1
|
Gao Q, Liu X, Shi J, Li L, Sun B. Polyphenols in different parts of Moringa oleifera Lam.: Composition, antioxidant and neuroprotective potential. Food Chem 2025; 475:143207. [PMID: 39954645 DOI: 10.1016/j.foodchem.2025.143207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Moringa oleifera Lam. (M. oleifera L.), a widely distributed tropical tree, is well-known for its rich polyphenolic content, which underlies its diverse biological activities. This study employed Q-Exactive Orbitrap/MS and Triple Quadrupole UPLC-MS to systematically analyze the phenolic composition in four parts of M. oleifera L.: leaves, flowers, seeds, and stems. Various polar fractions were obtained using solid-phase extraction, and their antioxidant activities were assessed using DPPH, ABTS, and FRAP assays. Additionally, the neuroprotective potential was evaluated in vitro using a hydrogen peroxide-induced PC-12 cell model. In total, 105 phenolic compounds and 61 other compounds were identified, with 59 compounds being characterized for the first time in M. oleifera L.. The phenolic composition of the leaves, flowers, and stems was primarily composed of flavonols and phenolic acids, while the seeds were predominantly composed of phenolic acids. Polyphenol content was highest in the leaves and stems, and lowest in the seeds. All extracts and fractions demonstrated significant antioxidant and neuroprotective activities, with the strongest effects observed in the leaves and in the ethyl ether and ethyl acetate-eluting fractions from all plant parts. These findings provide a comprehensive understanding of the phenolic profile of different parts of M. oleifera L., highlight novel polyphenolic compounds, and offer insights into their potential therapeutic applications.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiafan Shi
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Pólo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos 2565-191, Portugal.
| |
Collapse
|
2
|
Miao S, Wei Y, Chen J, Wei X. Extraction methods, physiological activities and high value applications of tea residue and its active components: a review. Crit Rev Food Sci Nutr 2023; 63:12150-12168. [PMID: 35833478 DOI: 10.1080/10408398.2022.2099343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tea is a traditional plant beverage originating from China as one of the most popular beverages worldwide, which has been an important companion in modern society. Nevertheless, as the waste after tea processing, tea residues from agriculture, industry and kitchen waste are discarded in large quantities, resulting in waste of resources and environmental pollution. In recent years, the comprehensive utilization of tea residue resources has attracted people's attention. The bioactive components remaining in tea residues demonstrate a variety of health benefits and can be recycled using advanced extraction processes. Furthermore, researchers have been devoted to converting tea residues into derivatives such as biosorbents, agricultural compost, and animal feeds through thermochemical techniques and biotechnology. This review summarized the chemical composition and physiological activities of bioactive components from tea residue. The extraction methods of bioactive components in tea residue were elucidated and the main high-value applications of tea residues were proposed. On this basis, the utilization of tea residues can be developed from a single way to a multi-channel or cascade way to improve its economic efficiency. Novel applications of tea residues in different fields, including food development, environmental remediation, energy production and composite materials, are of far-reaching significance. This review aims to provide new insights into developing the utilization of tea residue using a comprehensive strategy and exploring the mechanism of active components from tea residue on human health and their potential applications in different areas.HighlightsThe composition and function of tea residue active components were introduced.The extraction methods of active components from tea residue were proposed.The main high-value applications of tea residues were summarized.The current limitations and future directions of tea residue utilization were concluded.
Collapse
Affiliation(s)
- Siwei Miao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
3
|
Processing Technologies for the Extraction of Value-Added Bioactive Compounds from Tea. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Adeeyo AO, Oyetade JA, Alabi MA, Adeeyo RO, Samie A, Makungo R. Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches. RSC Adv 2023; 13:6808-6826. [PMID: 36865581 PMCID: PMC9972008 DOI: 10.1039/d2ra06596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The environmental impact and denaturing propensity of organic solvents in the extraction of plant bioactives pose great challenges in extraction systems. As a result, proactive consideration of procedures and evidence for tuning water properties for better recovery and positive influence on the green synthesis of products become pivotal. The conventional maceration approach takes a longer duration (1-72 h) for product recovery while percolation, distillation, and Soxhlet extractions take about 1 to 6 h. An intensified modern hydro-extraction process was identified for tuning water properties with an appreciable yield similar to organic solvents within 10-15 min. The percentage yield of tuned hydro-solvents achieved close to 90% recovery of active metabolites. The additional advantage of using tuned water over organic solvents is in the preservation of the bio-activities and forestalling the possibility of contamination of the bio-matrices during extractions with an organic solvent. This advantage is based on the fast extraction rate and selectivity of the tuned solvent when compared to the traditional approach. This review uniquely approaches the study of biometabolite recovery through insights from the chemistry of water under different extraction techniques for the very first time. Current challenges and prospects from the study are further presented.
Collapse
Affiliation(s)
- A O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
- Aqua Plantae Research Group, University of Venda Thohoyandou 0950 South Africa
| | - J A Oyetade
- Material Science and Engineering, School of Materials, Water, Energy and Environmental Science, Nelson Mandela African Institution of Science and Technology Arusha Tanzania
| | - M A Alabi
- Department of Microbiology, School of Life Sciences, Federal University of Technology Akure Nigeria
| | - R O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - A Samie
- Department of Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - R Makungo
- Department of Earth Science, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
5
|
Wang M, Lu Y, Yang Y, Yu J, Chen Y, Tu F, Hou J, Yang Z, Jiang X. Source identification of vanillin in sesame oil by HPLC-MS/MS. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Caudill M, Osborne J, Sandeep K, Simunovic J, Harris GK. Viability of microwave technology for accelerated cold brew coffee processing vs conventional brewing methods. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
8
|
Macias-Garbett R, Serna-Hernández SO, Sosa-Hernández JE, Parra-Saldívar R. Phenolic Compounds From Brewer's Spent Grains: Toward Green Recovery Methods and Applications in the Cosmetic Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brewers' spent grain (BSG) is the main by-product derived from the brewing industry, where it accounts for 85% of the total waste generated. The total annual production worldwide of this waste is 39 million tons. This lignocellulosic material is traditionally used as cattle feed and sold at a low retail price (~USD 45.00 per ton). However, efforts for the revalorization of this by-product are emerging since research has established that it can be used as a low-cost source of bioactive molecules and commodity chemicals that can bring value to integral biorefinery ventures. Among commodities, phenolic compounds have attracted attention as added-value products due to their antioxidant properties with applications in the food, cosmetic, and pharmaceutical industries. These phytochemicals have been associated with antiaging and anticancer activities that have potential applications on cosmetic products. This mini-review summarizes the most relevant extraction techniques used for the recovery of phenolic compounds from BSG while discussing their advantages and shortcomings and the potential applications from BSG bioactive extracts in the cosmetic industry and their reported beneficial effects. This mini-review also makes a brief comment on the role of phenolic compounds extraction in the economic feasibility of an integral BSG biorefinery.
Collapse
|
9
|
Durak H, Genel S. Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. BIORESOURCE TECHNOLOGY 2020; 309:123375. [PMID: 32315912 DOI: 10.1016/j.biortech.2020.123375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, lignocellulosic biomass was converted into liquid products by catalytic hydrothermal liquefaction. Zn, Fe, and Zn + Fe were used to obtaining products with high energy value as heterogeneous catalyst systems in this study. The different experimental parameters were used to examine temperature (220, 240, 260, 280, 300 °C), reaction time (0, 5, 10, 15, 20, 30 min.), and the synergistic effect of catalysts (Zn + Fe) on conversion rate. The products obtained were examined by GC-MS, Elemental, FT-IR, 1H NMR, SEM-EDX, and XRD analysis methods. According to the results of the experiment, it has been determined that Fe is the most effective catalyst for light bio-oil and heavy bio-oil yields and Zn + Fe is the most effective catalyst system for the gas + aqueous phase products. Fe catalyst in monoaromatics formation, Zn catalyst in polyaromatic and aliphatics compound formation, Zn + Fe catalyst system in oxygen compounds formation are effective.
Collapse
Affiliation(s)
- Halil Durak
- Van Yuzuncu Yil University, Vocational School of Health Services, 65080 Van, Turkey.
| | - Salih Genel
- Van Yuzuncu Yil University, Educational Faculty, 65080 Van, Turkey
| |
Collapse
|
10
|
Sanz V, Flórez-Fernández N, Domínguez H, Torres MD. Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zia S, Khan MR, Shabbir MA, Aslam Maan A, Khan MKI, Nadeem M, Khalil AA, Din A, Aadil RM. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1772283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sania Zia
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
12
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Abstract
Flavonoids are a group of plant constituents called phenolic compounds and correspond to the nonenergy part of the human diet. Flavonoids are found in vegetables, seeds, fruits, and beverages such as wine and beer. Over 7000 flavonoids have been identified and they have been considered substances with a beneficial action on human health, particularly of multiple positive effects because of their antioxidant and free radical scavenging action. Although several studies indicate that some flavonoids have provident actions, they occur only at high doses, confirming in most investigations the existence of anti-inflammatory effects, antiviral or anti-allergic, and their protective role against cardiovascular disease, cancer, and various pathologies. Flavonoids are generally removed by chemical methods using solvents and traditional processes, which besides being expensive, involve long periods of time and affect the bioactivity of such compounds. Recently, efforts to develop biotechnological strategies to reduce or eliminate the use of toxic solvents have been reported, reducing processing time and maintaining the bioactivity of the compounds. In this paper, we review, analyze, and discuss methodologies for biotechnological recovery/extraction of flavonoids from agro-industrial residues, describing the advances and challenges in the topic.
Collapse
|
14
|
Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 2020; 11:4853-4877. [DOI: 10.1039/d0fo00937g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agro-food industrial waste is currently being accumulated, pushing scientists to find recovery strategies to obtain bioactive compounds within a circular bioeconomy. Target phenolic compounds have shown market potential by means of optimization extraction techniques.
Collapse
Affiliation(s)
- C. Jimenez-Lopez
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Fraga-Corral
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Carpena
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - P. García-Oliveira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Echave
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - A. G. Pereira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. A. Prieto
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Simal-Gandara
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| |
Collapse
|
15
|
Sanz V, Flórez-Fernández N, Domínguez H, Torres MD. Valorisation of Camellia sinensis branches as a raw product with green technology extraction methods. Curr Res Food Sci 2019; 2:20-24. [PMID: 32914107 PMCID: PMC7473358 DOI: 10.1016/j.crfs.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This work deals with the study of tea stalks from pruning debris using environmental friendly extraction technology to offer new healthy properties. In the manufacturing tea industry, tea trees require to be pruned every year and most of their remains are discarded as a waste with no economic value. Microwave aqueous extraction and pressurized hot water extraction process (autohydrolysis) were used to recover bioactive compounds from the tea branches. Operating at a fixed solid: liquid ratio (1:15), the effect of the maximum heating temperatures from 140 to 220 °C was studied. Liquid extracts were analysed for total phenolic, oligosaccharides, protein, mineral and heavy metals content, as well as for antioxidant capacity. The antitumoral possibilities were also determined for selected samples. The obtained results indicated that both processes could be used as an alternative to recover bioactive compounds from tea wastes, although microwave-assisted extraction allowed saving time when compared with autohydrolysis processing. The temperature exhibited a relevant effect on the total phenolic content and antioxidant capacity, decreasing with the microwave treatment and increasing with the autohydrolysis temperature. The obtained extracts could be adequate for incorporation in food and non-food fields. Tea pruning remains were valorised using green extractions by microwave (MW) and autohydolysis (AH). MW and AH were efficient technologies to recover bioactive compounds. Values above 40 mg gallic acid equivalents/g extract and 0.10 g Trolox/g extract were identified. Future applications in cosmetics, pharmacy or food industries should be explored.
Collapse
Affiliation(s)
- V Sanz
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - N Flórez-Fernández
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - H Domínguez
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - M D Torres
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| |
Collapse
|
16
|
Tsubaki S, Oono K, Onda A. Fractionation of plant-cuticle-based bio-oils by microwave-assisted methanolysis combined with hydrothermal pretreatment and enzymatic hydrolysis. Heliyon 2019; 5:e01887. [PMID: 31211264 PMCID: PMC6562327 DOI: 10.1016/j.heliyon.2019.e01887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/28/2022] Open
Abstract
Microwave-assisted methanolysis was performed to fractionate a mixture of fatty acid methyl-esters from the cuticles of various wild plants and agricultural wastes. A combination of hydrothermal pretreatment and enzymatic hydrolysis effectively removed hemicellulose and cellulose to afford plant cuticles concentrated in residual materials. The subsequent methanolysis treatment afforded bio-oil from plant cuticles in ∼10% yield with a maximum higher heating value (HHV) of 32 MJ kg-1 from bagasse. The proposed cascading treatments allow the total use of herbaceous soft biomass by utilizing hemicellulose and cellulose fractions as well as plant cuticles to produce bio-oils with high HHVs.
Collapse
Affiliation(s)
- Shuntaro Tsubaki
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1 E4-3, Meguro, Tokyo, 152-8550, Japan
| | - Kiriyo Oono
- Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Akebono-cho 2-5-1, Kochi, 780-8520, Japan
| | - Ayumu Onda
- Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Akebono-cho 2-5-1, Kochi, 780-8520, Japan
| |
Collapse
|
17
|
Zuin VG, Ramin LZ. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches. Top Curr Chem (Cham) 2018; 376:3. [PMID: 29344754 PMCID: PMC5772139 DOI: 10.1007/s41061-017-0182-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
New generations of biorefinery combine innovative biomass waste resources from different origins, chemical extraction and/or synthesis of biomaterials, biofuels, and bioenergy via green and sustainable processes. From the very beginning, identifying and evaluating all potentially high value-added chemicals that could be removed from available renewable feedstocks requires robust, efficient, selective, reproducible, and benign analytical approaches. With this in mind, green and sustainable separation of natural products from agro-industrial waste is clearly attractive considering both socio-environmental and economic aspects. In this paper, the concepts of green and sustainable separation of natural products will be discussed, highlighting the main studies conducted on this topic over the last 10 years. The principal analytical techniques (such as solvent, microwave, ultrasound, and supercritical treatments), by-products (e.g., citrus, coffee, corn, and sugarcane waste) and target compounds (polyphenols, proteins, essential oils, etc.) will be presented, including the emerging green and sustainable separation approaches towards bioeconomy and circular economy contexts.
Collapse
Affiliation(s)
- Vânia G Zuin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil.
- Green Chemistry Centre of Excellence, University of York, North Yorkshire, YO10 5DD, UK.
| | - Luize Z Ramin
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, km 235, São Carlos, 13565-905, Brazil
| |
Collapse
|
18
|
Wang X, Zeng Q, del Mar Contreras M, Wang L. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res Int 2017; 102:184-194. [DOI: 10.1016/j.foodres.2017.09.089] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/02/2023]
|
19
|
Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. PLANTS 2017; 6:plants6040042. [PMID: 28937585 PMCID: PMC5750618 DOI: 10.3390/plants6040042] [Citation(s) in RCA: 597] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
There are concerns about using synthetic phenolic antioxidants such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) as food additives because of the reported negative effects on human health. Thus, a replacement of these synthetics by antioxidant extractions from various foods has been proposed. More than 8000 different phenolic compounds have been characterized; fruits and vegetables are the prime sources of natural antioxidants. In order to extract, measure, and identify bioactive compounds from a wide variety of fruits and vegetables, researchers use multiple techniques and methods. This review includes a brief description of a wide range of different assays. The antioxidant, antimicrobial, and anticancer properties of phenolic natural products from fruits and vegetables are also discussed.
Collapse
Affiliation(s)
- Ammar Altemimi
- Department of Food Science, College of Agriculture, University of Al-Basrah, Basrah 61004, Iraq.
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - Azam Baharlouei
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - Dennis G Watson
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Plant Biotechnology and Genome Core-Facility, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA.
| |
Collapse
|
20
|
|
21
|
Ameer K, Shahbaz HM, Kwon JH. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr Rev Food Sci Food Saf 2017; 16:295-315. [PMID: 33371540 DOI: 10.1111/1541-4337.12253] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/01/2023]
Abstract
Polyphenols as phytochemicals have gained significant importance owing to several associated health benefits with regard to lifestyle diseases and oxidative stress. To date, the development of a single standard method for efficient and rapid extraction of polyphenols from plant matrices has remained a challenge due to the inherent limitations of various conventional extraction methods. The exploitation of polyphenols as bioactive compounds at various commercial levels has motivated scientists to explore more eco-friendly, efficient, and cost-effective extraction techniques, based on a green extraction approach. The current review aims to provide updated technical information about extraction mechanisms, their advantages and disadvantages, and factors affecting efficiencies, and also presents a comparative overview of applications of the following modern green extraction techniques-supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, and pressurized hot water extraction-as alternatives to conventional extraction methods for polyphenol extraction. These techniques are proving to be promising for the extraction of thermolabile phenolic compounds due to their advantages over conventional, time-consuming, and laborious extraction techniques, such as reduced solvent use and time and energy consumption and higher recovery rates with lower operational costs. The growing interest in plant-derived polyphenols prompts continual search for green and economically feasible modern extraction techniques. Modern green extraction techniques represent promising approaches by virtue of overcoming current limitations to the exploitation of polyphenols as bioactive compounds to explore their wide-reaching applications on an industrial scale and in emerging global markets. Future research is needed in order to remove the technical barriers to scale-up the processes for industrial needs by increasing our understanding and improving the design of modern extraction operations.
Collapse
Affiliation(s)
- Kashif Ameer
- School of Food Science & Biotechnology, Kyungpook Natl. Univ., Daegu, 41566, South Korea
| | - Hafiz Muhammad Shahbaz
- the Dept. of Biotechnology, Yonsei Univ., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Joong-Ho Kwon
- School of Food Science & Biotechnology, Kyungpook Natl. Univ., Daegu, 41566, South Korea
| |
Collapse
|
22
|
Sardarodiyan M, Mohamadi Sani A. Natural antioxidants: sources, extraction and application in food systems. ACTA ACUST UNITED AC 2016. [DOI: 10.1108/nfs-01-2016-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The study aims to describe the main classes of antioxidants existing in fruit, beverages, vegetables and herbs and the different extraction and application of antioxidants in food. Oxidative degradation of lipids, especially induced by reactive oxygen species, leads to quality deterioration of foods and cosmetics and could have harmful effects on health. A major challenge is to develop tools to assess the antioxidant capacity and real efficacy of these molecules. Recently, many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However, none of them has all the information regarding antioxidants (sources, extraction and application in food).
Design/methodology/approach
This paper tries to take a different perspective on antioxidants for the new researcher involved in this field.
Findings
Antioxidants from fruit, vegetables and beverages play an important role in human health, for example, preventing cancer and cardiovascular diseases and lowering the incidence of different diseases. A number of plant products act as scavengers of free radical species and so have been classified as antioxidants. Antioxidants are an important group of food additives that have the ability to protect against detrimental change of oxidizable nutrients and consequently they extend shelf-life of foods.
Research limitations/implications
Most of the antioxidants present in foods are phenolic and polyphenolic compounds, but their efficacy in food for the prevention of oxidation or in the body for dealing with oxidative stress and its consequences depends on different factors.
Originality/value
This study collected the last finding in the field of sources and applications of natural antioxidants.
Collapse
|
23
|
Talmaciu AI, Volf I, Popa VI. A Comparative Analysis of the ‘Green’ Techniques Applied for Polyphenols Extraction from Bioresources. Chem Biodivers 2015; 12:1635-51. [DOI: 10.1002/cbdv.201400415] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 01/23/2023]
|
24
|
Vali Aftari R, Rezaei K, Mortazavi A, Bandani AR. The Optimized Concentration and Purity of Spirulina platensis
C-Phycocyanin: A Comparative Study on Microwave-Assisted and Ultrasound-Assisted Extraction Methods. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12573] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robabeh Vali Aftari
- Department of Food Science and Technology; Faculty of Agriculture; Ferdowsi University of Mashhad; PO Box 91775-1163 Mashhad Iran
| | - Karamatollah Rezaei
- Departments of Food Science and Technology; Faculty of Agricultural Engineering and Technology; University of Tehran; Karaj Iran
| | - Ali Mortazavi
- Department of Food Science and Technology; Faculty of Agriculture; Ferdowsi University of Mashhad; PO Box 91775-1163 Mashhad Iran
| | - Ali Reza Bandani
- Plant Protection; University College of Agriculture and Natural Resources; University of Tehran; Karaj Iran
| |
Collapse
|
25
|
Oroian M, Escriche I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 2015; 74:10-36. [PMID: 28411973 DOI: 10.1016/j.foodres.2015.04.018] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 12/18/2022]
Abstract
Recently many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, for example preventing cancer and cardiovascular diseases, and lowering the incidence of different diseases. In this paper the main classes of antioxidants are presented: vitamins, carotenoids and polyphenols. Recently, many analytical methodologies involving diverse instrumental techniques have been developed for the extraction, separation, identification and quantification of these compounds. Antioxidants have been quantified by different researchers using one or more of these methods: in vivo, in vitro, electrochemical, chemiluminescent, electron spin resonance, chromatography, capillary electrophoresis, nuclear magnetic resonance, near infrared spectroscopy and mass spectrometry methods.
Collapse
Affiliation(s)
- Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania.
| | - Isabel Escriche
- Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
26
|
Galia A, Schiavo B, Antonetti C, Galletti AMR, Interrante L, Lessi M, Scialdone O, Valenti MG. Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:218. [PMID: 26697107 PMCID: PMC4687390 DOI: 10.1186/s13068-015-0398-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Autohydrolysis of lignocellulosic biomass in liquid hot water has been widely studied owing to its high efficiency and relatively low cost. In the perspective of industrial applications, continuous or semi-continuous processes are more interesting than batch systems. Moreover, microwave heating of pretreatment systems has been proposed to intensify the kinetics of the process. In this study, the autohydrolysis of Arundo donax was performed in pure liquid hot water using a microwave-heated batch reactor and a semi-continuous flow-through reaction system with fast heating rate at the same operating conditions with the aim of performing a systematic comparison between the two different experimental apparatuses. RESULTS The effect of process temperature and time, biomass to water mass to volume ratio and water flow rate on the concentration and yield of hydrolysis products was investigated. The flow-through set-up allowed us to reach biomass solubilization up to 44.5 wt% on dry basis, while the batch system stopped at 34.5 wt% suggesting that the mass transfer could be the rate-determining step in the solubilization of the constituting biopolymers. For example, in the flow-through layout, using a flow rate of 3.5 mL/min at 200 °C with 20 min of processing time, quantitative recovery of hemicellulose was obtained with limited formation of degradation products. Interestingly, higher cellulose/hemicellulose extraction ratios were found using the microwave-assisted batch reactor. FTIR analyses of the solid residues recovered after the pretreatment offered independent information on the fractions of liquefied biopolymers complementary to those derived from HPLC and UV-Vis spectroscopy. CONCLUSIONS Collected experimental results indicated that the flow-through system can be adopted to obtain complete solubilization of the hemicellulose fraction of Arundo donax addressing the product distribution in soluble compounds towards fermentable sugars with limited formation of sugar degradation products and with limited penalty in terms of dilution of the hydrolysate solution. It was also found that microwaves can promote cellulose depolymerization and solubilization, thus allowing a more comprehensive utilization of the biomass and that infrared spectroscopy can be a useful technique to estimate the effect of the pretreatment.
Collapse
Affiliation(s)
- Alessandro Galia
- />Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica and CIRCC, Università di Palermo, Viale delle Scienze-Ed. 6, 90128 Palermo, Italy
| | - Benedetto Schiavo
- />Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica and CIRCC, Università di Palermo, Viale delle Scienze-Ed. 6, 90128 Palermo, Italy
| | - Claudia Antonetti
- />Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, Via G. Moruzzi, 13, Pisa, Italy
| | | | - Leonardo Interrante
- />Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica and CIRCC, Università di Palermo, Viale delle Scienze-Ed. 6, 90128 Palermo, Italy
| | - Marco Lessi
- />Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, Via G. Moruzzi, 13, Pisa, Italy
| | - Onofrio Scialdone
- />Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica and CIRCC, Università di Palermo, Viale delle Scienze-Ed. 6, 90128 Palermo, Italy
| | - Maria Grazia Valenti
- />Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica and CIRCC, Università di Palermo, Viale delle Scienze-Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
27
|
Evaluating the Effectiveness of β-Carotene Extraction from Pulsed Electric Field-Treated Carrot Pomace Using Oil-in-Water Microemulsion. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1334-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Costa SS, Gariepy Y, Rocha SC, Raghavan V. Microwave extraction of mint essential oil – Temperature calibration for the oven. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Tsubaki S, Azuma JI. Total fractionation of green tea residue by microwave-assisted alkaline pretreatment and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2013; 131:485-91. [PMID: 23384782 DOI: 10.1016/j.biortech.2013.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/30/2012] [Accepted: 01/02/2013] [Indexed: 05/09/2023]
Abstract
Total refinery of constituents of green tea residue was achieved by combination of microwave-assisted alkaline pretreatment and enzymatic hydrolysis. Alkaline pretreatment was effective at separating pectic polysaccharides, protein, phenolic compounds and aliphatic compounds (probably originating from cuticular components), and the solubilization rate was attained 64–74% by heating at 120–200 °C. The higher heating value (HHV) of alkali-soluble fraction attained 20.1 MJ/kg, indicating its usability as black-liquor-like biofuel. Successive cellulolytic enzymatic hydrolysis mainly converted cellulose into glucose and attained the maximum solubilization rate of 89%. Final residue was predominantly composed of aliphatic cuticular components with high proportion in 9,10,18-trihydroxyoctadecanoic acid (30.1–48.6%). These cuticular components are potential alternative feedstock for aliphatic compounds commonly found in oil plants.
Collapse
Affiliation(s)
- Shuntaro Tsubaki
- Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
30
|
Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. Journal of Food Science and Technology 2012; 51:2776-82. [PMID: 25328225 DOI: 10.1007/s13197-012-0828-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
In this study, extraction of phenolic compounds from nettle by microwave and ultrasound was studied. In both microwave and ultrasound-assisted extractions, effects of extraction time (5-20 min for microwave; 5-30 min for ultrasound) and solid to solvent ratio (1:10, 1:20, and 1:30 g/mL) on total phenolic content (TPC) were investigated. Effects of different powers (50 % and 80 %) were also studied for ultrasound-assisted extraction. In microwave-assisted extraction, the optimum TPC of the extracts (24.64 ± 2.36 mg GAE/g dry material) was obtained in 10 min and at 1:30 solid to solvent ratio. For ultrasound-assisted extraction, the condition that gave the highest TPC (23.86 ± 1.92 mg GAE/g dry material) was 30 min, 1:30 solid to solvent ratio, and 80 % power. Extracts obtained at the optimum conditions of microwave and ultrasound were compared in terms of TPC, antioxidant activity (AA) and concentration of phenolic acids with conventional extraction and maceration, respectively. Microwave reduced extraction time by 67 %. AA of extracts varied between 2.95 ± 0.01 and 4.48 ± 0.03 mg DPPH/g dry material among four methods. Major phenolic compounds were determined as naringenin and chlorogenic acid in nettle.
Collapse
|
32
|
Wijngaard H, Hossain MB, Rai DK, Brunton N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.09.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Li MF, Sun SN, Xu F, Sun RC. Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem 2012; 134:1392-8. [PMID: 25005958 DOI: 10.1016/j.foodchem.2012.03.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/25/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Microwave-assisted extraction in organic acid aqueous solution (formic acid/acetic acid/water, 3/5/2, v/v/v) was applied to isolate lignin from bamboo. Additionally, the structural features of the extracted lignins were thoroughly investigated in terms of C₉ formula, molecular weight distribution, FT-IR, (1)H NMR and HSQC spectroscopy. It was found that with an increase in the severity of microwave-assisted extraction, there was an increase of phenolic hydroxyl content in the lignin. In addition, an increase of the severity resulted in a decrease of the bound carbohydrate content as well as molecular weight of the lignin. Antioxidant activity investigation indicated that the radical scavenging index of the extracted lignins (0.35-1.15) was higher than that of BHT (0.29) but lower than that of BHA (3.85). The results suggested that microwave-assisted organic acid extraction provides a promising way to prepare lignin from bamboo with good antioxidant activity for potential application in the food industry.
Collapse
Affiliation(s)
- Ming-Fei Li
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, 100083 Beijing, China
| | - Shao-Ni Sun
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, 100083 Beijing, China
| | - Feng Xu
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, 100083 Beijing, China
| | - Run-Cang Sun
- Institute of Biomass Chemistry and Technology, Beijing Forestry University, 100083 Beijing, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
34
|
Figueiredo EC, Dias JC, Kubota LT, Korn M, Oliveira PV, Arruda MAZ. Influence of microwave heating on fluoride, chloride, nitrate and sulfate concentrations in water. Talanta 2011; 85:2707-10. [DOI: 10.1016/j.talanta.2011.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 11/17/2022]
|
35
|
Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 2011; 1218:6213-25. [DOI: 10.1016/j.chroma.2011.07.040] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 11/23/2022]
|
36
|
Zhou T, Xiao XH, Wang JY, Chen JL, Xu XF, He ZF, Li GK. Evaluation of microwave-assisted extraction for aristolochic acid from Aristolochiae Fructus by chromatographic analysis coupled with nephrotoxicity studies. Biomed Chromatogr 2011; 26:166-71. [PMID: 21538418 DOI: 10.1002/bmc.1642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/09/2022]
Abstract
In this paper, a microwave-assisted extraction (MAE) method was established for aristolochic acid-I from Aristolochiae Fructus, and the advantage of MAE was evaluated by chromatographic analysis coupled with nephrotoxicity studies. The experimental parameters of MAE for aristolochic acid-I in Aristolochiae Fructus were investigated and MAE was compared with Soxhlet extraction and ultrasound-assisted extraction in terms of extraction yields and extraction conditions. Under the optimum conditions, MAE could provide higher extraction yields of aristolochic acid-I (1.10 mg/g) than ultrasound-assisted extraction (0.82 mg/g) and Soxhlet extraction (0.95 mg/g), in addition to using less solvent and having a shorter extraction time. Furthermore, the nephrotoxicities of the extracts of Aristolochiae Fructus from different extraction procedures were investigated in Sprague-Dawley rats. The results of nephrotoxicity studies of, for example, general conditions, biochemistry parameters and histopathology examination showed no significantly differences in the nephrotoxicity levels of the extracts from MAE and that from Soxhlet extraction. These results indicated that MAE technique is a simple, rapid and effective extraction method, and the microwave irradiation during MAE procedure did not have any influence on the nephrotoxicity of Aristolochiae Fructus compared with Soxhlet extraction.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|