1
|
Krupa-Kozak U, Płatosz N, Bączek N, Šimková K, Starowicz M. Increased content of bioactive compounds and health benefits of gluten-free sponge cakes resulting from enrichment with freeze-dried berry powders. Food Chem 2025; 472:142861. [PMID: 39967066 DOI: 10.1016/j.foodchem.2025.142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Berries are not only appreciated for their distinctive taste and flavor, but they are also highly valued for their nutritional and health-promoting properties. This study aimed to develop appealing new gluten-free sponge cakes (GFS) enriched with bioactive phytochemicals using berry powders. Freeze-dried powders of raspberry (R), blackberry (B), and blueberry (L) were used to replace 2 % of the starch in the experimental GFS formulation. This study analyzed the profile and content of phenolic acids, flavonoids, and anthocyanins, and assessed the antiglycation activity using spectrophotometric methods. Additionally, the color and textural parameters, as well as consumer preferences for the GFS, were evaluated. The application of berry powders in the experimental formulation significantly increased (p < 0.05) the content of phenolic acids, flavonoids, and anthocyanins in all the berry-enriched sponge cakes, although the degree of increase varied, depending on the berry used. All the berry-enriched sponge cakes acquired a pleasant reddish tint, with the raspberry sponge cake (GFR) receiving the highest scores for sensory attractiveness. However, the textural parameters (hardness, gumminess, and chewiness) of all the berry-enriched sponge cakes were negatively affected compared to the control. These findings indicate that incorporating berry powders into GFS formulations can create a visually appealing and tasty option for health-conscious consumers, particularly those with dietary restrictions such as celiac disease.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Natalia Płatosz
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Natalia Bączek
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Kristýna Šimková
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland; University of Ljubljana, Biotechnology Faculty, Department of Agronomy, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
| | - Małgorzata Starowicz
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| |
Collapse
|
2
|
Yang Y, Kilmartin PA. Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape marc. Food Chem 2025; 472:142648. [PMID: 39862609 DOI: 10.1016/j.foodchem.2024.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.66 g/kg of grape marc), followed by formic acid (0.59 g/kg) and citric acid (0.58 g/kg) treatments. The second stage assessed drying methods across eight temperatures combined with a single extraction cycle using 50 % EtOH HCl, identifying 70 °C as the optimal heat-drying condition (1.23 g/kg total anthocyanins, 0.4 g/kg monomeric anthocyanins). Freeze-drying at -105 °C (TN105) with a prewash step (SRT105) further enhanced anthocyanin yields (2.24 g/kg total anthocyanins, 0.69 g/kg monomeric anthocyanins). In the final stage, microwave-assisted extraction significantly increased recovery, with SRT105-MW in 50 % EtOH HCl yielding 8.07 g/100 g total phenolics, 5.76 g/100 g tannins, 3.7 g/kg total anthocyanins, and 2.8 g/kg monomeric anthocyanins. This optimised method preserved anthocyanin composition, including malvidin- and peonidin-3-glucosides (585 and 560 mg/kg, respectively), along with cyanidin-, delphinidin-, and petunidin-3-glucosides (463, 360, and 257 mg/kg, respectively), as well as 66-99 mg/kg of acylated and 37-60 mg/kg of coumaroylated anthocyanins. Citric acid (50 % EtOH CA) demonstrated potential as a sustainable alternative, achieving ∼90 % of the anthocyanin yield of HCl treatments. These findings offer a practical, scalable framework for industrial anthocyanin recovery, advancing sustainable utilisation of grape marc.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul A Kilmartin
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Safaei SF, Jafarian S, Masoumi M, Soltani MS, Nasiraie LR. Assessment of rheological, qualitative and antioxidant characteristics of enriched peanut butter with date paste through shelf-life stability. Heliyon 2024; 10:e37602. [PMID: 39364256 PMCID: PMC11447364 DOI: 10.1016/j.heliyon.2024.e37602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Over the years, concentrated efforts have been directed toward the improvement of desirable characteristics and attributes in peanut butter. This study examined the effect of rheological, antioxidant and qualitative characteristics of optimum peanut butter (including date paste and lecitin) during shelf-life. The results showed that the presence of date paste along with lecithin in optimum peanut butter improved the overall characteristics of peanut butter, including the physicochemical, microbial, mechanical, and sensory properties, compared to the control. Moreover, shelf-life had the most effect on reducing the emulsion stability, cohesiveness, antioxidant properties, and overall acceptance. In addition, the flow behavior of the emulsions was examined through the Herschel-Bulkley model using the parameters of determination coefficient, R2, flow behavior index, n, and consistency coefficient, K (Pa.sn). The presence of date paste in enriched peanut butter results in the creation of a colloidal structure among the peanut particles. This structure traps the oil, preventing it from leaving the peanut paste texture during shelf-life.
Collapse
Affiliation(s)
- Seyedeh Faezeh Safaei
- Food Science and Technology Department, Nour Branch, Islamic Azad University, 4641859557, Nour, Iran
| | - Sara Jafarian
- Food Science and Technology Department, Nour Branch, Islamic Azad University, 4641859557, Nour, Iran
| | - Mojtaba Masoumi
- Chemical Engineering Department, Amol Branch, Islamic Azad University, 461514-3358, Amol, Iran
| | - Mehdi Sharifi Soltani
- Veterinary Department, Chaloos Branch, Islamic Azad University, 46615/397, Chaloos, Iran
| | - Leila Roozbeh Nasiraie
- Food Science and Technology Department, Nour Branch, Islamic Azad University, 4641859557, Nour, Iran
| |
Collapse
|
4
|
Serrano C, Lamas B, Oliveira MC, Duarte MP. Exploring the Potential of Anthocyanin-Based Edible Coatings in Confectionery-Temperature Stability, pH, and Biocapacity. Foods 2024; 13:2450. [PMID: 39123641 PMCID: PMC11312276 DOI: 10.3390/foods13152450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to develop purple-coloured polymeric coatings using natural anthocyanin and desoxyanthocianidins (3-DXA) colourants for application to chocolate almonds. The objective is to achieve a stable and uniform colour formulation throughout processing and storage, enhancing the appearance and durability of the almonds to appeal to health-conscious consumers and align with market demands. Plant materials like sweet potato pulp, sweet potato peel, radish peel, black carrot, and sorghum were employed to obtain the desired purple hue. Anthocyanidins and 3-DXA were extracted from the matrices using solvent extraction and ultrasound-assisted methods at different pH values. High-performance liquid chromatography with diode array detection (HPLC-DAD) and high-resolution tandem mass spectrometry (HRMS/MS) were used to identify the compounds in the extracts. The highest antioxidant capacities, as measured by the DPPH• and FRAP methods, were observed in purple sweet potato and dye factory extracts, respectively; meanwhile, sorghum extract inhibited both α-amylase and α-glucosidase, indicating its potential for managing postprandial hyperglycemia and type 2 diabetes. The degradation kinetics of coloured coatings in sugar syrup formulations with anthocyanins and 3-DXA revealed that locust bean gum offered the best colour stabilization for plant extracts, with sorghum extracts showing the highest and black carrot extracts the lowest colour variation when coated with Arabic gum. Sweet potato pulp extracts exhibited less colour variation in sugar pastes, both with and without blue spirulina dye, compared to factory dye, highlighting their potential as a more stable and suitable alternative for colouring purple almonds, particularly over a five-month storage period. This study supports sustainable practices in the confectionery industry while aligning with consumer preferences for healthier and environmentally friendly products.
Collapse
Affiliation(s)
- Carmo Serrano
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory TERRA, LEAF–Linking Landscape, Environment, Agriculture and Food–Research Center, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Beatriz Lamas
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.L.); (M.P.D.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Maria Paula Duarte
- The Mechanical Engineering and Resource Sustainability Center (MEtRICs), Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.L.); (M.P.D.)
| |
Collapse
|
5
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
6
|
Constantin OE, Stoica F, Rațu RN, Stănciuc N, Bahrim GE, Râpeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants (Basel) 2024; 13:100. [PMID: 38247524 PMCID: PMC10812587 DOI: 10.3390/antiox13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Florina Stoica
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Roxana Nicoleta Rațu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| |
Collapse
|
7
|
Zhao Q, Zhang H, Zhao H, Zhu H, Liu J, Li B, Li M, Yang X. Construction of a Biomimetic Receptor Based on Hydrophilic Multifunctional Monomer Covalent Organic Framework Molecularly Imprinted Polymers for Molecular Recognition of Cyanidin-3- O-Glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18024-18036. [PMID: 37939378 DOI: 10.1021/acs.jafc.3c04391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Anthocyanins (AOCs) are phenols that are readily soluble in water and are commonly present in plants. The chemical instability of AOC, however, causes it to be severely limited in terms of extraction and purification. Hence, in order to obtain efficient and stable extraction of AOC, we designed hydrophilic multifunctional monomer covalent organic framework molecularly imprinted polymers (HMCMIPs) as adsorbents. The functional reagent, p-aminobenzenesulfonic acid (ASA), was added to this material during synthesis to facilitate the sulfonation modification of covalent organic frameworks (COFs), which enhanced its affinity for hydrophilic guests (cyanidin-3-O-glucoside, the representative nutritional and functional ingredient in AOC). With ASA serving as a terminator, overextension of the material to form micron-level cross-linked structures is prevented, thereby increasing its surface area and mass transfer efficiency. The biomimetic receptors were then created by integrating MIPs into sulfonated COFs in order to create multiple binding sites specific for C3G recognition. HMCMIPs exhibited excellent adsorption capacity (1566 mg/g) and superior selectivity (selectivity coefficient >12) for C3G. It has been demonstrated that high purity (93.72%) C3G can be obtained rapidly and efficiently by utilizing HMCMIPs. There may be a potential benefit to the synthesis strategy of HMCMIPs for the extraction of specific active ingredients in the future.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Haitian Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| | - Hongwei Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jia Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Internal Trade Food Science Research Institute Co., Ltd, Beijing 102209, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Minjie Li
- Internal Trade Food Science Research Institute Co., Ltd, Beijing 102209, China
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China
| |
Collapse
|
8
|
Ferrara D, Beccaria M, Cordero CE, Purcaro G. Microwave-assisted extraction in closed vessel in food analysis. J Sep Sci 2023; 46:e2300390. [PMID: 37654060 DOI: 10.1002/jssc.202300390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Microwave-assisted extraction (MAE) is an important technique in analytical chemistry. It offers several advantages over traditional extraction methods, such as improved extraction efficiency, shorter extraction times, reduced solvent consumption, and enhanced analyte recovery. Using microwaves, heat is directly applied to the sample, leading to rapid and efficient extraction of target compounds by enhancing the solubility and diffusion of the target compounds, thus requiring lower solvent volume. Therefore, MAE can be considered a more environmentally friendly and cost-effective option facilitating the transition toward greener and more sustainable analytical chemistry workflows. This contribution systematically reviews the application of MAE to a selection of target compounds/compounds classes of relevance for food quality and safety assessment. As inclusion criteria, MAE active temperature control and molecularly-resolved characterization of the extracts were considered. Contents include a brief introduction of the principles of operation, available systems characteristics, and key parameters influencing extraction efficiency and selectivity. The application section covers functional food components (e.g., phenols, diterpenes, and carotenoids), lipids, contaminants (e.g., polycyclic aromatic hydrocarbons and mineral oil hydrocarbons), pesticides, veterinary drug residues, and a selection of process contaminants and xenobiotics of relevance for food safety.
Collapse
Affiliation(s)
- Donatella Ferrara
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chiara E Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
9
|
Zhu Y, Luan Y, Zhao Y, Liu J, Duan Z, Ruan R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023; 12:foods12101949. [PMID: 37238767 DOI: 10.3390/foods12101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system.
Collapse
Affiliation(s)
- Yingdan Zhu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yueting Luan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yingnan Zhao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jiali Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| |
Collapse
|
10
|
Combination of response surface methodology and UPLC-QTOF-MSE for phenolic compounds analysis from Cinnamomum cassia bark as a novel antifungal agent. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elderberries are appreciated for their antioxidant properties. Sambucus nigra L. is an extremely abundant plant in the wild flora of Romania, but it is underutilized. Elderberry is used in modern and traditional medicine due to the complex chemical composition of the fruit. The content of phenolic compounds is high (516–8974 mg/100 g DW), of which the most abundant are anthocyanins. Phenolic compounds are known for their beneficial effects on the body. Numerous studies have demonstrated the antioxidant capacity, antibacterial, antiviral, antidiabetic, and anticancer properties of the fruit. It is considered that most of the therapeutic properties of elderberries can be correlated with the antioxidant activity they have. S. nigra fruits are also used in the food industry. Some studies have shown that the therapeutic properties of elderberries can also be found in the products obtained from them. Therefore, this review aimed to describe the chemical composition of elderberries and products obtained from them, the positive effects on the body, and the methods by which the bioactive compounds can be extracted from the fruits and analyzed. This manuscript is useful for extraction optimization and characterization in order to valorize new functional foods, food supplements, and also in new pharmaceutical products.
Collapse
|
12
|
Perra M, Bacchetta G, Muntoni A, De Gioannis G, Castangia I, Rajha HN, Manca ML, Manconi M. An outlook on modern and sustainable approaches to the management of grape pomace by integrating green processes, biotechnologies and advanced biomedical approaches. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Optimization of Microwave-Assisted Extraction and Matrix Solid-Phase Dispersion for the Extraction of Polyphenolic Compounds from Grape Skin. SEPARATIONS 2022. [DOI: 10.3390/separations9090235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are organic compounds that can be found in food, especially in fruits, vegetables, and their products. It was shown that their presence significantly affects the properties of food products and that the consumption of food rich in phenolic compounds has a beneficial effect on human health. The subjects of this research were polyphenols: anthocyanins, flavonols, and flavan-3-ols in the skin of grapevine variety Regent. Polyphenols from grape skins were extracted via microwave-assisted extraction (MAE) and matrix solid-phase dispersion (MSPD) as unconventional and green techniques. Therefore, the main aim of this work was to optimize the conditions for the extraction of polyphenolic compounds from grape skin using MAE and MSPD. The extracts were analyzed using high-performance liquid chromatography with a diode array detector and fluorescence detector. Analyses showed that MAE was a very effective method for extracting polyphenolic compounds from grape skin with 10 mL of 60% ethanol for 5 min at 40 °C. The best results for the MSPD extraction of polyphenolic compounds from grape skin were obtained with phenyl as an MSPD sorbent with 10 mL of acetonitrile:water 50:50 v/v as an elution solvent. This scientific research can be used for the better use of grapes as a basis for obtaining flavonoids for commercial purposes.
Collapse
|
14
|
Shukla S, Lohani UC, Shahi NC, Dubey A. Extraction of natural pigments from red sorghum (
Sorghum bicolor
) husk by ultrasound and microwave assisted extraction: A comparative study through response surface analysis. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sonali Shukla
- G B Pant University of Agriculture and Technology Pantnagar India
| | - Umesh C. Lohani
- G B Pant University of Agriculture and Technology Pantnagar India
| | | | - Ashutosh Dubey
- G B Pant University of Agriculture and Technology Pantnagar India
| |
Collapse
|
15
|
Marzullo L, Ochkur O, Orlandini S, Renai L, Gotti R, Koshovyi O, Furlanetto S, Del Bubba M. Quality by Design in optimizing the extraction of (poly)phenolic compounds from Vaccinium myrtillus berries. J Chromatogr A 2022; 1677:463329. [PMID: 35863094 DOI: 10.1016/j.chroma.2022.463329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022]
Abstract
Quality by Design was adopted for developing an effective extraction procedure of (poly)phenolic compounds from bilberry (Vaccinium myrtillus L.) fruits, using a pooled sample of berries from different regions of Ukraine. Mechanical solvent extraction, microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were investigated by screening matrices. Extraction time (Time, from 5 to 15 min), organic solvent type (OS type, methanol, ethanol and acetone), organic solvent percentage (OS%, from 50% to 90%), sample/extractant ratio (S/E ratio, from 0.025 to 0.1 g mL-1), and, only for MAE, extraction temperature (T, from 30 to 60°C), were selected as critical method parameters (CMPs). The spectrophotometric assays total soluble polyphenols (TSP), total monomeric anthocyanins (TMA), and radical scavenging activity (evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), the 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid), and the ferric reducing antioxidant power methods) were chosen as critical method attributes (CMAs). The screening procedure allowed for selecting UAE and methanol, while the other CMPs underwent further optimization through Response Surface Methodology. Target values for TSP, TMA and DPPH were selected and the method operable design region (MODR) was defined by means of Monte-Carlo simulations. The optimized conditions, with the corresponding MODR intervals in bracket, were the following: (i) Time, 17 min (15-23 min); OS%, 56% (44-59%); S/E ratio, 0.030 (0.022-0.034) g mL-1. Under these experimental conditions, CMAs values of the pooled sample were the following (n = 3): TSP=4433±176 mg (+)-catechin eq/100 g dry weight (d.w.); TMA=3575±194 mg cyanidin-3-glucoside eq/100 g d.w.; DPPH=273±5 μg DPPH inhib./mg d.w. The optimized extraction method was tested for matrix effect (ME%) in the UHPLC-MS/MS analysis of 15 anthocyanins and 20 non-anthocyanins individual (poly)phenols commonly found in bilberries, as well as for luteolin, sinapic acid, and pelargonidin-3-glucoside, absent in this fruit and therefore added to the extracts as surrogate standards for evaluating apparent recovery (AR%). |ME%| was in any case ≤ 23% and AR% of the surrogate standards in the range 91-95%, confirming the very good performances of the optimized extraction method.
Collapse
Affiliation(s)
- Luca Marzullo
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Oleksandr Ochkur
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Serena Orlandini
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Lapo Renai
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Oleh Koshovyi
- Department of Pharmacognosy, National University of Pharmacy, Kharkiv, Ukraine
| | - Sandra Furlanetto
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy.
| | - Massimo Del Bubba
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
16
|
Nistor M, Pop R, Daescu A, Pintea A, Socaciu C, Rugina D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022; 27:molecules27134254. [PMID: 35807504 PMCID: PMC9268666 DOI: 10.3390/molecules27134254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Anthocyanins are water-soluble pigments present in fruits and vegetables, which render them an extensive range of colors. They have a wide distribution in the human diet, are innocuous, and, based on numerous studies, have supposed preventive and therapeutical benefits against chronic affections such as inflammatory, neurological, cardiovascular, digestive disorders, diabetes, and cancer, mostly due to their antioxidant action. Despite their great potential as pharmaceutical applications, they have a rather limited use because of their rather low stability to environmental variations. Their absorption was noticed to occur best in the stomach and small intestine, but the pH fluctuation of the digestive system impacts their rapid degradation. Urine excretion and tissue distribution also occur at low rates. The aim of this review is to highlight the chemical characteristics of anthocyanins and emphasize their weaknesses regarding bioavailability. It also targets to deliver an update on the recent advances in the involvement of anthocyanins in different pathologies with a focus on in vivo, in vitro, animal, and human clinical trials.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Roxana Pop
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Daescu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Pintea
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Dumitrita Rugina
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
17
|
Piñeiro Z, Aliaño-González MJ, González-de-Peredo AV, Palma M, de Andrés MT. Microwave-assisted extraction of non-coloured phenolic compounds from grape cultivars. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Comparison of microwave and conventional heating on physicochemical properties and phenolic profiles of purple sweetpotato and wheat flours. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Multi-objective optimization of sustainable red prickly pear (Opuntia streptacantha) peel drying and biocompounds extraction using a hybrid stochastic algorithm. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10030469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years there has been a growing concern about environmental pollution linked to the generation of agroindustrial waste. The wine industry generates approximately 8.49 million tons of grape pomace per year worldwide; this residue can be used to obtain compounds with biological activity. Grape pomace is a source of anthocyanins, pigments that have antioxidant properties and help prevent cardiovascular disease. The development of sustainable extraction, purification and identification techniques constitutes an important step in adding value to this waste. Therefore, the present research has focused on presenting a review of works carried out in the last years.
Collapse
|
21
|
Mustafa AM, Mazzara E, Abouelenein D, Angeloni S, Nunez S, Sagratini G, López V, Cespi M, Vittori S, Caprioli G, Maggi F. Optimization of Solvent-Free Microwave-Assisted Hydrodiffusion and Gravity Extraction of Morus nigra L. Fruits Maximizing Polyphenols, Sugar Content, and Biological Activities Using Central Composite Design. Pharmaceuticals (Basel) 2022; 15:99. [PMID: 35056156 PMCID: PMC8780424 DOI: 10.3390/ph15010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Black mulberry, Morus nigra L. (family: Moraceae), is a healthy food and medicinal plant. Microwave hydrodiffusion and gravity (MHG) is one of the most innovative applications of solvent-free microwave extraction. The aim of this study was to optimize for the first time the MHG solvent-free extraction of polyphenols and sugars from M. nigra fruits. Optimization was carried out using a central composite design (CCD) with selected responses such as extraction yield, total polyphenol (TPC), flavonoid (TFC), anthocyanin (TAC), and sugar (TSC) contents, in addition to DPPH radical scavenging, and α-glucosidase (AGHi), lipase (Li), and xanthine oxidase (XOi) inhibition as tools to evaluate the best parameters for efficient and rapid extraction of black mulberry. The optimized extract was characterized in terms of the aforementioned parameters to validate the models, and was further analyzed for 36 individual polyphenols using HPLC-MS/MS. The optimized MHG extract was finally compared with traditional extracts, and demonstrated much better performance in terms of TPC, TAC, and Li, while the traditional extracts showed better XOi and AGHi. In conclusion, MHG is a valuable green technique for the production of non-degraded black mulberry polyphenol-rich extract and we suggest its larger use in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ahmed M. Mustafa
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Eugenia Mazzara
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Doaa Abouelenein
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Simone Angeloni
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Sonia Nunez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain; (S.N.); (V.L.)
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain; (S.N.); (V.L.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50830 Zaragoza, Spain
| | - Marco Cespi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Sauro Vittori
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Giovanni Caprioli
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, 62032 Camerino, Italy; (A.M.M.); (E.M.); (D.A.); (S.A.); (G.S.); (M.C.); (S.V.); (G.C.)
| |
Collapse
|
22
|
Yiğit Ü, Turabi Yolaçaner E, Hamzalıoğlu A, Gökmen V. Optimization of microwave‐assisted extraction of anthocyanins in red cabbage by response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ünzile Yiğit
- Department of Food Engineering Hacettepe University Ankara Turkey
| | | | | | - Vural Gökmen
- Department of Food Engineering Hacettepe University Ankara Turkey
| |
Collapse
|
23
|
Iqbal A, Schulz P, Rizvi SS. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhang P, Li Y, Wang T, Cai Z, Cao H, Zhang H, Cao Y, Chen B, Yang D. Statistics on the bioactive anthocyanin/proanthocyanin products in China online sales. Food Sci Nutr 2021; 9:5428-5434. [PMID: 34646513 PMCID: PMC8498052 DOI: 10.1002/fsn3.2500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023] Open
Abstract
Due to their potential beneficial effects, anthocyanins and proanthocyanins have attracted great concern worldwide. Recently, anthocyanin/proanthocyanin-related health products have occupied a certain proportion of the market. However, there has not been a systematical assessment on collecting and analyzing the relevant information. In this study, information of anthocyanin/proanthocyanin-related health products on sale on the four major online shopping platforms in China has been collected from November 2020 to February 2021. A total of 144 valid samples from 91 brands were collected, among which blueberries and grape seeds are the main sources of anthocyanins and proanthocyanins, respectively. Besides, the average anthocyanins/proanthocyanins content in these products is 22.71%. Improving eyesight, anti-asthenopia and anti-oxidation are widely mentioned among the anthocyanin-related products, while more proanthocyanin-related products declare for anti-oxidation, whitening & spot lighting, and delay of skin aging & repairing skin damage effects. Among the products, 77.78% are capsules and tablets, and the average unit price of anthocyanins/proanthocyanins is $ 5.26/g. Data analysis shows that searching for high-quality raw materials, researching on the varieties and content of anthocyanins/proanthocyanins, focusing on the intake of specific population, and exploring better storage forms of anthocyanins/proanthocyanins may be important field in the future to promote the development of the anthocyanin/proanthocyanin-related health products.
Collapse
Affiliation(s)
- PeiAo Zhang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yi Li
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| | - Tianyi Wang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| | - Haiyan Cao
- Wenir Nutrition High‐Tech Co., LtdYongfengChina
| | | | - Yubin Cao
- Jiangsu QingGu Foods Co., LtdXingdong Economic Development ZoneXinghuaChina
| | - Bo Chen
- Wenir Nutrition High‐Tech Co., LtdYongfengChina
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| |
Collapse
|
25
|
Development of a Green Methodology for Simultaneous Extraction of Polyphenols and Pigments from Red Winemaking Solid Wastes (Pomace) Using a Novel Glycerol-Sodium Benzoate Deep Eutectic Solvent and Ultrasonication Pretreatment. ENVIRONMENTS 2021. [DOI: 10.3390/environments8090090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this examination, two glycerol-based deep eutectic solvents (DESs) were tested for their efficiency in the recovery of antioxidant polyphenols and anthocyanin pigments from red grape pomace (RGP). The two DESs synthesized had sodium acetate and sodium benzoate as hydrogen bond acceptors, to test the role of the hydrogen bond acceptor polarity on the extraction performance. Furthermore, the process was enhanced by an ultrasonication pretreatment stage. After initial testing with respect to water content, ultrasonication power and liquid-to-solid ratio, the DES composed of glycerol and sodium benzoate (GL-SBz) was shown to be significantly more efficient than the one made of glycerol and sodium acetate (GL-SAc). Further optimization of the extraction with regard to time and temperature demonstrated GL-SBz to be a highly effective solvent for the production of RGP extracts rich in polyphenols including gallic acid, catechin and quercetin, and pigments including malvidin 3-O-glucoside p-coumarate and malvidin 3-O-glucoside. The extracts produced also had significantly higher antiradical activity and reducing power compared to those generated with aqueous ethanol or water. From this study, evidence emerged regarding the role of the hydrogen bond acceptor nature in the extraction efficiency of polyphenols. The process developed is proposed as a green, high-performing methodology for the production of RGP extracts with enhanced polyphenolic content and antioxidant activity.
Collapse
|
26
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
27
|
Chowdhary P, Gupta A, Gnansounou E, Pandey A, Chaturvedi P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116796. [PMID: 33740601 DOI: 10.1016/j.envpol.2021.116796] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Grape pomace (GP) is a low-value by-product that contains a significant amount of high value-added products. The huge amount of non-edible residues of GP wastes (seeds, skins, leaves and, stems) produced by wine industries causes' environmental pollution, management issues as well as economic loss. Studies over the past 15-20 years revealed that GP could serve as a potential source for valuable bioactive compounds like antioxidants, bioactive, nutraceuticals, single-cell protein, and volatile organic compounds with an increasing scientific interest in their beneficial effects on human and animal health. However, the selection of appropriate techniques for the extraction of these compounds without compromising the stability of the extracted products is still a challenging task for the researcher. Based on the current scenario, the review mainly summarizes the novel applications of winery wastes in many sectors such as agriculture, pharmaceuticals, cosmetics, livestock fields, and also the bio-energy recovery system. We also summarize the existing information/knowledge on several green technologies for the recovery of value-added by-products. For the promotion of many emerging technologies, the entrepreneur should be aware of the opportunities/techniques for the development of high-quality value-added products. Thus, this review presents systematic information on value-added by-products that are used for societal benefits concerning the potential for human health and a sustainable environment.
Collapse
Affiliation(s)
- Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Abhishek Gupta
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning, IIC, ENAC, École Polytechnique fédérale de Lausanne (EPFL), Station 18, CH-1015, Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Muñoz García R, Oliver Simancas R, Díaz-Maroto MC, Alañón Pardo ME, Pérez-Coello MS. Effect of Microwave Maceration and SO 2 Free Vinification on Volatile Composition of Red Wines. Foods 2021; 10:1164. [PMID: 34067426 PMCID: PMC8224603 DOI: 10.3390/foods10061164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the effect of microwave treatment in grape maceration at laboratory scale on the content of free and glycosidically bound varietal compounds of must and wines and on the overall aroma of wines produced with and without SO2. The volatile compounds were extracted by solid phase extraction and analyzed by gas chromatography-mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis. Microwave treatment significantly increased the free and bound fraction of most varietal compounds in the must. Wines from microwave maceration showed faster fermentation kinetics and shorter lag phase, resulting in an increase in some volatile compounds of sensory relevance. The absence of SO2 caused a decrease in concentration of some volatile compounds, mainly fatty acids and esters. The sensory assessment of wines from microwave treatment was higher than the control wine, especially in wines without SO2, which had higher scores in the "red berry" and "floral" odor attributes and a more intense aroma. This indicates that the pre-fermentative treatment of grapes with microwaves could be used to increase the wine aroma and to reduce the occurrence of SO2.
Collapse
Affiliation(s)
- Raquel Muñoz García
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (R.M.G.); (R.O.S.); (M.S.P.-C.)
| | - Rodrigo Oliver Simancas
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (R.M.G.); (R.O.S.); (M.S.P.-C.)
| | - María Consuelo Díaz-Maroto
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (R.M.G.); (R.O.S.); (M.S.P.-C.)
| | - María Elena Alañón Pardo
- Area of Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain;
| | - María Soledad Pérez-Coello
- Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (R.M.G.); (R.O.S.); (M.S.P.-C.)
| |
Collapse
|
29
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
30
|
Rodríguez García SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds-A review. Crit Rev Food Sci Nutr 2021; 62:6446-6466. [PMID: 33792417 DOI: 10.1080/10408398.2021.1901651] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Food wastes imply significant greenhouse gas emissions, that increase the challenge of climate change and impact food security. According to FAO (2019), one of the main food wastes come from fruit and vegetables, representing 0.5 billion tons per year, of the 1.3 billion tons of total waste. The wastes obtained from fruit and vegetables have plenty of valuable components, known as bioactive compounds, with many properties that impact positively in human health. Some bioactive compounds hold antioxidant, anti-inflammatory, and anti-cancer properties and they have the capacity of modulating metabolic processes. Currently, the use of fruit and vegetable waste is studied to obtain bioactive compounds, through non-conventional techniques, also known as green extraction techniques. These extraction techniques report higher yields, reduce the use of solvents, employ less extraction time, and improve the efficiency of the process for obtaining bioactive compounds. Once extracted, these compounds can be used in the cosmetic, pharmaceutical, or food industry, the last one being focused on improving food quality.
Collapse
Affiliation(s)
- Sheila Lucía Rodríguez García
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Muñoz P, Pérez K, Cassano A, Ruby-Figueroa R. Recovery of Anthocyanins and Monosaccharides from Grape Marc Extract by Nanofiltration Membranes. Molecules 2021; 26:molecules26072003. [PMID: 33916021 PMCID: PMC8036690 DOI: 10.3390/molecules26072003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, were evaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-O-glucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150–300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins. Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300–500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.
Collapse
Affiliation(s)
- Paul Muñoz
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las palmeras 3360, 7800003 Santiago, Chile;
| | - Karla Pérez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, 8940577 Santiago, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende, Italy
- Correspondence: (A.C.); (R.R.-F.); Tel.: +39-0984-492067 (A.C.); +56-2-2787-7907 (R.R.-F.)
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, 8940577 Santiago, Chile;
- Correspondence: (A.C.); (R.R.-F.); Tel.: +39-0984-492067 (A.C.); +56-2-2787-7907 (R.R.-F.)
| |
Collapse
|
32
|
Figueroa JG, Borrás-Linares I, Del Pino-García R, Curiel JA, Lozano-Sánchez J, Segura-Carretero A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem 2021; 352:129300. [PMID: 33667920 DOI: 10.1016/j.foodchem.2021.129300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Avocado peel is a by-product obtained in high amounts in the food industry with no further applications despite its richness in bioactive compounds. In this context, an efficient "green" microwave assisted extraction (MAE) was optimized to maximize the extraction of bioactive polyphenols. Moreover, the phenolic composition of the developed green avocado extract was characterized by HPLC coupled to MS analysers and the potential applications for the food industry were studied assaying different bioactivities. Thus, the matrix metalloproteinases inhibition, the antioxidant capacity and the antimicrobial activity against gram-positive and gram-negative bacteria, yeast and mold were tested. The results pointed out both, high matrix metalloproteinases inhibitory capacity and antioxidant activity of avocado peel MAE extract. These findings suggest the potential food industry applications of this extract as natural food preservative, functional food ingredient or nutraceuticals with antioxidant and anti-aging activities.
Collapse
Affiliation(s)
- Jorge G Figueroa
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain; Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 11-01-608, Ecuador
| | - Isabel Borrás-Linares
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain.
| | - Raquel Del Pino-García
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| | - José Antonio Curiel
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| | - Jesús Lozano-Sánchez
- Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain; Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, Granada 18071, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain; Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park Avda. del Conocimiento s/n, BioRegion Building, Granada 18016, Spain
| |
Collapse
|
33
|
CHAÑI-PAUCAR LO, SILVA JWL, MACIEL MIS, LIMA VLAGD. Simplified process of extraction of polyphenols from agroindustrial grape waste. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.31120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Larry Oscar CHAÑI-PAUCAR
- Universidade Federal Rural de Pernambuco, Brasil; Universidad Nacional Amazónica de Madre de Dios, Perú
| | | | | | | |
Collapse
|
34
|
Odabaş Hİ, Koca I. Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Coelho M, Pereira R, Rodrigues A, Teixeira J, Pintado M. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Blueberry Wine Residues: Optimization, Identification, and HepG2 Antitumor Activity. Molecules 2020; 25:molecules25225456. [PMID: 33233829 PMCID: PMC7699922 DOI: 10.3390/molecules25225456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.
Collapse
|
38
|
Sun Y, Zhang M, Fang Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Grillo G, Gunjević V, Radošević K, Redovniković IR, Cravotto G. Deep Eutectic Solvents and Nonconventional Technologies for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants (Basel) 2020; 9:antiox9111069. [PMID: 33142668 PMCID: PMC7693902 DOI: 10.3390/antiox9111069] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Interest in bioactive phytochemicals and sustainable processes is the driving force behind this study on two novel green extraction methods for the recovery of anthocyanins from the residues of blueberry processing. Five natural deep eutectic solvents (NADES) have been tested for anthocyanin extraction. Acidified hydroalcoholic solutions were used as benchmarks and the shelf life of eutectic systems was monitored. The most promising NADES was tested in microwave (MAE)- and ultrasound-assisted extractions (UAEs), and Peleg’s kinetic model was used. Both the enabling technologies provided performance that was superior to that of conventional extraction. MAE and UAE yielded up to 25.83 and 21.18 mg/gmatrix of total anthocyanin content, respectively, after 15 and 30 min. Moreover, a preliminary test for extract concentration and NADES recycling was performed using resin adsorption. Finally, the antiproliferative activity of the extracts was determined by a CellTiter 96® AQueous One Solution Cell Proliferation Assay, the so-called MTS assay, on human tumour HeLa cells and human skin HaCaT cells. Nonconventional extracts exhibited strong antiproliferative activity that was much greater than that of their conventionally extracted analogues. Flow cytometry was used to evaluate cell-death type, and apoptosis was found to be the primary cause of tumour cell death. The presented study demonstrates that the implementation of enabling extraction technologies and green solvents can produce an antiproliferative agent from a food industry byproduct.
Collapse
Affiliation(s)
- Giorgio Grillo
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, 10235 Turin, Italy; (G.G.); (V.G.)
| | - Veronika Gunjević
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, 10235 Turin, Italy; (G.G.); (V.G.)
- Department of Biochemical Engineering, Laboratory for Cell Culture Technology and Biotransformations, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kristina Radošević
- Department of Biochemical Engineering, Laboratory for Cell Culture Technology and Biotransformations, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence: (K.R.); (G.C.); Tel.: +385-1-4605-278 (K.R.); +39-011-670-7183 (G.C.)
| | - Ivana Radojčić Redovniković
- Department of Biochemical Engineering, Laboratory for Cell Culture Technology and Biotransformations, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, 10235 Turin, Italy; (G.G.); (V.G.)
- Correspondence: (K.R.); (G.C.); Tel.: +385-1-4605-278 (K.R.); +39-011-670-7183 (G.C.)
| |
Collapse
|
40
|
Sirohi R, Tarafdar A, Singh S, Negi T, Gaur VK, Gnansounou E, Bharathiraja B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. BIORESOURCE TECHNOLOGY 2020; 314:123771. [PMID: 32653247 DOI: 10.1016/j.biortech.2020.123771] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Grape pomace is a high quality biodegradable residue of the winery industry. It is comprised of grape seed, skin and stalks, and is blessed with substantial quantities of phenols, flavonoids and anthocyanins with high antioxidant potential. Currently, there is huge emphasis on the isolation of bioactive molecules of grape pomace using green technologies such as microwave, ultrasound, supercritical fluids, high voltage discharge, enzymatic methods and other hybrid techniques. The major applications of these bioactives are contemplatedas nutraceuticals and extension in shelf-life of perishable foodstuffs. Alternatively, the crude form of grape pomace residues can be used for the production of energy, biofertilizers, biochar, biopolymers, composites, feed for ruminants and also, mushroom cultivation through microbial processing. This review discusses value-addition to grape pomace through biotechnological interventions and green processing, providing state-of-art knowledge on current scenario and opportunities for sustainability.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Postharvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India.
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Shikhangi Singh
- Department of Postharvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Taru Negi
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600 062, India
| |
Collapse
|
41
|
Chaves JO, de Souza MC, da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vázquez-Espinosa M, González-de-Peredo AV, Barbero GF, Rostagno MA. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem 2020; 8:507887. [PMID: 33102442 PMCID: PMC7546908 DOI: 10.3389/fchem.2020.507887] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are one of the main groups of polyphenols found in natural products. Traditional flavonoid extraction techniques are being replaced by advanced techniques to reduce energy and solvent consumption, increase efficiency and selectivity, to meet increased market demand and environmental regulations. Advanced technologies, such as microwaves, ultrasound, pressurized liquids, supercritical fluids, and electric fields, are alternatives currently being used. These modern techniques are generally faster, more environmentally friendly, and with higher automation levels compared to conventional extraction techniques. This review will discuss the different methods available for flavonoid extraction from natural sources and the main parameters involved (temperature, solvent, sample quantity, extraction time, among others). Recent trends and their industrial importance are also discussed in detail, providing insight into their potential. Thus, this paper seeks to review the innovations of compound extraction techniques, presenting in each of them their advantages and disadvantages, trying to offer a broader scope in the understanding of flavonoid extraction from different plant matrices.
Collapse
Affiliation(s)
- Jaísa Oliveira Chaves
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana Corrêa de Souza
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Laise Capelasso da Silva
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel Lachos-Perez
- Laboratory of Optimization, Design and Advanced Control - Bioenergy Research Program, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Paulo César Torres-Mayanga
- School of Food Engineering, University of Campinas, Campinas, Brazil
- Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Peru
| | | | | | | | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
42
|
Díaz-Montes E, Gutiérrez-Macías P, Orozco-Álvarez C, Castro-Muñoz R. Fractionation of Stevia rebaudiana aqueous extracts via two-step ultrafiltration process: towards rebaudioside a extraction. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Doulabi M, Golmakani M, Ansari S. Evaluation and optimization of microwave‐assisted extraction of bioactive compounds from eggplant peel by‐product. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mahsa Doulabi
- Department of Food Science and Technology, Kazerun branch Islamic Azad University Kazerun Iran
| | | | - Sara Ansari
- Department of Food Science and Technology, Kazerun branch Islamic Azad University Kazerun Iran
| |
Collapse
|
44
|
Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of Dornfelder wines elaborated in cold climate. Food Chem 2020; 339:127888. [PMID: 32866705 DOI: 10.1016/j.foodchem.2020.127888] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 01/08/2023]
Abstract
This study present the effects of different pre-treatment maceration techniques (microwave, thermo-maceration, and enzymatic treatment) on the content of phenolic compounds (by UPLC-PDA) and their redox potential by cyclic voltammetry (CV), antioxidant capacity (ABTS radical cation decolorization assay and FRAP as Ferric Reducing Ability of Plasma), and other basic chemical properties of red wine made from cv. Dornfelder. The pre-treatment maceration technique significantly (p < 0.05) affected the content of total phenolics in Dornfelder must (freshly crushed grapes), with particularly high amounts in the must pre-treated by microwaves (4344.0 mg/100 mL), and the lowest in the must pre-treatment by thermo-maceration (2979.8 mg/100 mL). A positive correlation was found between the content of total phenolics and antioxidant activity (R = 0.69 and 0.52 by ABTS and FRAP assay, respectively) and individual groups of polyphenols (for ABTS assay with anthocyanins, flavonols, flavan-3-ols, respectively R = 0.60, 0.64 and 0.66, while for FRAP method only for anthocyanins R = 0.79). The highest antioxidant activity was also determined for the variant with microwave pre-treatment (must 3.31 mM and 3.05 mM Trolox/100 mL for ABTS and FRAP assay, respectively). Following the fermentation and maturation, the amount of polyphenols decreased. No thermal pre-treatment maceration methods gave lighter or redder must. After winemaking process all the samples were characterized by less red and more yellow shade.
Collapse
|
45
|
Farooq S, Shah MA, Siddiqui MW, Dar BN, Mir SA, Ali A. Recent trends in extraction techniques of anthocyanins from plant materials. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00598-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Herrman DA, Brantsen JF, Ravisankar S, Lee KM, Awika JM. Stability of 3-deoxyanthocyanin pigment structure relative to anthocyanins from grains under microwave assisted extraction. Food Chem 2020; 333:127494. [PMID: 32663754 DOI: 10.1016/j.foodchem.2020.127494] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Sorghum derived 3-deoxyanthocyanin (DXA) pigments are stable relative to their anthocyanin analogs, and are of growing interest in food applications. However, the 3DXA are poorly extractable from grain tissue. This work aimed to determine the relative stability and extractability of sorghum 3-DXA vs anthocyanins from maize and cowpea under microwave-assisted extraction (MAE). UV-Vis and UPLC-MS/MS spectrometry were used to characterize the properties. The 3-DXA remained structurally stable to MAE conditions up to 1200 W/100 °C/30 min. MAE increased sorghum 3-DXA yield 100% versus control (3100 vs 1520 mg/g). On the other hand, both maize and cowpea anthocyanins were unstable and rapidly degraded under MAE. Cell wall-derived ferulate esters were detected in sorghum and maize MAE extracts, indicating cell wall degradation occurred during MAE. Thus the enhanced extraction of 3-DXA under MAE was due to their structural stability, along with improved diffusion from cell matrix due to microwave-induced sorghum cell wall disruption.
Collapse
Affiliation(s)
- Dorothy A Herrman
- Texas A&M University, Department of Soil & Crop Science/ Nutrition & Food Science, 2474 TAMU, College Station, TX 77843, USA; JR Simplot, Caldwell, ID 83606, USA.
| | - Julia F Brantsen
- Texas A&M University, Department of Soil & Crop Science/ Nutrition & Food Science, 2474 TAMU, College Station, TX 77843, USA.
| | - Shreeya Ravisankar
- Texas A&M University, Department of Soil & Crop Science/ Nutrition & Food Science, 2474 TAMU, College Station, TX 77843, USA; PepsiCo, 5600 Headquarters Dr, Plano, TX 75024, USA.
| | - Kyung-Min Lee
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA.
| | - Joseph M Awika
- Texas A&M University, Department of Soil & Crop Science/ Nutrition & Food Science, 2474 TAMU, College Station, TX 77843, USA; JR Simplot, Caldwell, ID 83606, USA.
| |
Collapse
|
47
|
Zia S, Khan MR, Shabbir MA, Aslam Maan A, Khan MKI, Nadeem M, Khalil AA, Din A, Aadil RM. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1772283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sania Zia
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
48
|
Castro-Muñoz R, Díaz-Montes E, Cassano A, Gontarek E. Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit Rev Food Sci Nutr 2020; 61:2152-2174. [PMID: 32496876 DOI: 10.1080/10408398.2020.1772717] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Steviol glycosides (SGs), as natural sweeteners from Stevia rebaudiana, are currently employed for replacing sugar and its derivatives in several food products and formulations. Such compounds play an essential role in human health. Their usage provides a positive effect on preventing diseases related to sugar consumption, including diabetes mellitus, cancer, and lipid metabolism disorders. The traditional extraction of SGs is performed by means of solvent extraction, which limits their application since the removal of residual solvents is a challenging task requiring further downstream purification steps. In addition, the presence of residual solvents negatively affects the quality of such compounds. Today, food technicians are looking for innovative and improved techniques for the extraction, recovery and purification of SGs. Membrane-based technologies, including microfiltration, ultrafiltration, and nanofiltration, have long been proven to be a valid alternative for efficient extraction and purification of several high added-value molecules from natural sources. Such processes and their possible coupling in integrated membrane systems have been successfully involved in recovery protocols of several compounds, such as metabolites, polyphenols, anthocyanins, natural pigments, proteins, from different sources (e.g., agro-food wastes, plant extracts, fruits, fermentation broths, among others). Herein, we aim to review the current progresses and developments about the extraction of SGs with membrane operations. Our attention has been paid to the latest insights in the field. Furthermore, key process parameters influencing the extraction and purification of SGs are also discussed in detail.
Collapse
Affiliation(s)
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, México City, México
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Rende, Italy
| | - Emilia Gontarek
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
49
|
Kalra R, Conlan XA, Goel M. Fungi as a Potential Source of Pigments: Harnessing Filamentous Fungi. Front Chem 2020; 8:369. [PMID: 32457874 PMCID: PMC7227384 DOI: 10.3389/fchem.2020.00369] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
The growing concern over the harmful effects of synthetic colorants on both the consumer and the environment has raised a strong interest in natural coloring alternatives. As a result the worldwide demand for colorants of natural origin is rapidly increasing in the food, cosmetic and textile sectors. Natural colorants have the capacity to be used for a variety of industrial applications, for instance, as dyes for textile and non-textile substrates such as leather, paper, within paints and coatings, in cosmetics, and in food additives. Currently, pigments and colorants produced through plants and microbes are the primary source exploited by modern industries. Among the other non-conventional sources, filamentous fungi particularly ascomycetous and basidiomycetous fungi (mushrooms), and lichens (symbiotic association of a fungus with a green alga or cyanobacterium) are known to produce an extraordinary range of colors including several chemical classes of pigments such as melanins, azaphilones, flavins, phenazines, and quinines. This review seeks to emphasize the opportunity afforded by pigments naturally found in fungi as a viable green alternative to current sources. This review presents a comprehensive discussion on the capacity of fungal resources such as endophytes, halophytes, and fungi obtained from a range or sources such as soil, sediments, mangroves, and marine environments. A key driver of the interest in fungi as a source of pigments stems from environmental factors and discussion here will extend on the advancement of greener extraction techniques used for the extraction of intracellular and extracellular pigments. The search for compounds of interest requires a multidisciplinary approach and techniques such as metabolomics, metabolic engineering and biotechnological approaches that have potential to deal with various challenges faced by pigment industry.
Collapse
Affiliation(s)
- Rishu Kalra
- Division of Sustainable Agriculture, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, India
| | - Xavier A Conlan
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mayurika Goel
- Division of Sustainable Agriculture, TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, India
| |
Collapse
|
50
|
Dujmić F, Kovačević Ganić K, Ćurić D, Karlović S, Bosiljkov T, Ježek D, Vidrih R, Hribar J, Zlatić E, Prusina T, Khubber S, Barba FJ, Brnčić M. Non-Thermal Ultrasonic Extraction of Polyphenolic Compounds from Red Wine Lees. Foods 2020; 9:foods9040472. [PMID: 32283874 PMCID: PMC7230992 DOI: 10.3390/foods9040472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022] Open
Abstract
This study presents the results of conventional aqueous (CE) and non-conventional ultrasound-assisted (UAE) extractions of polyphenolic compounds from lees extracts of red wine varieties (Merlot and Vranac). The effect of ultrasound extraction time (t, s), and amplitude (A,%) from a 400 W ultrasound processor with different ultrasonic probes diameters (Ds, mm) on the amount and profile of polyphenolic compounds in the obtained extracts was investigated and compared to CE. The optimal conditions resulting in maximum extraction of phenolic compounds were: Probe diameter of 22 mm, amplitude 90% and extraction time for Vranac wine lees 1500 s and for Merlot wine lees extraction time of 1361 s. UAE proved to be significantly more effective in enhancing the extraction capacity of trans-resveratrol glucoside (30.57% to 300%), trans-resveratrol (36.36% to 45.75%), quercetin (39.94% to 43.83%), kaempferol (65.13% to 72.73%), petunidin-3-glucoside (41.53% to 64.95%), malvidin-3-glucoside (47.63% to 89.17%), malvidin-3-(6-O-acetyl) glucoside (23.84% to 49.74%), and malvidin-3-(6-O-p-coumaroyl) glucoside (26.77% to 34.93%) as compared to CE. Ultrasound reduced the extraction time (2.5-fold) and showed an increase of antioxidant potential by 76.39% (DPPH) and 125.83% (FRAP) compared to CE.
Collapse
Affiliation(s)
- Filip Dujmić
- Laboratory for Thermodynamics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Karin Kovačević Ganić
- Laboratory for Technology and Analysis of Wine, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Duska Ćurić
- Laboratory for Cereal Chemistry and Technology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sven Karlović
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Tomislav Bosiljkov
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Damir Ježek
- Laboratory for Unit Operations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (S.K.); (T.B.); (D.J.)
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Janez Hribar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Emil Zlatić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (R.V.); (J.H.); (E.Z.)
| | - Tihomir Prusina
- Čitluk Winery dd, Kralja Tomislava 28, 88260 Čitluk, Bosnia and Herzegovina;
| | - Sucheta Khubber
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali 140306, Punjab, India;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
- Correspondence: (F.J.B.); (M.B.); Tel.: +34-96-3544-972 (F.J.B.); +38-5146-052-23 (M.B.); Fax: +34-96-5344-954 (F.J.B.)
| | - Mladen Brnčić
- Laboratory for Thermodynamics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
- Correspondence: (F.J.B.); (M.B.); Tel.: +34-96-3544-972 (F.J.B.); +38-5146-052-23 (M.B.); Fax: +34-96-5344-954 (F.J.B.)
| |
Collapse
|