction with different solvent environments of varying polarities. Key findings include the correlation between increased solvent polarity and enhanced antioxidant activity of these analogs, comparable in some instances to ascorbic acid. Notably, compound 5, developed by our research team, demonstrates superior antioxidant activity in both lipid and aqueous solutions, surpassing that of ascorbic acid and other tested analogs. This research contributes to the understanding of bromophenol analogs, presenting the first known kinetic and chemical stability data such as rate constants, pKa values, and branching ratios for reactions with the methylperoxyl radical (CH3OO•). METHODS The computational analyses were conducted using the Gaussian 09 software suite at the M05-2X/6-31 + G(d) computational level. These analyses employed conventional transition state theory to account for various potential mechanisms and effects of solvent polarity on the antioxidant activities of bromophenol analogs. The study meticulously calculated enthalpy under standard conditions (298.15 K and 1 atm) with necessary thermodynamic corrections. Additionally, the Quantum Mechanics-based Test for Overall Radical Scavenging Activity (QMORSA) protocol guided the evaluation of radical scavenging activity, ensuring a comprehensive assessment of the antioxidant potential of the compounds.
Collapse
Affiliation(s)
- Slemet Hachemaoui
- Chemistry Laboratory: Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Dr. MoulayTahar, 20000, Saïda, Algeria
| | - Taki Eddine Ahmed Ardjani
- Chemistry Laboratory: Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Dr. MoulayTahar, 20000, Saïda, Algeria.
| | - Houari Brahim
- Chemistry Laboratory: Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Dr. MoulayTahar, 20000, Saïda, Algeria
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teorica, Universidad Nacional Autonoma de Mexico, D.F.04510, Mexico, Mexico
| |
Collapse
|
5
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
6
|
Ardjani TEA, Daoudi S, Benaissa MR, Alvarez-Idaboy JR. Strategic design, theoretical insights, synthesis, and unveiling antioxidant potential in a novel ascorbic acid analog. J Mol Model 2024; 30:141. [PMID: 38639786 DOI: 10.1007/s00894-024-05942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT In this study, we investigated the antioxidant potential of a novel ascorbic acid analog, DsD, assessing its interactions with the methylperoxyl (CH3OO·) radical in aqueous and lipid environments. Our focus was on understanding the acid-base equilibrium and how pH affects DsD's primary reaction mechanisms. Our findings indicate a marked preference for hydrogen atom transfer in lipid media, contrasting with sequential proton loss electron transfer (SPLET) in aqueous solutions. Remarkably, DsD's radical scavenging activity significantly outperforms ascorbic acid, being 4.05 and 9469.70 times more potent in polar and lipid contexts, respectively. This suggests DsD's superior efficacy as an antioxidant, potentially offering enhanced protection in biological systems. Additionally, we have demonstrated DsD's synthetic feasibility through a straightforward condensation reaction between ascorbic acid and 1,2-diaminoethane, followed by comprehensive physicochemical and spectroscopic characterization. METHODS All computational analyses in this study were conducted using the Gaussian 09 software suite, employing the M05-2X functional and the 6-31 + G(d) basis set. Enthalpy calculations were executed under standard conditions (298.15 K and 1 atm), incorporating appropriate thermodynamic corrections. Rate constants were evaluated using transition state theory (TST), and the overall assessment of radical scavenging activity was guided by the Quantum Mechanics-based Test for Overall Radical Scavenging Activity (QMORSA) protocol.
Collapse
Affiliation(s)
- Taki Eddine Ahmed Ardjani
- Chemistry Laboratory: Synthesis, Properties and Applications, University, Dr. MoulayTahar, 20000, Saïda, Algeria.
| | - Sofiane Daoudi
- Physical Chemistry Studies Laboratory, University, Dr. MoulayTahar, 20000, Saïda, Algeria
| | - Mohamed Rafik Benaissa
- Physical Chemistry Studies Laboratory, University, Dr. MoulayTahar, 20000, Saïda, Algeria
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teorica, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico
| |
Collapse
|
7
|
Rusdipoetra RA, Suwito H, Puspaningsih NNT, Haq KU. Theoretical insight of reactive oxygen species scavenging mechanism in lignin waste depolymerization products. RSC Adv 2024; 14:6310-6323. [PMID: 38380240 PMCID: PMC10877321 DOI: 10.1039/d3ra08346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Apart from natural products and synthesis, phenolic compounds can be produced from the depolymerization of lignin, a major waste in biofuel and paper production. This process yields a plethora of aryl propanoid phenolic derivatives with broad biological activities, especially antioxidant properties. Due to its versatility, our study focuses on investigating the antioxidant mechanisms of several phenolic compounds obtained from renewable and abundant resources, namely, syringol (Hs), 4-allylsyringol (HAs), 4-propenylsyringol (HPns), and 4-propylsyringol (HPs). Employing the density functional theory (DFT) approach in conjunction with the QM-ORSA protocol, we aim to explore the reactivity of these compounds in neutralizing hydroperoxyl radicals in physiological and non-polar media. Kinetic and thermodynamic parameter calculations on the antioxidant activity of these compounds were also included in this study. Additionally, our research utilizes the activation strain model (ASM) for the first time to explain the reactivity of the HT and RAF mechanisms in the peroxyl radical scavenging process. It is predicted that HPs has the best rate constant in both media (1.13 × 108 M-1 s-1 and 1.75 × 108 M-1 s-1, respectively). Through ASM analysis, it is observed that the increase in the interaction energy due to the formation of intermolecular hydrogen bonds during the reaction is an important feature for accelerating the hydrogen transfer process. Furthermore, by examining the physicochemical and toxicity parameters, only Hs is not suitable for further investigation as a therapeutic agent because of potential toxicity and mutagenicity. However, overall, all compounds are considered potent HOO˙ scavengers in lipid-rich environments compared to previously studied antioxidants.
Collapse
Affiliation(s)
- Rahmanto Aryabraga Rusdipoetra
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Proteomic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Kautsar Ul Haq
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| |
Collapse
|
8
|
Bay MV, Nam PC, Hoa NT, Mechler A, Vo QV. Antiradical Activity of Lignans from Cleistanthus sumatranus: Theoretical Insights into the Mechanism, Kinetics, and Solvent Effects. ACS OMEGA 2023; 8:38668-38675. [PMID: 37867707 PMCID: PMC10586290 DOI: 10.1021/acsomega.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Sumatranus lignans (SL) isolated from Cleistanthus sumatranus have demonstrated bioactivities, e.g., they were shown to exhibit immunosuppressive properties in previous research. Their structure suggests potential antioxidant activity that has not attracted any attention thus far. Consistently, a comprehensive analysis of the antioxidant activity of these compounds is highly desirable with the view of prospective medical applications. In this work, the mechanism and kinetics of the antiradical properties of SL against hydroperoxyl radicals were studied by using calculations based on density functional theory (DFT). In the lipid medium, it was discovered that SL reacted with HOO• through the formal hydrogen transfer mechanism with a rate constant of 101-105 M-1 s-1, whereas in aqueous media, the activity primarily occurred through the sequential proton loss electron transfer mechanism with rate constants of 102-108 M-1 s-1. In both lipidic and aqueous environments, the antiradical activity of compounds 6 and 7 exceeds that of resveratrol, ascorbic acid, and Trolox. These substances are therefore predicted to be good radical scavengers in physiological environments.
Collapse
Affiliation(s)
- Mai Van Bay
- The
University of Danang - University of Science and Education, Danang 550000, Vietnam
| | - Pham Cam Nam
- The
University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Nguyen Thi Hoa
- The
University of Danang - University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department
of Biochemistry and Chemistry, La Trobe
University, Victoria 3086, Australia
| | - Quan V. Vo
- The
University of Danang - University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
9
|
Cadenillas LF, Hernandez C, Bailly S, Billerach G, Durrieu V, Bailly JD. Role of Polyphenols from the Aqueous Extract of Aloysia citrodora in the Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus. Molecules 2023; 28:5123. [PMID: 37446789 DOI: 10.3390/molecules28135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin considered a potent carcinogen for humans that contaminates a wide range of crops. Various strategies have been established to reduce or block the synthesis of AFB1 in food and feed. The use of aqueous extracts derived from plants with high antioxidant activity has been a subject of study in recent years due to their efficacy in inhibiting AFB1. In this study, we assessed the effect of Aloysia citrodora aqueous extract on Aspergillus flavus growth and on AFB1 production. A bio-guided fractionation followed by High Performance Liquid Chromatography (HPLC) and Mass spectrometry analysis of the active fraction were applied to identify the candidate molecules responsible for the dose-effect inhibition of AFB1 synthesis. Our results revealed that polyphenols are the molecules implicated in AFB1 inhibition, achieving almost a total inhibition of the toxin production (99%). We identified luteolin-7-diglucuronide as one of the main constituents in A. citrodora extract, and demonstrated that it is able to inhibit, by itself, AFB1 production by 57%. This is the first study demonstrating the anti-Aflatoxin B1 effect of this molecule, while other polyphenols surely intervene in A. citrodora anti-AFB1 activity.
Collapse
Affiliation(s)
- Laura F Cadenillas
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Christopher Hernandez
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | | | - Guillaume Billerach
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- UMR 1208 IATE Ingénierie des Agropolymères et Technologies Émergentes, INRAE, Institut Agro, Université de Montpellier, 2 Place Viala, 34060 Montpellier, France
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, CEDEX, 31076 Toulouse, France
| |
Collapse
|
10
|
In Silico and In Vitro Study of Antioxidant Potential of Urolithins. Antioxidants (Basel) 2023; 12:antiox12030697. [PMID: 36978945 PMCID: PMC10045577 DOI: 10.3390/antiox12030697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In this work, quantum chemical calculations based on density functional theory (DFT) were performed to predict the antioxidant potential of four bioactive gut microbiota metabolites of the natural polyphenols ellagitannins (ETs) and ellagic acid (EA), also known as urolithins (UROs). In order to evaluate their ability to counter the effect of oxidative stress caused by reactive oxygen species (ROS), such as the hydroperoxyl radical (•OOH), different reaction mechanisms were investigated, considering water and lipid-like environments. Through our in silico results, it emerged that at physiological pH, the scavenging activity of all urolithins, except urolithin B, are higher than that of trolox and other potent antioxidants existing in nature, such as EA, α-mangostin, allicin, caffeine and melatonin. These findings were confirmed by experimental assays.
Collapse
|
11
|
Ojeda-Hernández DD, Vega-Rodríguez AD, Asaff-Torres A, Mateos-Díaz JC. Screening, synthesis optimization, and scaling-up of phytopathogen antifungals derived from natural hydroxycinnamic acids. 3 Biotech 2023; 13:13. [PMID: 36540412 PMCID: PMC9759605 DOI: 10.1007/s13205-022-03425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
A simple screening methodology was employed to correlate the structures of hydroxycinnamic acids (HCAs) and their esterified derivatives with their in vitro antifungal activity over Fusarium oxysporum f. sp. lycopersici. The antifungal activity of the tested HCAs, i.e., coumaric > ferulic > sinapinic > caffeic acid, was higher after esterification and when the coumaric acid hydroxyl group was at the ortho-position. This outcome was strengthened by the elongation of the alkyl chain to 4-carbons and, particularly, by the esterification with isobutyl alcohol. The highest antifungal activity was obtained from isobutyl o-coumarate (iBoC), which inhibits 70% of mycelial growth at 1.2 mM. Thereby, a heterogeneous catalysis strategy was optimized by using the response surface methodology. At the best conditions found, the synthesis of iBoC was scaled up to 15 g, achieving 96% conversion yield in 48 h in a stirred batch reactor. This study reveals for the first time the potential of iBoC to provide commercial materials as antifungal agents to control F. oxysporum and other phytopathogenic fungi. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03425-7.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Biotecnología Industrial, Zapopan, Jalisco México
| | - Ana Daniela Vega-Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Biotecnología Industrial, Zapopan, Jalisco México
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad de Biotecnología Industrial, Hermosillo, Sonora México
| | - Juan Carlos Mateos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Biotecnología Industrial, Zapopan, Jalisco México
| |
Collapse
|
12
|
Pérez-González A, Castañeda-Arriaga R, Guzmán-López EG, Hernández-Ayala LF, Galano A. Chalcone Derivatives with a High Potential as Multifunctional Antioxidant Neuroprotectors. ACS OMEGA 2022; 7:38254-38268. [PMID: 36340167 PMCID: PMC9631883 DOI: 10.1021/acsomega.2c05518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 05/28/2023]
Abstract
A systematic, rational search for chalcone derivatives with multifunctional behavior has been carried out, with the support of a computer-assisted protocol (CADMA-Chem). A total of 568 derivatives were constructed by incorporating functional groups into the chalcone structure. Selection scores were calculated from ADME properties, toxicity, and manufacturability descriptors. They were used to select a subset of molecules (23) with the best drug-like behavior. Reactivity indices were calculated for this subset. They were chosen to account for electron and hydrogen atom donating capabilities, which are key processes for antioxidant activity. The indexes showed that four chalcone derivatives (dCHA-279, dCHA-568, dCHA-553, and dCHA-283) are better electron and H donors than the parent molecule and some reference antioxidants (Trolox, ascorbic acid, and α-tocopherol). In addition, based on molecular docking, they are predicted to act as catechol-O-methyltransferase (COMT), acetylcholinesterase (AChE), and monoamine oxidase B (MAO-B) inhibitors. Therefore, these four molecules are proposed as promising candidates to act as multifunctional antioxidants with neuroprotective effects.
Collapse
Affiliation(s)
- Adriana Pérez-González
- CONACYT
- Universidad Autónoma Metropolitana - Iztapalapa Avenida Ferrocarril
San Rafael Atlixco, número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Romina Castañeda-Arriaga
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Eduardo Gabriel Guzmán-López
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Luis Felipe Hernández-Ayala
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| | - Annia Galano
- Departamento
de Química. Universidad Autónoma
Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, número 186, Colonia Leyes
de Reforma 1A Sección, Alcaldía
Iztapalapa, Código Postal 09310, Ciudad de México, México
| |
Collapse
|
13
|
Simulated Gastrointestinal Digestion of Bioprocessed Spelt Seeds: Bioaccessibility and Bioactivity of Phenolics. Antioxidants (Basel) 2022; 11:antiox11091703. [PMID: 36139778 PMCID: PMC9495461 DOI: 10.3390/antiox11091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this research was to evaluate the impact of different bioprocessing techniques on improved bioaccessibility of phenolics from spelt seeds. Despite the negative influence of gastrointestinal digestion, fermentation of germinated seeds significantly increased the bioaccessibility of total phenolics and their antioxidant activity compared to digested raw seeds. Enzymatic treated fermented seeds showed the highest relative bioaccessibility of p-coumaric and trans-ferulic acids, while their absolute contents were significantly higher in “germinated + fermented” seeds. Our research suggests that pretreatment of spelt seeds with hydrolytic enzymes improves access of fermenting microorganisms to structural elements, resulting in an increased content of extractable and bound trans-ferulic acid. Significantly higher biostability of phenolics was observed in raw seeds. Some major quality changes in the composition of extracts were observed under simulated in vitro digestion, since antioxidants of the same extract showed a different relative decrease in DPPH• and ABTS•+ scavenging activities compared to the raw seeds or their corresponding undigested counterparts. It is therefore important to increase the content of extractable antioxidants in seeds by bioprocessing, since they are strongly diminished during digestion.
Collapse
|
14
|
Wang C, Li J, Sun Y, Wang C, Guo M. Fabrication and characterization of a cannabidiol-loaded emulsion stabilized by a whey protein-maltodextrin conjugate and rosmarinic acid complex. J Dairy Sci 2022; 105:6431-6446. [PMID: 35688741 DOI: 10.3168/jds.2022-21862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2023]
Abstract
A cannabidiol (CBD)-loaded oil-in-water emulsion stabilized by a whey protein (WP)-maltodextrin (MD) conjugate and rosmarinic acid (RA) complex was fabricated, and its stability characteristics were investigated under various environmental conditions. The WP-MD conjugates were formed via dry-heating. The interaction between WP and MD was assessed by browning intensity, reduced amount of free amino groups, the formation of high molecular weight components in sodium dodecyl sulfate-PAGE, and changes in secondary structure of whey proteins. The WP-MD-RA noncovalent complex was prepared and confirmed by fluorescence quenching and Fourier-transform infrared spectroscopy spectra. Emulsions stabilized by WP, WP-MD, and WP-RA were used as references to evaluate the effect of WP-MD-RA as a novel emulsifier. Results showed that WP-MD-RA was an effective emulsifier to produce fine droplets for a CBD-loaded emulsion and remarkably improved the pH and salt stabilities of emulsions in comparison with WP. An emulsion prepared with WP-MD-RA showed the highest protection of CBD against UV and heat-induced degradation among all emulsions. The ternary complex kept emulsions in small particle size during storage at 4°C. Data from the current study may offer useful information for designing emulsion-based delivery systems which can protect active substance against environmental stresses.
Collapse
Affiliation(s)
- Ce Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ji Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yonghai Sun
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405; College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
16
|
Truong DH, Ngo TC, Nhung NTA, Quang DT, Nguyen TLA, Khiri D, Taamalli S, Louis F, El Bakali A, Dao DQ. New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid. RSC Adv 2022; 12:1499-1514. [PMID: 35425185 PMCID: PMC8978883 DOI: 10.1039/d1ra07599c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.84 × 103 M-1 s-1 (HOO˙) and 4.49 × 103 M-1 s-1 (CH3OO˙) in water. In contrast to PL, RAF and especially SET processes, the HAT reaction in PEA is slightly more favorable than that in water. Second, the [Fe(iii)(H2O)6]3+ and [Fe(ii)(H2O)6]2+ ion chelating processes in an aqueous phase are both favorable and spontaneous especially at the O5, site-1, and site-2 positions with large negative Δr G 0 values and great formation constant K f. Finally, the pro-oxidant risk of RA- was also considered via the Fe(iii)-to-Fe(ii) complex reduction process, which may initiate Fenton-like reactions forming reactive HO˙ radicals. As a result, RA- does not enhance the reduction process when ascorbate anions are present as reducing agents, whereas the pro-oxidant risk becomes remarkable when superoxide anions are found. The results encourage further attempts to verify the speculation using more powerful research implementations of the antioxidant activities of rosmarinic acid in relationship with its possible pro-oxidant risks.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Sciences, Hue University Hue 530000 Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Dorra Khiri
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Sonia Taamalli
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | - Florent Louis
- Department of Chemistry, University of Education, Hue University Hue 530000 Vietnam
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
17
|
Caligiuri R, Di Maio G, Godbert N, Scarpelli F, Candreva A, Rimoldi I, Facchetti G, Lupo MG, Sicilia E, Mazzone G, Ponte F, Romeo I, La Deda M, Crispini A, De Rose R, Aiello I. Curcumin-based ionic Pt( ii) complexes: antioxidant and antimicrobial activity. Dalton Trans 2022; 51:16545-16556. [DOI: 10.1039/d2dt01653b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new Pt(ii) ionic complexes assembled from N-donor ligands and curcumin display interesting antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Rossella Caligiuri
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Giuseppe Di Maio
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Nicolas Godbert
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Francesca Scarpelli
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Angela Candreva
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036 Arcavacata di Rende, CS, Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Giovanna Lupo
- Dipartimento di Medicina, Università degli Studi di Padova, 35128 Padova, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, 87036 Arcavacata di Rende, CS, Italy
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, 87036 Arcavacata di Rende, CS, Italy
| | - Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche, 87036 Arcavacata di Rende, CS, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Massimo La Deda
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036 Arcavacata di Rende, CS, Italy
| | - Alessandra Crispini
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Renata De Rose
- LAB CF-INABEC, Dipartimento di Chimica e Tecnologie Chimiche, 87036 Arcavacata di Rende, CS, Italy
| | - Iolinda Aiello
- MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
- CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
18
|
Duan Y, Ying Z, He F, Ying X, Jia L, Yang G. A new skeleton flavonoid and a new lignan from Portulaca oleracea L. and their activities. Fitoterapia 2021; 153:104993. [PMID: 34284073 DOI: 10.1016/j.fitote.2021.104993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/15/2022]
Abstract
A new skeleton flavonoid, identified as (5aR)-10-hydroxy-8-methoxy-5aH,11H-chromeno[2,3-b]chromen-11-one (1), named oleracone G, and a new lignan, confirmed as 8-(4-hydroxy-3-methoxyphenyl)-3-methoxynaphthalen-2-ol (2), named oleralignan B, were isolated from Portulaca oleracea L., and the structures of them were determined using spectroscopic methods including UV, IR, 1D NMR, 2D NMR, and UHPLC-ESI-QTOF/MS. In addition, compounds 1-2 were applied to investigate the anti-inflammatory activities on lipopolysaccharide-stimulated macrophages and scavenging effects in 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical. The results showed that the two compounds at 10 μM and 20 μM could dose-dependently decrease the secretion of interleukin 1β in RAW 264.7 cells by enzyme-linked immunosorbent assay, moreover, presented remarkable antioxidant activities with IC50 values of 27.57, 20.12 μM, respectively.
Collapse
Affiliation(s)
- Yang Duan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Fan He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, PR China.
| | - Lianqun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| |
Collapse
|
19
|
Ritacca AG, Ritacco I, Dabbish E, Russo N, Mazzone G, Sicilia E. A Boron-Containing Compound Acting on Multiple Targets Against Alzheimer's Disease. Insights from Ab Initio and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:3397-3410. [PMID: 34253017 DOI: 10.1021/acs.jcim.1c00262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given the multifactorial nature and pathogenesis of Alzheimer's disease, therapeutic strategies are addressed to combine the benefits of every single-target drug into a sole molecule. Quantum mechanics and molecular dynamics (MD) methods were employed here to investigate the multitarget action of a boron-containing compound against Alzheimer's disease. The antioxidant activity as a radical scavenger and metal chelator was explored by means of density functional theory. The most plausible radical scavenger mechanisms, which are hydrogen transfer, radical adduct formation, and single-electron transfer in aqueous and lipid environments, were fully examined. Metal chelation ability was investigated by considering the complexation of Cu(II) ion, one of the metals that in excess can even catalyze the β-amyloid (Aβ) aggregation. The most probable complexes in the physiological environment were identified by considering both the stabilization energy and the shift of the λmax induced by the complexation. The excellent capability to counteract Aβ aggregation was explored by performing MD simulations on protein-ligand adducts, and the activity was compared with that of curcumin, chosen as a reference.
Collapse
Affiliation(s)
- Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Ida Ritacco
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, 84084 Fisciano (SA), Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
20
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Farooq S, Abdullah, Zhang H, Weiss J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Compr Rev Food Sci Food Saf 2021; 20:4250-4277. [PMID: 34190411 DOI: 10.1111/1541-4337.12792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil-water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar-nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil-water interface for improved oxidative stability of emulsions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
22
|
Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Miesbauer O, Eisner P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021; 26:molecules26051244. [PMID: 33669139 PMCID: PMC7956415 DOI: 10.3390/molecules26051244] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Numerous assays were developed to measure the antioxidant activity, but each has limitations and the results obtained by different methods are not always comparable. Popular examples are the DPPH and ABTS assay. Our aim was to study similarities and differences of these two assay regarding the measured antioxidant potentials of 24 phenolic compounds using the same measurement and evaluation methods. This should allow conclusions to be drawn as to whether one of the assays is more suitable for measuring specific subgroups like phenolic acids, flavonols, flavanones, dihydrochalcones or flavanols. The assays showed common trends for the mean values of most of the subgroups. Some dihydrochalcones and flavanones did not react with the DPPH radical in contrast to the ABTS radical, leading to significant differences. Therefore, to determine the antioxidant potential of dihydrochalcone or flavanone-rich extracts, the ABTS assay should be preferred. We found that the results of the flavonoids in the DPPH assay were dependent on the Bors criteria, whereas the structure–activity relationship in the ABTS assay was not clear. For the phenolic acids, the results in the ABTS assay were only high for pyrogallol structures, while the DPPH assay was mainly determined by the number of OH groups.
Collapse
Affiliation(s)
- Melanie Platzer
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Correspondence:
| | - Sandra Kiese
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany;
| | - Thomas Herfellner
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| | - Ute Schweiggert-Weisz
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
- Chair of Food Science, Institute for Nutritional and Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53113 Bonn, Germany
| | - Oliver Miesbauer
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany;
| | - Peter Eisner
- ZIEL-Institute for Food & Health, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany;
- Fraunhofer Institue for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany; (S.K.); (T.H.); (U.S.-W.)
| |
Collapse
|
23
|
The effect of temperature on the phenolic content and oxidative stability of o/w emulsions enriched with natural extracts from Satureja thymbra. Food Chem 2021; 349:129206. [PMID: 33578245 DOI: 10.1016/j.foodchem.2021.129206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/13/2020] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
Sunflower oil-in-water emulsions were enriched with two Satureja thymbra extracts - obtained by ethyl acetate (EAcs) or ethanol (Es), rosmarinic acid (RA), or quercetin (Que), and the effect of storage temperature (5-40 °C) on the emulsions' phenolic content and oxidative stability was studied. HPLC analysis of the extracts indicated RA as the main component. The phenolic content of the emulsions decreased during storage, following first-order kinetics, with a temperature-dependent rate. RA was the main compound that decreased, Que followed a slower decrease and the rest flavonoids remained almost constant. The additives protected the emulsion against oxidation according to the order Es > Que > EAcs > RA. The protection factor ranged from 73 to 81% at 5 °C, but decreased to around 53% for Que and Es, 33% for EAcs, and 22% for RA at 40 °C. Emulsions enriched with extracts from S. thymbra retain their phenolic content and oxidative stability at refrigeration temperatures.
Collapse
|
24
|
Hoa NT, Van LTN, Vo QV. The radical scavenging activity of muriolide in physiological environments: mechanistic and kinetic insights into double processes. RSC Adv 2021; 11:33245-33252. [PMID: 35497565 PMCID: PMC9042307 DOI: 10.1039/d1ra06632c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
Muriolide, which is a natural lactone that was isolated from Ranunculus muricatus, is a promising natural radical scavenger in the physiological environment.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | | | - Quan V. Vo
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
25
|
The antioxidant capacity of an imidazole alkaloids family through single-electron transfer reactions. J Mol Model 2020; 26:321. [PMID: 33113023 DOI: 10.1007/s00894-020-04583-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The single-electron transfer (SET) reactions from the neutral and mono-anion species of five imidazole alkaloids (lepidines A, B, C, D, and E) against hydroperoxyl radicals have been studied using the density functional theory and the Marcus theory. The deprotonated species of three alkaloids were found to have free radical scavenging activity. The antioxidant activity was studied via single-electron transfer (SET) under physiological conditions. The SET reactions for lepidines B, D, and E were found to have rate constants ranging from 105 to 106 M-1 s-1. Therefore, they are predicted to be able to deactivate hydroperoxyl radicals and therefore the damage caused by them to polyunsaturated fatty acids. It is important to mention that the acid-base equilibrium plays an important role in their free radical scavenging activity. Graphical abstract Lepidines are predicted to be able to deactivate hydroperoxyl radicals and the damage caused by them to polyunsaturated fatty acids.
Collapse
|
26
|
Lin YS, Huang WY, Ho PY, Hu SY, Lin YY, Chen CY, Chang MY, Huang SL. Effects of Storage Time and Temperature on Antioxidants in Juice from Momordica charantia L. and Momordica charantia L. var. abbreviata Ser. Molecules 2020; 25:E3614. [PMID: 32784816 PMCID: PMC7464073 DOI: 10.3390/molecules25163614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/29/2023] Open
Abstract
This study determined the antioxidant activities of juice from Momordica charantia L. (MC) and MC var. abbreviata Ser. (MCVAS) by analyzing 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability, ferric reducing power (FRP), and total phenolic content (TPC). The effects of storage time and storage temperature on these antioxidant activities were investigated. Liquid chromatography-mass spectrometry was conducted to identify the major components of MC and MCVAS. The results revealed that the antioxidant activity of MCVAS was better than that of MC, possibly because of richer components of MCVAS. For MC and MCVAS, the scavenging concentrations of 50% DPPH were 3.33 and 1.19 mg/mL, respectively; moreover, the FRP values were 68.93 and 118.14 mg ascorbic acid equivalent/g dry weight, respectively; and the TPC values were 8.15 and 11.47 mg gallic acid equivalent/g dry weight, respectively. The antioxidant activities of MC and MCVAS decreased with storage time. High storage temperature decreased antioxidant activity more quickly than a low temperature. In addition, MC had exhibited a faster decline in DPPH scavenging ability and FRP than MCVAS during 24-day storage, but no difference was observed in TPC.
Collapse
Affiliation(s)
- Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 36063, Taiwan;
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Wen-Ying Huang
- Department of Applied Cosmetology, HungKuang University, Taichung 43302, Taiwan;
| | - Pang-Yen Ho
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
| | - Shiou-Yih Hu
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
| | - Ying-Yi Lin
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
| | - Cheng-You Chen
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 36063, Taiwan;
| | - Min-Yun Chang
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
| | - Shu-Ling Huang
- Department of Chemical Engineering, National United University, Miaoli 36063, Taiwan; (Y.-S.L.); (P.-Y.H.); (S.-Y.H.); (Y.-Y.L.); (M.-Y.C.)
- Ph.D. Program in Materials and Chemical Engineering, National United University, Miaoli 36063, Taiwan;
| |
Collapse
|
27
|
Romeo I, Parise A, Galano A, Russo N, Alvarez-Idaboy JR, Marino T. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants (Basel) 2020; 9:E358. [PMID: 32344940 PMCID: PMC7278810 DOI: 10.3390/antiox9050358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Density functional theory was employed to highlight the antioxidant working mechanism of higenamine in aqueous and lipid-like environments. Different reaction mechanisms were considered for the reaction of higenamine with the •OOH radical. The pH values and the molar fraction at physiological pH were determined in aqueous solution. The results show that the preferred reaction mechanism was the hydrogen atom transfer from the catecholic ring. The computed kinetic constants revealed that, in order to obtain reliable results, it is important to consider all the species present in water solution derived from acid-base equilibria. From the present investigation, it emerges that at physiological pH (7.4), the scavenging activity of higenamine against the •OOH radical is higher than that of Trolox, chosen as a reference antioxidant. Furthermore, higenamine results to be more efficient for that purpose than melatonin and caffeine, whose protective action against oxidative stress is frequently associated with their reactive oxygen species (ROS) scavenging activity.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| |
Collapse
|
28
|
Boulebd H, Tam NM, Mechler A, Vo QV. Substitution effects on the antiradical activity of hydralazine: a DFT analysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antioxidant activity of hydralazine derivatives in the gas-phase and in physiological environments were examined by thermodynamic and kinetic calculations.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest
- University of Frères Mentouri Constantine 1
- Constantine
- Algeria
| | - Nguyen Minh Tam
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | - Adam Mechler
- Department of Chemistry and Physics
- La Trobe University
- Victoria 3086
- Australia
| | - Quan V. Vo
- Institute of Research and Development
- Duy Tan University
- Danang 550000
- Vietnam
- The University of Danang-University of Technology and Education
| |
Collapse
|
29
|
Castañeda-Arriaga R, Marino T, Russo N, Alvarez-Idaboy JR, Galano A. Chalcogen effects on the primary antioxidant activity of chrysin and quercetin. NEW J CHEM 2020. [DOI: 10.1039/d0nj01795g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of chalcogens on the scavenging power of chrysin and quercetin antioxidants against peroxyl radicals has been investigated in lipid and aqueous solutions, using the density functional theory.
Collapse
Affiliation(s)
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche
- Universitàdella Calabria
- I-87036 Arcavacata di Rende
- Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Universitàdella Calabria
- I-87036 Arcavacata di Rende
- Italy
| | - J. Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- México
- Mexico
| |
Collapse
|
30
|
Carreon-Gonzalez M, Vivier-Bunge A, Alvarez-Idaboy JR. Thiophenols, Promising Scavengers of Peroxyl Radicals: Mechanisms and kinetics. J Comput Chem 2019; 40:2103-2110. [PMID: 31124582 DOI: 10.1002/jcc.25862] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
Abstract
The activity of 12 thiophenols as primary antioxidants in aqueous solution has been studied using density functional theory. Twelve different substituted thiophenols were tested as peroxyl radicals scavengers. Single electron transfer (SET) and formal hydrogen transfer (FHT) were investigated. The SET mechanism was found to be the main mechanism, with rate constants that are close to the diffusion limit, which means that these thiophenolic compounds have the capacity to scavenge peroxyl radicals before they can damage biomolecules. All 12 thiophenolic compounds react faster with methylperoxyl than with hydroperoxyl radicals. In addition, it was found that pH plays an important role in the reactivity of these compounds. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, 09340, Mexico
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
31
|
A stoichio-kinetic model for a DPPH∙ -ferulic acid reaction. Talanta 2019; 196:284-292. [DOI: 10.1016/j.talanta.2018.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/20/2022]
|
32
|
A Kinetic Approach of DPPH Free Radical Assay of Ferulate-Based Protic Ionic Liquids (PILs). Molecules 2018; 23:molecules23123201. [PMID: 30563037 PMCID: PMC6321392 DOI: 10.3390/molecules23123201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
The antiradical efficiency (AE) and kinetic behavior of a new ferulate-based protic ionic liquids (PILs) were described using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The reduction of the DPPH free radical (DPPH•) was investigated by measuring the decrease in absorbance at 517 nm. The time to reach steady state for the reaction of parent acid (ferulic acid) and synthesized PILs with DPPH• was continuously recorded for 1 h. Results revealed that the AE of 2-butylaminoethanol ferulate (2BAEF), 3-dimethylaminopropanol ferulate (3DMAPF) and 3-diethylaminopropanol ferulate (3DEAPF) PILs have improved compared to ferulic acid (FA) as the reaction class changes from low to medium. This attributed to the strong hydrogen abstraction occurred in the PILs. Furthermore, these PILs were found to have a good kinetic behavior compared to FA due to the high rate constant (k₂) (164.17, 242.84 and 244.73 M-1 s-1, respectively). The alkyl chain length and more alkyl substituents on the nitrogen atom of cation were believed to reduce the cation-anion interaction and speed up the hydrogen atom transfer (HAT) and electron transfer (ET) mechanisms; hence, increased rate constant was observed leading to a strong antioxidant activity of the synthesized PILs.
Collapse
|
33
|
Benbettaieb N, Nyagaya J, Seuvre AM, Debeaufort F. Antioxidant Activity and Release Kinetics of Caffeic and p-Coumaric Acids from Hydrocolloid-Based Active Films for Healthy Packaged Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6906-6916. [PMID: 29852064 DOI: 10.1021/acs.jafc.8b01846] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sustainable hydrocolloid-based films containing natural antioxidants, caffeic and p-coumaric acids at different concentrations of 0.5%, 1%, 5%, and 10% w/w of polymers, were designed for packing fatty foods. Antioxidant activities and kinetics for all film formulations were assessed using radical scavenging activity (DPPH), reducing power, and iron chelating ability. Release kinetics of the antioxidants from the films into a food simulant (96% ethanol) were analyzed. The intermolecular interactions between antioxidants and polymers chains were assessed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and related to the film properties. Antioxidant activity of pure compounds (powder), showed that caffeic acid (IC50 = 4 μg/mL) had higher activity than p-coumaric acid (IC50 = 33 μg/mL). Films containing caffeic acid exhibited higher antioxidant activity, reducing power, and iron chelating ability than p-coumaric acid films. The antioxidant activity is concentration dependent. However, the percentage of release (PR) in ethanol (96%) is not influenced by the initial concentration. PR is 88% ± 9% and 82% ± 5%, respectively, for caffeic and p-coumaric acids. Determination of the partition ( Kp) and the apparent diffusion ( D) coefficients allowed better characterization of the release kinetic mechanisms. The partition coefficients of caffeic acid ( Kp = 454) and p-coumaric acid ( Kp = 480) are not influenced by the initial concentration. The diffusion coefficients ( D) of caffeic and p-coumaric acids were of same order, but they slightly increased with the antioxidant concentration and probably related to antioxidant activity. FTIR displayed that amide B and amide-III are involved in the interactions occurring between polymer chains and antioxidants. However, interactions are of only low energy and unable to significantly affect the structure of films and consequently the release kinetics.
Collapse
Affiliation(s)
- Nasreddine Benbettaieb
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| | - James Nyagaya
- Department of Biosciences , Cork Institute of Technology , Rossa Av. , Bishopstown , Cork T12 P928 , Ireland
| | - Anne-Marie Seuvre
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| | - Frédéric Debeaufort
- Université Bourgogne Franche-Comté , AgroSup Dijon, PAM UMR A 02.102 , F-21000 Dijon , France
- Department of BioEngineering , IUT-Dijon-Auxerre , 7 Blvd. Docteur Petitjean , 20178 Cedex Dijon , France
| |
Collapse
|
34
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
35
|
|
36
|
Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chem 2018; 242:369-377. [DOI: 10.1016/j.foodchem.2017.09.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
|
37
|
Al Jitan S, Alkhoori SA, Yousef LF. Phenolic Acids From Plants: Extraction and Application to Human Health. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00013-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Reina M, Martínez A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Muszyńska B, Krakowska A, Lazur J, Jękot B, Zimmer Ł, Szewczyk A, Sułkowska-Ziaja K, Poleszak E, Opoka W. Bioaccessibility of phenolic compounds, lutein, and bioelements of preparations containing Chlorella vulgaris in artificial digestive juices. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1629-1640. [PMID: 29899597 PMCID: PMC5982441 DOI: 10.1007/s10811-017-1357-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Chlorella vulgaris Beijerinck is a spherical, green alga belonging to the genus Chlorella and family Chlorellaceae. It has high nutritional value and shows multiple biological effects. Dietary supplements that contain extracts of C. vulgaris are sold in the form of tablets, capsules, powders, and aqueous solutions. To the best of our knowledge, this is the first study to determine the content of bioelements (zinc, iron, and magnesium), phenolic compounds, and lutein before and after incubation with artificial digestive juices from preparations containing C. vulgaris. In this study, we used commercial preparations in the form of powder and tablets. The samples were incubated in artificial gastric juice and then in artificial intestinal juice for 30 and 90 min. The contents of bioelements were determined by using the flame atomic absorption spectrometric method. Lutein and phenolic compounds were analyzed by high-pressure liquid chromatography. We also aimed to evaluate the quality of chlorella-containing formulations by using the methods described in the European Pharmacopoeia 8th edition. According to the results, the preparations containing C. vulgaris demonstrated the presence of phenolic compounds and lutein. Therefore, daily supplementation of preparations containing C. vulgaris substantiates its usefulness for humans. The qualitative composition of the examined organic substances and bioelements was found to be in accordance with the manufacturer's declarations on the packaging containing C. vulgaris compared with the control samples; however, the contents of bioelements were found to be negligible after incubation with artificial digestive juices. This shows that the examined preparations containing C. vulgaris are not good sources of bioelements such as zinc, iron, or magnesium.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Agata Krakowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Jan Lazur
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Barbara Jękot
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Łukasz Zimmer
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Ewa Poleszak
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
40
|
Pérez-González A, Galano A, Alvarez-Idaboy JR, Tan DX, Reiter RJ. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:2206-2217. [DOI: 10.1016/j.bbagen.2017.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
|
41
|
Tsimogiannis D, Bimpilas A, Oreopoulou V. DPPH radical scavenging and mixture effects of plant o
-diphenols and essential oil constituents. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.2016003473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Andreas Bimpilas
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering; National Technical University of Athens; Athens Greece
| |
Collapse
|
42
|
Nićiforović N, Polak T, Makuc D, Poklar Ulrih N, Abramovič H. A Kinetic Approach in the Evaluation of Radical-Scavenging Efficiency of Sinapic Acid and Its Derivatives. Molecules 2017; 22:E375. [PMID: 28264523 PMCID: PMC6155229 DOI: 10.3390/molecules22030375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
A kinetic approach was used to determine the radical scavenging activities of sinapic acid and its derivatives: sinapine, 4-vinylsyringol, syringic acid, syringaldehyde, and ethyl, propyl and butyl sinapate. The responses were expressed as rates of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging (RS), superoxide radical (O₂˙-) scavenging (RFF), and β-carotene bleaching in the emulsion system (RB). For RS and RB, the esters of sinapic acid showed the highest responses while, for RFF, this was seen for syringic acid. The effectiveness of the selected compounds for scavenging these free radicals was also determined at a fixed endpoint. The early response parameters were demonstrated to be good discriminators in assessing differences for antioxidants with comparable fixed endpoint activity. The primary feature that ranks the kinetic data and the endpoint determinations is interpreted in terms of the mechanisms of the reactions involved in each of the assays conducted.
Collapse
Affiliation(s)
- Neda Nićiforović
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Tomaž Polak
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia.
| | | | - Helena Abramovič
- Biotechnical Faculty, University of Ljubljana, SI-1111 Ljubljana, Slovenia.
| |
Collapse
|
43
|
Hierarchical identification of bioactive components in a medicinal herb by preparative high-performance liquid chromatography and selective knock-out strategy. J Pharm Biomed Anal 2017; 135:206-216. [DOI: 10.1016/j.jpba.2016.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 11/21/2022]
|
44
|
Pérez-González A, Alvarez-Idaboy JR, Galano A. Dual antioxidant/pro-oxidant behavior of the tryptophan metabolite 3-hydroxyanthranilic acid: a theoretical investigation of reaction mechanisms and kinetics. NEW J CHEM 2017. [DOI: 10.1039/c6nj03980d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Potent antioxidant in the absence of metal ions, responsible for the activity usually attributed to tryptophan. Pro-oxidant in the presence of metal ions; this effect increases with the pH.
Collapse
Affiliation(s)
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- México D. F
- Mexico
| |
Collapse
|
45
|
Muszyńska B, Łojewski M, Sułkowska-Ziaja K, Szewczyk A, Gdula-Argasińska J, Hałaszuk P. In vitro cultures of Bacopa monnieri and an analysis of selected groups of biologically active metabolites in their biomass. PHARMACEUTICAL BIOLOGY 2016; 54:2443-2453. [PMID: 27046025 DOI: 10.3109/13880209.2016.1158843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Bacopa monnieri L. Pennell (Scrophulariaceae) is one of the most important plants in the system of Indian medicine (Ayurveda). OBJECTIVE This paper studies the optimal growth of B. monnieri for effective accumulation of metabolites. Biomass growth of this plant could be accomplished in liquid cultures on Murashige & Skoog medium. MATERIALS AND METHODS Powdered shoots of in vitro cultures of B. monnieri were extracted by methanol for indole compounds, phenolic compounds and bacosides for RP-HPLC analysis. Fatty acid analysis was performed via gas chromatography. Anti-inflammatory effect of B. monnieri extracts was evaluated in the A549 cells. COX-2 and cPGES expression was analyzed using Western blots. RESULTS l-Tryptophan and serotonin were found in biomass from in vitro cultures of B. monnieri on MS medium and in biomass from the MS mediums enriched with the different additions such as of 0.1 g/L magnesium sulphate, 0.1 g/L zinc hydroaspartate, 0.1 g/L l-tryptophan, 0.25 g/L serine, 0.5 g/L serine and 0.5 mg/L anthranilic acid. The content of l-tryptophan and serotonin compounds was significant in biomass from medium with the addition of 0.1 g/L zinc hydroaspartate (0.72 mg/g dry weight and 1.19, respectively). Phenolic compounds identified in biomass from the same variants of MS medium were chlorogenic acid (ranging from 0.20 to 0.70 mg/g dry weight), neochlorogenic acid (ranging from 0.11 to 0.40 mg/g dry weight) and caffeic acid (ranging from 0.01 to 0.04 mg/g dry weight). The main group of fatty acids in biomass was saturated fatty acids (53.4%). The predominant fatty acid was palmitic acid. A significant decrease of COX-2 and cPGES expression was observed in the A549 cells activated with LPS and treated with B. monnieri extracts. DISCUSSION AND CONCLUSIONS As far as we know, this is the first analysis of indole compounds and phenolic acids in this plant. The multi-therapeutic effect of B. monnieri is expressed by the activity of bacosides. Information about the presence of indole and phenolic compounds, and fatty acids in this plant is limited, but the content of these compounds might participate in the physiological activity of B. monnieri.
Collapse
Affiliation(s)
- Bożena Muszyńska
- a Department of Pharmaceutical Botany , Jagiellonian University Collegium Medicum , Kraków , Poland
| | - Maciej Łojewski
- a Department of Pharmaceutical Botany , Jagiellonian University Collegium Medicum , Kraków , Poland
| | | | - Agnieszka Szewczyk
- a Department of Pharmaceutical Botany , Jagiellonian University Collegium Medicum , Kraków , Poland
| | | | - Patrycja Hałaszuk
- a Department of Pharmaceutical Botany , Jagiellonian University Collegium Medicum , Kraków , Poland
| |
Collapse
|
46
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
47
|
Yao D, Wang Z, Miao L, Wang L. Effects of extracts and isolated compounds from safflower on some index of promoting blood circulation and regulating menstruation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:264-272. [PMID: 27286914 DOI: 10.1016/j.jep.2016.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/24/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carthamus tinctorius is used as one of the Traditional Chinese Medicine (TCM) materials in prescriptions and composite to promote blood circulation to remove blood stasis, regulate menstruation and alleviate pain for over 2500 years. Modern pharmacological experiments have demonstrated that safflower has wide-reaching biological activities, including dilating coronary artery, modulating immune system, improving myocardial ischemia, anticoagulation and thromboprophylaxis, antioxidation, antihypoxic, antiaging, antifatigue, antiinflammation, anti-hepatic fibrosis, antitumor, analgesia, etc. MATERIALS AND METHODS Platelet aggregation of safflower extract and main constituents in safflower were determined by PAF-induced or ADP-induced platelet aggregation in vitro. Anticoagulation activity was measured by clotting assay of thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) according to the methods provided by the biological reagents provider (Sun Biochemical). Antioxidant effects of safflower were assessed using DPPH radical-scavenging activity test, ABTS radical-scavenging activity test and ferric reducing antioxidant power test. In addition, rats ovary granulosa cell proliferation activity was used for the bio-activity index on regulate menstruation of safflower. RESULTS Safflower extract at the concentration of 0.7g/mL (P<0.001) and 0.5g/mL (P<0.01) had significantly antagonistic effect on PAF-induced platelet aggregation, compared with negative control. And the anti-platelet aggregation of 0.7g/mL safflower extract was significantly stronger than that of positive control (P<0.001). 0.7g/mL of hydroxysafflor yellow A (P<0.01), anhydrosafflor yellow B (P<0.05), 6-hydroxykaempferol-3-O-rutinoside (P<0.05), keampferol-3-O-β-rutinoside (P<0.01) had significant effect on platelet aggregation compared with negative control. Safflower extract at the concentration of 0.5g/mL (P<0.001) and 0.125g/mL (P<0.01) could significantly inhibit ADP-induced platelet aggregation, compared with negative control. And antagonistic effect of safflower extract was significantly stronger than the effect of positive control (P<0.001). Adenosine (P<0.001), anhydrosafflor yellow B (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.01) at the concentration of 0.5g/mL had significant effect on ADP-induced platelet aggregation compared with negative control. 0.125g/mL of adenosine (P<0.05) had significant effect on ADP-induced platelet aggregation compared with negative control. The effect of 0.5g/mL adenosine (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.05) was significantly stronger than that of positive control. Safflower extract at the concentration of 0.7mg/mL (P<0.001) and 0.5mg/mL (P<0.001) had significantly anticoagulation activity in PT, TT and APTT, compared with negative control. However, the respective compound didn't have significant effect on PT and TT at experiment concentration. At the concentration of 0.7mg/mL, hydroxysafflor yellow A (P<0.01), 6-hydroxykaempferol-3,6,7-tri-O-β-d-glucoside (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.01), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) significantly prolonged APTT, compared with negative control. At the concentration of 0.5mg/mL, hydroxysafflor yellow A (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.05), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) could significantly prolong APTT, compared with negative control. From the results of DPPH, ABTS radical scavenging activity test and Fe(3+) reduction power test, 5mg/mL, 2.5mg/mL and 1.25mg/mL safflower extract had antioxidant effects. Every compound with each concentration (5mg/mL, 2.5mg/mL and 1.25mg/mL) had significant effect on Fe(3+) reduction power (P<0.001 vs. negative control). Safflower extract, cytidine, 6-hydroxy-kaempferol-3,6-di-O-β-d-glucoside-7-O-β-d-glucuronide, 6-hydroxykaemp-ferol-3,6,7-tri-O-β-D-glucoside and keampferol-3-O-β-rutinoside significantly promoted ovarian granulosa cell proliferation. CONCLUSION Based on previous researches, the activities of safflower extract and pure compounds isolated from safflower were studied in this paper. This study found some compounds with the effects of anti-platelet aggregation, anticoagulation, antioxidation and ovarian granulosa cell proliferation, and further revealed the possible pharmacological mechanism of safflower.
Collapse
Affiliation(s)
- Dong Yao
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Zheng Wang
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Li Miao
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Linyan Wang
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China.
| |
Collapse
|
48
|
Wen X, Zhu M, Hu R, Zhao J, Chen Z, Li J, Ni Y. Characterisation of seed oils from different grape cultivars grown in China. Journal of Food Science and Technology 2016; 53:3129-3136. [PMID: 27765984 DOI: 10.1007/s13197-016-2286-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
To explore the potential of the large amount of grape pomace in wineries of China, oils of three Eurasian grape cultivars (Chardonnay, Merlot and Carbernet Sauvignon) and two Chinese traditional grape cultivars (Vitis amurensis and Vitis davidii), were characterised. The results showed seed oil properties differ for various grape varities. Grape seed oils were demonstrated to be good sources of polyunsaturated fatty acid (PUFA) (63.88-77.12 %), sterols (227.99-338.83 mg/100 g oil) and tocotrienols (320.08-679.24 mg/kg oil). Seed oil of V. amurensis exhibited the highest values of polyunsaturated fatty acid, total tocotrienols, total tocols and DPPH· scavenging capacity. Seed oil of Carbernet Sauvignon had the highest contents of squalene, total sterols, total tocopherols and total phenolics. Principal component analysis five grape cultivars differentiated on the basis of bioactive components content and antioxidant properties.
Collapse
Affiliation(s)
- Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing, 100083 China ; National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083 China ; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, 100083 China
| | - Minghui Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing, 100083 China ; National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083 China ; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, 100083 China
| | - Rui Hu
- Food and Drug Administration of Beijing, Xicheng District, Beijing, 100033 China
| | - Jinhong Zhao
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ziye Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing, 100083 China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing, 100083 China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing, 100083 China ; National Engineering Research Centre for Fruit and Vegetable Processing, Beijing, 100083 China ; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, 100083 China
| |
Collapse
|
49
|
Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N. Coumarin-Chalcone Hybrids as Peroxyl Radical Scavengers: Kinetics and Mechanisms. J Chem Inf Model 2016; 56:662-70. [PMID: 26998844 DOI: 10.1021/acs.jcim.6b00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary antioxidant activity of coumarin-chalcone hybrids has been investigated using the density functional and the conventional transition state theories. Their peroxyl radical scavenging ability was studied in solvents of different polarity and taking into account different reaction mechanisms. It was found that the activity of the hybrids increases with the polarity of the environment and the number of phenolic sites. In addition, their peroxyl radical scavenging activity is larger than those of the corresponding nonhybrid coumarin and chalcone molecules. This finding is in line with previous experimental evidence. All the investigated molecules were found to react faster than Trolox with (•)OOH, regardless of the polarity of the environment. The role of deprotonation on the overall activity of the studied compounds was assessed. The rate constants and branching ratios for the reactions of all the studied compounds with (•)OOH are reported for the first time.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C. P. 09340 México, D. F. México
| | - Juan R Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México DF 04510, México
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria , I-87036 Arcavacata di Rende, Italy
| |
Collapse
|
50
|
Wang LY, Tang YP, Liu X, Zhu M, Tao WW, Li WX, Duan JA. Effects of ferulic acid on antioxidant activity in Angelicae Sinensis Radix, Chuanxiong Rhizoma, and their combination. Chin J Nat Med 2016; 13:401-8. [PMID: 26073335 DOI: 10.1016/s1875-5364(15)30032-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 11/18/2022]
Abstract
The present study aimed at exploring different roles of the same compound in different environment, using preparative HPLC, and the significance to investigating bio-active constituents in traditional Chinese medicine (TCM) on the basis of holism. In this study, the depletion of target component ferulic acid (FA) by using preparative HPLC followed by antioxidant activity testing was applied to investigate the roles of FA in Angelicae Sinensis Radix (DG), Chuanxiong Rhizoma (CX) and their combination (GX). The antioxidant activity was performed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity testing. FA was successfully and exclusively depleted from DG, CX, and GX, respectively. By comparing the effects of the samples, it was found that FA was one of the main antioxidant constituents in DG, CX and GX, and the roles of FA were DG > CX > GX. Furthermore, the effects of FA varied at different doses in these herbs. This study provided a reliable and effective approach to clarifying the contribution of same compound in different TCMs to their bio-activities. The role of a constituent in different TCMs might be different, and a component with the same content might have different effects in different chemical environments. Furthermore, this study also suggested the potential utilization of preparative HPLC in the characterization of the roles of multi-ingredients in TCM.
Collapse
Affiliation(s)
- Lin-Yan Wang
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Ping Tang
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China.
| | - Xin Liu
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Min Zhu
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Wei-Wei Tao
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Wei-Xia Li
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| | - Jin-Ao Duan
- Jingjiang Hospital of Traditional Chinese Medicine, Jingjiang 214500, China
| |
Collapse
|