1
|
Ma XL, Jiang GD, Wei JY, Nan ZD, Zhang CT, Song ZJ. Two new sesquiterpenes from Ainsliaea glabra. Nat Prod Res 2024:1-7. [PMID: 39659263 DOI: 10.1080/14786419.2024.2437014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Two new sesquiterpenes (1 and 2) together with seven known compounds (3-9) were isolated from the whole plant of Ainsliaea glabra Hemsl. The chemical structures were established elucidated by extensive spectroscopic analysis and comparison with the literature. All compound were tested for antimicrobial activity. Compound 8 exhibited anti-bacterial activity against Staphylococcus aureus with a MIC value of 25.0 μg/mL.
Collapse
Affiliation(s)
- Xiao-Li Ma
- Key Laboratory for Chemical Engineering and Technology of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guo-Dong Jiang
- Key Laboratory for Chemical Engineering and Technology of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Ji-Yuan Wei
- Key Laboratory for Chemical Engineering and Technology of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Ze-Dong Nan
- Key Laboratory for Chemical Engineering and Technology of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, China
| | - Chang-Ting Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhi-Jun Song
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Deng M, Yun X, Ren S, Qing Z, Luo F. Plants of the Genus Zingiber: A Review of Their Ethnomedicine, Phytochemistry and Pharmacology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092826. [PMID: 35566177 PMCID: PMC9103766 DOI: 10.3390/molecules27092826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
Plant of the genus Zingiber (Zingiberaceae) have primarily distributed in subtropical and tropical Asia, South America and Africa. The species of this genus have been widely used as food and in folk with a long history for treating various diseases. Reports related to the phytochemistry and phytochemistry of Zingiber species are numerous, but articles on the summary of the genus Zingiber remain scarce. This review aims at presenting comprehensive information about the genus Zingiber and providing a reference for the future application by systematically reviewing the literature from 1981 to 2020. Currently, a total of 447 phytochemical constituents have been isolated and identified from this genus, in which volatile oils, diarylheptanoids, gingerols, flavonoids and terpenoids are the major components. Gingerols, which are the main functional components, are the spicy and aromatic ingredients in the Zingiber species. Extracts and single compounds from Zingiber plants have been discovered to possess numerous biological functions, such as anti-inflammatory, anticancer, antimicrobial, larvicidal, antioxidant and hypoglycemic activities. This review provides new insights into the ethnomedicine, phytochemistry and pharmacology of the genus Zingiber and brings to the forefront key findings on the functional components of this genus in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Miao Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.D.); (S.R.)
| | - Xuan Yun
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Shurui Ren
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.D.); (S.R.)
| | - Zhixing Qing
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (Z.Q.); (F.L.); Tel.: +86-134-6771-5114 (Z.Q. & F.L.); Fax: +86-0731-8461-7093 (Z.Q. & F.L.)
| | - Fenglian Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.D.); (S.R.)
- Correspondence: (Z.Q.); (F.L.); Tel.: +86-134-6771-5114 (Z.Q. & F.L.); Fax: +86-0731-8461-7093 (Z.Q. & F.L.)
| |
Collapse
|
3
|
Unuofin JO, Masuku NP, Paimo OK, Lebelo SL. Ginger from Farmyard to Town: Nutritional and Pharmacological Applications. Front Pharmacol 2021; 12:779352. [PMID: 34899343 PMCID: PMC8661456 DOI: 10.3389/fphar.2021.779352] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
Ginger (Zingiber officinale) is one of the most widely used natural products consumed as a spice and medicine for treating diabetes, flatulent intestinal colic, indigestion, infertility, inflammation, insomnia, a memory booster, nausea, rheumatism, stomach ache, and urinary tract infections. To date, over 400 bioactive components, such as diarylheptanoids, gingerol analogues, phenylalkanoids, sulfonates, monoterpenoid glycosides, steroids, and terpene compounds have been derived from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially protective effects against male infertility, nausea and vomiting, analgesic, anti-diabetic, anti-inflammatory, anti-obesity, and other effects. The pharmacological activities of ginger were mainly attributed to its active phytoconstituents such as 6-gingerol, gingerdiol, gingerol, gingerdione, paradols, shogaols, sesquiterpenes, zingerone, besides other phenolics and flavonoids. In recent years, in silico molecular docking studies revealed that gingerol (6-gingerol, 8-gingerol, and 10-gingerol) and Shogaol (6-shogaol, 8-shogaol, 10-shogaol) had the best binding affinities to the receptor protein in disease conditions such as diabetes, inflammation, obesity, and SARS-CoV-2. Furthermore, some clinical trials have indicated that ginger can be consumed for alleviation of nausea and vomiting induced by surgery, pain, diabetes, obesity, inflammation, male infertility. This review provides an updated understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
| | | | - Oluwatomiwa Kehinde Paimo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
4
|
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother Res 2021; 35:711-742. [PMID: 32954562 DOI: 10.1002/ptr.6858] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/25/2022]
Abstract
Zingiber officinale Rosc. (Zingiberacae), commonly known as ginger, is a perennial and herbaceous plant with long cultivation history. Ginger rhizome is one of the most popular food spices with unique pungent flavor and is prescribed as a well-known traditional Chinese herbal medicine. To date, over 160 constituents, including volatile oil, gingerol analogues, diarylheptanoids, phenylalkanoids, sulfonates, steroids, and monoterpenoid glycosides compounds, have been isolated and identified from ginger. Increasing evidence has revealed that ginger possesses a broad range of biological activities, especially gastrointestinal-protective, anti-cancer, and obesity-preventive effects. In addition, gingerol analogues such as 6-gingerol and 6-shogaol can be rapidly eliminated in the serum and detected as glucuronide and sulfate conjugates. Structural variation would be useful to improve the metabolic characteristics and bioactivities of lead compounds derived from ginger. Furthermore, some clinical trials have indicated that ginger can be consumed for attenuating nausea and vomiting during early pregnancy; however, there is not sufficient data available to rule out its potential toxicity, which should be monitored especially over longer periods. This review provides an up-to-date understanding of the scientific evidence on the development of ginger and its active compounds as health beneficial agents in future clinical trials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujun Wei
- Basic Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Optimization of microwave-assisted extraction of phenolic compounds from ginger (Zingiber officinale Rosc.) using response surface methodology. HERBA POLONICA 2020. [DOI: 10.2478/hepo-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Ginger (Zingiber officinale Rosc.) is a common spice and precious herbal plant in Vietnam. It contains many bioactive compounds, especially phenolic compounds useful for human health. Hence, the extraction and application of these compounds in medical technology are necessary.
Objective: The goal of this study is to determine the optimal extraction conditions with the assistance of microwave, for instance solvent/material ratio (ml/g), solvent concentration (%, v/v) and extraction time, on the extraction yield of ginger rhizome, such as total polyphenol content (TPC) and antioxidant capacity (AC).
Methods: The dried sample was extracted by microwave-assisted extraction (MAE). TPC and AC of received extract were measured by the Folin-Ciocalteu method and phenanthroline assay. The optimization process used response surface methodology (RSM) (Central composite face design, CCF) with major influencing factors including solvent concentration, solvent/material ratio and extraction time.
Results: The results showed that the optimal extraction conditions were the ethanol concentration of 60%, ethanol/material ratio of 48.6/1 (ml/g), extraction time of 1 minute.
Conclusion: The maximum TPC and AC peaked at 27.89±1.99 mg GAE/g dry matter and 12.24±0.04 mmol Fe/g dry matter (DM) at optimal extraction conditions. Besides, some factors strongly affected the extraction yield and interacted together.
Collapse
|
7
|
Zhang Z, Zulfiqar F, Ali Z, Khan IA. Two undescribed paradol-related specialized metabolites from Aframomum melegueta. Nat Prod Res 2020; 35:3707-3713. [PMID: 32093489 DOI: 10.1080/14786419.2020.1731743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aframomum melegueta seeds are widely used as a spice in Africa. Two undescribed paradol-related compounds, (S)-9-hydroxy-[6]-paradol (1) and (9S)-3,9-dihydroxydihydro-[6]-paradol (2) together with eight reported constituents (3-10) were isolated and characterised from the methanol extract of A. melegueta seeds. Structure elucidation of these metabolites was achieved by means of NMR and mass spectroscopic data analyses. The absolute configuration of undescribed compounds (1 and 2) was determined using the modified Mosher's method.
Collapse
Affiliation(s)
- Zhihao Zhang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University Park, Mississippi, USA
| | - Fazila Zulfiqar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University Park, Mississippi, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University Park, Mississippi, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University Park, Mississippi, USA.,Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University Park, Mississippi, USA
| |
Collapse
|
8
|
Simon A, Darcsi A, Kéry Á, Riethmüller E. Blood-brain barrier permeability study of ginger constituents. J Pharm Biomed Anal 2020; 177:112820. [PMID: 31476432 DOI: 10.1016/j.jpba.2019.112820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Ginger, the rhizome of Zingiber officinale Roscoe is of great importance in the traditional medicine for the treatment of various diseases. More than 400 constituents have been reported in the plant, the most important ones being the gingerol and shogaol derivatives. Positive effects of ginger extracts and isolated [6]-gingerol have been proved in animal models of anxiety, Alzheimer's disease, Parkinson's disease and epilepsy. Taken in consideration these promising positive effects of ginger and its constituents in the central nervous system, the isolation of gingerol and shogaol derivatives ([6]-gingerol (1), [8]-gingerol (2), [10]-gingerol (3), [6]-shogaol (4), [10]-shogaol (5), 1-dehydro-[6]-gingerdione (6), 1-dehydro-[10]-gingerdione (7)) and investigation of their transcellular passive diffusion across the blood-brain barrier (BBB) were carried out. For this purpose, a Parallel Artificial Membrane Permeability Assay for the Blood-Brain Barrier (PAMPA-BBB) was chosen that had previously been validated for natural compounds. Based on our results, [6]-gingerol, [8]-gingerol and [6]-shogaol were found to be able to penetrate the BBB via passive diffusion, suggesting them to contribute to the positive effects of ginger extracts in the central nervous system.
Collapse
Affiliation(s)
- Alexandra Simon
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - András Darcsi
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Ágnes Kéry
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary
| | - Eszter Riethmüller
- Department of Pharmacognosy, Semmelweis University, Budapest H-1085, Hungary.
| |
Collapse
|
9
|
Pan D, Zeng C, Zhang W, Li T, Qin Z, Yao X, Dai Y, Yao Z, Yu Y, Yao X. Non-volatile pungent compounds isolated from Zingiber officinale and their mechanisms of action. Food Funct 2019; 10:1203-1211. [PMID: 30741292 DOI: 10.1039/c8fo02019a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, an efficient strategy developed by integrating UPLC-Q/TOF-MS, network pharmacology, and molecular simulation, was proposed and applied for rapidly screening bioactive candidates from ginger. A UPLC-Q/TOF MS-guided isolation targeting non-volatile pungent compounds resulted in the isolation and identification of 19 compounds in the rhizome of Zingiber officinale, including six new compounds (1-6). Based on target prediction and Gene Ontology (GO), the primary biological function of compounds was predicted to be associated with cancer and the key target was VEGFR2 (vascular endothelial growth factor receptor 2). Moreover, cytotoxic activity assays demonstrated that the isolated compounds had potential anti-proliferative effects on MDA-MB-231, A549 and HCT116 cells. In particular, compounds 7 and 8 exhibited the highest cytotoxicity against HCT116 compared with the other cell lines, with IC50 values ranging from 4.70 to 7.40 μM. In addition, VEGFR2 inhibition of compounds 7 and 8 was validated based on enzyme activity assays and their interaction mechanisms were illuminated through molecular simulations. These experimental data are consistent with the calculated results, indicating the veracity of the proposed method. In conclusion, the integrated strategy is a quick and efficient way to explore bioactive compounds as well as research the possible targets, providing us with a good possibility of screening new lead compounds from natural sources.
Collapse
Affiliation(s)
- Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nishidono Y, Saifudin A, Nishizawa M, Fujita T, Nakamoto M, Tanaka K. Identification of the Chemical Constituents in Ginger (Zingiber officinale) Responsible for Thermogenesis. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To compare the thermogenic properties of crude drugs derived from ginger, the activities to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) of methanol extracts of “Shokyo” (dried rhizome of Z. officinale var. rubens), “Kankyo” (steamed and dried rhizome of Z. officinale var. rubens), “Red ginger” (Indonesian dried rhizome of Z. officinale var. rubrum) and “White ginger” (Indonesian dried rhizome of Z. officinale var. amarum), were examined. The extracts of the four specimens were analyzed by liquid chromatography mass spectrometry (LC-MS). The results showed that “Shokyo” and “White ginger” strongly stimulated PGC-1α and that the amount of [10]-shogaol (6) in these was higher than in “Kankyo” and “Red ginger”. Gingerol-related compounds were isolated or prepared in order to identify the compounds responsible for stimulating PGC-1α. As a result, [10]-gingerol (3), [10]-shogaol (6), [10]-gingerdiols (11, 12) and [10]-gingerdiols 3,5-diacetate (17, 18) were identified as the active constituents, while the main constituents, [6]-gingerol (1) and [6]-shogaol (4), did not show any significant PGC-1α activity. These results suggest that gingerol-related compounds with long alkyl side chains contribute to the thermogenic properties of ginger.
Collapse
Affiliation(s)
- Yuto Nishidono
- College of Pharmaceutical Science, Ritsumeikan University, 1–1–1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Azis Saifudin
- Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Pabelan, KTS Solo, Jawa Tengah 57102, Indonesia
| | - Mikio Nishizawa
- Graduate School of Life Sciences, Ritsumeikan University, 1–1–1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takashi Fujita
- College of Pharmaceutical Science, Ritsumeikan University, 1–1–1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Masatoshi Nakamoto
- College of Pharmaceutical Science, Ritsumeikan University, 1–1–1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Ken Tanaka
- College of Pharmaceutical Science, Ritsumeikan University, 1–1–1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
11
|
Zhang F, Thakur K, Hu F, Zhang JG, Wei ZJ. Cross-talk between 10-gingerol and its anti-cancerous potential: a recent update. Food Funct 2017; 8:2635-2649. [PMID: 28745358 DOI: 10.1039/c7fo00844a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Since time immortal, ginger, as an ancient herb, has been used throughout the world in foods and beverages due to its typical strong and pungent flavor. Besides its use as a spice, it also serves as an excellent source of several bioactive phenolics, including nonvolatile pungent compounds, such as gingerols, paradols, shogaols, and gingerones. Gingerols constitute key ingredients in fresh ginger, with the most abundant being 6-gingerol (6-G), 8-gingerol (8-G), and 10-gingerol (10-G). Many studies have investigated the various valuable pharmacological properties of these ingredients and experimentally verified the mechanistic aspects of their health effects; however, to date, most research on the anti-cancerous activities of gingerols have focused largely on 6-G. Thus, the present article deals with the number of recent studies that have indicated and highlighted the role of 10-G with respect to its cancer prevention attributes in particular and its anti-inflammatory, anti-oxidant, anti-microbial, and gastrointestinal tract protective potential in general. The purpose of this review is to provide an overview of all the experimentally validated health benefits of 10-G for nutraceutical applications. The various findings have warranted the further investigation of 10-G and its possible use in various cancer treatments as well as its promising role as a chemo-preventive agent.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
12
|
El-Naggar MH, Mira A, Abdel Bar FM, Shimizu K, Amer MM, Badria FA. Synthesis, docking, cytotoxicity, and LTA 4 H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy. Bioorg Med Chem 2017; 25:1277-1285. [DOI: 10.1016/j.bmc.2016.12.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023]
|
13
|
|
14
|
Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: Important nutraceutical principles from ginger. PHYTOCHEMISTRY 2015; 117:554-568. [PMID: 26228533 DOI: 10.1016/j.phytochem.2015.07.012] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/17/2015] [Accepted: 07/15/2015] [Indexed: 05/09/2023]
Abstract
Gingerols are the major pungent compounds present in the rhizomes of ginger (Zingiber officinale Roscoe) and are renowned for their contribution to human health and nutrition. Medicinal properties of ginger, including the alleviation of nausea, arthritis and pain, have been associated with the gingerols. Gingerol analogues are thermally labile and easily undergo dehydration reactions to form the corresponding shogaols, which impart the characteristic pungent taste to dried ginger. Both gingerols and shogaols exhibit a host of biological activities, ranging from anticancer, anti-oxidant, antimicrobial, anti-inflammatory and anti-allergic to various central nervous system activities. Shogaols are important biomarkers used for the quality control of many ginger-containing products, due to their diverse biological activities. In this review, a large body of available knowledge on the biosynthesis, chemical synthesis and pharmacological activities, as well as on the structure-activity relationships of various gingerols and shogaols, have been collated, coherently summarised and discussed. The manuscript highlights convincing evidence indicating that these phenolic compounds could serve as important lead molecules for the development of therapeutic agents to treat various life-threatening human diseases, particularly cancer. Inclusion of ginger or ginger extracts in nutraceutical formulations could provide valuable protection against diabetes, cardiac and hepatic disorders.
Collapse
Affiliation(s)
- Ruchi Badoni Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Deepak Kumar Semwal
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
Villalvilla A, da Silva JA, Largo R, Gualillo O, Vieira PC, Herrero-Beaumont G, Gómez R. 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity. Mol Nutr Food Res 2014; 58:256-66. [PMID: 24039109 DOI: 10.1002/mnfr.201200833] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/08/2013] [Accepted: 06/30/2013] [Indexed: 01/27/2023]
Abstract
SCOPE Ginger has long been used in traditional Asian medicine to treat osteoarthritis. Indeed, scientific research has reported that ginger derivatives (GDs) have the potential to control innate immune responses. Given the widespread use and demonstrated properties of GDs, we set out to study their anti-inflammatory and anticatabolic properties in chondrocytes. METHODS AND RESULTS 6-shogaol (6-S), the most active GD, was obtained from ginger. 6-S was not toxic as measured by MTT assay, and inhibited NO production and IL-6 and MCP-1 induced gene expression in LPSbut not in IL-1β-stimulated chondrocytes. 6-S also inhibited LPS-mediated ERK1/2 activation as well as NOS2 and MyD88 induced expression as determined by Western blot. Moreover, zymography revealed that 6-S inhibited matrix metalloproteinases (MMP) 2/9 induction in LPS-treated cells. Hydrated 6-S was modified to obtain a compound (SSi6) without 6-S potential anti-inflammatory properties. Both 6-S and SSi6 inhibited cathepsin-K activity. CONCLUSION 6-S blocked TLR4-mediated innate immune responses and MMP induction in chondrocytes. These results, together with GDs-mediated cathepsin-K inhibition, suggest the potential for GDs use against cartilage and bone degradation. Therefore, considering that clinical trials involving oral administration of ginger achieved relevant nontoxic GDs serum concentrations, we suggest that a ginger-supplemented diet might reduce OA symptoms.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Lab, IIS-Fundación Jiménez Díaz, Avda Reyes Católicos, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Almada da Silva J, Becceneri AB, Sanches Mutti H, Moreno Martin ACB, Fernandes da Silva MFDG, Fernandes JB, Vieira PC, Cominetti MR. Purification and differential biological effects of ginger-derived substances on normal and tumor cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 903:157-62. [PMID: 22858304 DOI: 10.1016/j.jchromb.2012.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
Abstract
This study describes an optimization of [6]-, [8]- and [10]-gingerol isolation and purification in semi-preparative HPLC scale and their anti-proliferative activity. The gingerols purification was carried out in HPLC system using a Luna-C₁₈ and the best mobile phase evaluated was MeOH/H₂O (75:25, v/v). This new methodology for the gingerols isolation was very effective, since considerable amounts (in the range of milligrams) with a good purity degree (∼98%) were achieved in 30 min of chromatographic run. [6]-, [8]- and [10]-Gingerol purified by this methodology inhibited the proliferation of MDA-MB-231 tumor cell line with IC₅₀ of 666.2±134.6 μM, 135.6±22.6 μM and 12.1±0.3 μM, respectively. These substances also inhibited human fibroblasts (HF) cell proliferation, however in concentrations starting from 500 μM. In conclusion, our results demonstrate an optimization of gingerols isolation and their specific anti-proliferative activities against tumor cells, suggesting their use as important models for drug design in an attempt to develop new compounds with fewer side effects when compared to conventional chemotherapy.
Collapse
Affiliation(s)
- James Almada da Silva
- Departamento de Química, Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|