1
|
Kim H, Kim E, Na J, Lim S, Ban C. Effects of chain length and saturation of triacylglycerols on the characteristics and gastrointestinal digestion fates of curcumin-loaded triacylglycerol nanoparticles. Food Chem 2024; 460:140390. [PMID: 39047482 DOI: 10.1016/j.foodchem.2024.140390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
This study assessed the effects of fatty acid length and saturation on the physicochemical, thermal, and gastrointestinal digestive characteristics of curcumin-loaded homo-triacylglycerol nanoparticles (C-NPs). All C-NPs had good colloidal stability and efficiently entrapped curcumin, regardless of their length and saturation. Tricaprylin NPs, with shorter chains, had a smaller size and emulsifier surface load. Curcumin was released faster from low-melting C-NPs (tricaprylin and triolein) than those with high-melting-point (trimyristin, tripalmitin, and tristearin); however, both were negligible without lipolysis. None of the C-NPs underwent significant aggregation, coalescence, or breakdown during digestion before the small intestine. Notably, longer and more saturated chains resulted in a slower initial rate and lower degree of lipolysis in the small intestine. However, greater bioaccessibility of curcumin was observed only with longer chains (tricaprylin, 70.72%; trimyristin, 78.05%; tripalmitin, 85.09%; tristearin, 89.65%; triolein, 89.71%). These findings could be valuable for the development of rational curcumin formulations for functional foods.
Collapse
Affiliation(s)
- Hyeongjin Kim
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Junhyeok Na
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, Gachon University, 1342, Seongnam-daero Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
2
|
Pehlivanoğlu H, Aksoy A, Uzun S, Yaman M, Palabıyık İ. Investigation of formation of AGEs precursors, hydroxymethylfurfural and malondialdehyde in oleogel added cakes using an in vitro simulated gastrointestinal digestive system. Food Chem 2024; 457:140179. [PMID: 38924919 DOI: 10.1016/j.foodchem.2024.140179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The baking process has the potential to generate health-risk compounds, including products from lipid oxidation and Maillard reaction. Pre- and post-digestion levels of hydroxymethylfurfural (HMF), malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) were studied in cakes formulated with hazelnut and sunflower oil, along with their oleogels as margarine substitutes. The concentration of HMF in oil and oleogel-formulated cakes increased after digestion compared to cakes formulated with margarine. The MDA values were between 82 and 120 μg/100 g in oil and oleogel formulated cakes before digestion and a decrease was observed after digestion. The substitution of margarine with oil and oleogels resulted in the production of high amounts of GO and MGO in cakes. However, the highest bioaccessibility as 318.2% was found in cakes formulated by margarine for GO. Oleogels may not pose a potential health benefit compared to margarines due to the formation of HMF, MDA, GO, and MGO.
Collapse
Affiliation(s)
- Halime Pehlivanoğlu
- Tekirdag Namik Kemal University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Tekirdag, Turkey.
| | - Aslı Aksoy
- Haliç University, Faculty of Fine Arts, Department of Gastronomy and Culinary Arts, Istanbul, Turkey
| | - Suzan Uzun
- Tekirdag Namik Kemal University, Agricultural Faculty, Food Engineering Department, Tekirdag, Turkey
| | - Mustafa Yaman
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - İbrahim Palabıyık
- Tekirdag Namik Kemal University, Agricultural Faculty, Food Engineering Department, Tekirdag, Turkey
| |
Collapse
|
3
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhang R, Corstens M, Luo Z, Cao J, Schroen K. Effect of pH on the emulsifying performance of protein-polysaccharide complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7649-7655. [PMID: 38767462 DOI: 10.1002/jsfa.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Protein-polysaccharide complexes have been successfully used for emulsion stabilization. However, it is unclear how the complex's surface charge influences aggregation stability and coalescence stability of emulsions, and whether a low charged interfacial film can still maintain the coalescence stability of oil droplets. In the present study, the effects of pH (around the pI of protein) on the aggregation and coalescence stability of emulsions were investigated. RESULTS Whey protein isolate (WPI) and peach gum polysaccharides (PGP) complexes (WPI-PGP complexes) were synthesized at pH 3, 4 and 5. Their sizes were 598, 274 and 183 nm, respectively, and their ζ-potentials were +2.9, -8.6 and -22.8 mV, respectively. Interface rheological experiments showed that WPI-PGP complex at pH 3 had the lowest interfacial tension, and formed the softest film compared to the complexes at pH 4 and 5. Microfluidic experiments showed that all WPI-PGP complexes were able to stabilize droplets against coalescence within short timescales (milliseconds). At pH 3, no coalescence was observed even under conditions where the continuous phase flow influenced the shape of oil droplets (from spheres to ellipsoids). At pH 4 and 5, the model emulsions were stable over 16 days of storage, extensive aggregation and creaming occurred at pH 3 after 8 days. Importantly, no coalescence took place. CONCLUSION The present study confirmed that the aggregation stability of the emulsions was mainly determined by the surface charge of the complex, whereas the coalescence stability of emulsions is expectedly determined by steric repulsion, providing new insights into how to prepare stable food emulsions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruyuan Zhang
- College of Biological Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- Department of Agrotechnology and Food, Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Meinou Corstens
- Department of Agrotechnology and Food, Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiarui Cao
- Department of Agrotechnology and Food, Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - Karin Schroen
- Department of Agrotechnology and Food, Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Jose AD, Foo KL, Hu G, Ngar L, Ryda B, Jaiswal J, Wu Z, Agarwal P, Thakur SS. Design and evaluation of curcumin-loaded poloxamer hydrogels as injectable depot formulations. Eur J Pharm Biopharm 2024; 201:114372. [PMID: 38897552 DOI: 10.1016/j.ejpb.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Poloxamer hydrogels are of interest as injectable depot delivery systems. However, their use for delivering hydrophobic drugs, such as curcumin, is limited due to poor loading capacity. Here, we evaluated the influence of incorporating hydrophobic medium chain triglycerides (MCT) or amphiphilic polyethylene glycol 400 (PEG400) on the physicochemical properties, drug loading, and in vitro compatibility of a curcumin-loaded poloxamer hydrogel. Poloxamer 407 and 188 hydrogel formulations (16:6 w/w) were prepared and MCT and PEG400 (saturated with curcumin) were added to these systems, either alone or in combination, up to a 10 % w/w additive solvent load. Formulation viscoelasticity, gelation behaviour, injectability, morphology and release profiles were assessed. The cytocompatibility of the formulations was also assessed on dermal fibroblasts (HDFn). Both additives increased curcumin loading into the formulation. Addition of MCT to the hydrogel significantly increased its gelation speed, while PEG400 had a less profound impact. Both additive solvents increased the force required to inject the formulation. PEG400 containing systems were single phase, whereas MCT addition created emulsion systems. All formulations released ∼20-30 % of their loaded curcumin in a sustained fashion over 24 h. The modified hydrogel systems showed good biocompatibility on cells when administering up to ∼100-150 µM curcumin into the culture. This study addresses a key limitation in loading hydrophobic drugs into hydrogels and provides a strategy to enhance drug loading and performance of hydrogels by integrating additives such as MCT and PEG400 into the systems.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kea Leigh Foo
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Grace Hu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Linda Ngar
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Bovinae Ryda
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
6
|
Wang N, Liu B, Wang D, Xing K, Wang W, Wang T, Yu D. Oil-in-water and oleogel-in-water emulsion encapsulate with hemp seed oil containing Δ 9-tetrahydrocannabinol and cannabinol: Stability, degradation and in vitro simulation characteristics. Food Chem 2024; 444:138633. [PMID: 38330607 DOI: 10.1016/j.foodchem.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyu Liu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield S10 2TNc, United Kingdom
| | - Kaiwen Xing
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wen Wang
- Heilongjiang Nongtou Bio-industry Investment Co., Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Lin Z, Li J, Huang Q. Characterizations on a GRAS Electrospun Lipid-Polymer Composite Loaded with Tetrahydrocurcumin. Foods 2024; 13:1672. [PMID: 38890901 PMCID: PMC11172270 DOI: 10.3390/foods13111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Electrospun/sprayed fiber films and nanoparticles were broadly studied as encapsulation techniques for bioactive compounds. Nevertheless, many of them involved using non-volatile toxic solvents or non-biodegradable polymers that were not suitable for oral consumption, thus rather limiting their application. In this research, a novel electrospun lipid-polymer composite (ELPC) was fabricated with whole generally recognized as safe (GRAS) materials including gelatin, medium chain triglyceride (MCT) and lecithin. A water-insoluble bioactive compound, tetrahydrocurcumin (TC), was encapsulated in the ELPC to enhance its delivery. Confocal laser scanning microscopy (CLSM) was utilized to examine the morphology of this ELPC and found that it was in a status between electrospun fibers and electrosprayed particles. It was able to form self-assembled emulsions (droplets visualized by CLSM) to deliver active compounds. In addition, this gelatin-based ELPC self-assembled emulsion was able to form a special emulsion gel. CLSM observation of this gel displayed that the lipophilic contents of the ELPC were encapsulated within the cluster of the hydrophilic gelatin gel network. The FTIR spectrum of the TC-loaded ELPC did not show the fingerprint pattern of crystalline TC, while it displayed the aliphatic hydrocarbon stretches from MCT and lecithin. The dissolution experiment demonstrated a relatively linear release profile of TC from the ELPC. The lipid digestion assay displayed a rapid digestion of triglycerides in the first 3-6 min, with a high extent of lipolysis. A Caco-2 intestinal monolayer transport study was performed. The ELPC delivered more TC in the upward direction than downwards. MTT study results did not report cytotoxicity for both pure TC and the ELPC-encapsulated TC under 15 μg/mL. Caco-2 cellular uptake was visualized by CLSM and semi-quantified to estimate the accumulation rate of TC in the cells over time.
Collapse
Affiliation(s)
- Zhenyu Lin
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Jun Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Kuo YL, Chou YJ, Hu JY, Ting Y. Pickering emulsion emulsified using novel cellulose nanofibers significantly lowers the lipid release rate and cellular absorption. Food Funct 2024; 15:4399-4408. [PMID: 38563197 DOI: 10.1039/d3fo05219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A Pickering emulsion is an emulsion system stabilized by solid particles and represents a promising candidate for emulsifying lipids. Cellulose nanofibers (CNFs) have excellent ability to control the lipid release rate. This study aims to find the optimal formulation for a nanocellulose-stabilized Pickering emulsion that is the most effective in reducing the lipid release rate. The Pickering emulsion was prepared by homogenizing pretreated nanocellulose with medium-chain triglycerides using high-speed and ultrasonic homogenizers. The results show that the Pickering emulsion with 0.709% nanocellulose and 30.6% medium-chain fatty acid content yielded an average particle size of approximately 2.5 μm, which is the most stable and effective in reducing the amount of the lipids released. The nanocellulose Pickering emulsion formulation developed in this study forms a significant foundation for future research and applications regarding the use of nanotechnology and Pickering emulsions to maintain the balance between one's health and the desirable flavor of fat.
Collapse
Affiliation(s)
- Yin-Liang Kuo
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Yu-Jou Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Jing-Yu Hu
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| | - Yuwen Ting
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan.
| |
Collapse
|
9
|
Cofrades S, Gómez-Estaca J, Álvarez MD, Garcimartín A, Macho-González A, Benedí J, Pintado T. Influence of the Oil Structuring System on Lipid Hydrolysis and Bioaccessibility of Healthy Fatty Acids and Curcumin. Gels 2023; 10:33. [PMID: 38247756 PMCID: PMC10815158 DOI: 10.3390/gels10010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Oleogels (OG) and gelled emulsions (GE) were elaborated with a mixture of olive and chia oils (80:20 ratio) without and with the incorporation of the health-related compound curcumin. These were studied to evaluate the influence of the oil structuring system on the lipid hydrolysis and bioaccessibility of three healthy fatty acids (FA) (palmitic, oleic, and α-linolenic acids) and of curcumin, compared to the oil mixture (bulk oil, BO). The oil structuring system influenced the firmness and texture, and the presence of curcumin significantly altered the color parameters. GE showed higher lipid digestibility, with a greater proportion of absorbable fraction (higher content of free FA and monoacylglycerides) than OG, which behaved similarly to BO. The presence of curcumin affected the degree of lipolysis, reducing lipid digestibility in OG and increasing it in GE. As for FA bioaccessibility, although GE presented higher percentages overall, curcumin significantly increased and decreased FA bioaccessibility in OG and GE, respectively. The oil structuring system also influenced the bioaccessibility of curcumin, which was higher in GE. Therefore, when selecting an oil structuring system, their physicochemical properties, the degree of lipid hydrolysis, and the bioaccessibility of both curcumin and the FA studied should all be considered.
Collapse
Affiliation(s)
- Susana Cofrades
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - María Dolores Álvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Adrián Macho-González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (A.M.-G.); (J.B.)
| | - Tatiana Pintado
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (J.G.-E.); (M.D.Á.)
| |
Collapse
|
10
|
Chen L, Lin S, Sun N. Food gel-based systems for efficient delivery of bioactive ingredients: design to application. Crit Rev Food Sci Nutr 2023; 64:13193-13211. [PMID: 37753779 DOI: 10.1080/10408398.2023.2262578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Food gels derived from natural biopolymers are valuable materials with significant scientific merit in the food industry because of their biocompatibility, safety, and environmental friendliness compared to synthetic gels. These gels serve as crucial delivery systems for bioactive ingredients. This review focuses on the selection, formulation, characterization, and behavior in gastrointestinal of hydrogels, oleogels, and bigels as delivery systems for bioactive ingredients. These three gel delivery systems exhibit certain differences in composition and can achieve the delivery of different bioactive ingredients. Hydrogels are suitable for delivering hydrophilic ingredients. Oleogels are an excellent choice for delivering lipophilic ingredients. Bigels contain both aqueous and oil phases, whose gelation makes their structure more stable, demonstrating the advantages of the above two types of gels. Besides, the formation and properties of the gel system are confirmed using different characterization methods. Furthermore, the changing behavior (e.g., swelling, disintegration, collapse, erosion) of the gel structure in the gastrointestinal is also analyzed, providing an opportunity to formulate soft substances that offer better protection or controlled release of bioactive components. This can further improve the transmissibility and utilization of bioactive substances, which is of great significance.
Collapse
Affiliation(s)
- Lei Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
11
|
Xu Y, Sun L, Zhuang Y, Gu Y, Cheng G, Fan X, Ding Y, Liu H. Protein-Stabilized Emulsion Gels with Improved Emulsifying and Gelling Properties for the Delivery of Bioactive Ingredients: A Review. Foods 2023; 12:2703. [PMID: 37509795 PMCID: PMC10378947 DOI: 10.3390/foods12142703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.
Collapse
Affiliation(s)
- Yuan Xu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Feng K, Duan Y, Zhang H, Xiao J, Ho CT, Huang Q, Cao Y. Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food Funct 2023; 14:6212-6225. [PMID: 37345830 DOI: 10.1039/d3fo00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yashan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
13
|
Jiang W, Wang J, Yuan D, Gao Z, Hu B, Li Y, Wu Y. Fabrication, characterization and emulsifying properties of agarose microgel. Int J Biol Macromol 2023; 241:124565. [PMID: 37100331 DOI: 10.1016/j.ijbiomac.2023.124565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Agarose microgels were prepared with bottom-up approach, and the emulsifying properties of agarose microgels were investigated. Physical properties of microgels are varied with agarose concentration, and further affect the emulsifying performance of microgels. Enhanced surface hydrophobicity index and decreased particle size of microgels was recorded with the increasing of agarose concentration, which was conducive to emulsifying properties of microgels. Improved interfacial adsorption of microgels was evidenced by Dynamic surface tension and SEM. However, microscopic morphology of microgel at O/W interface indicated that increasing agarose concentration could weaken the deformability of microgels. The influence of external conditions (pH and NaCl) on the physical properties of microgels were investigated, and their effects on the emulsion stability were evaluated. Compared with acidification, NaCl was appeared to be more destructive to emulsion stability. Results indicated acidification and NaCl could decrease surface hydrophobicity index of microgels, but there was differentiation in the variation of particle size. It was inferred that deformability of microgels could make contribution to the stability of emulsion. This study verified that microgelation was a feasible scheme to improve the interfacial properties of agarose, and the influence of agarose concentration, pH, and NaCl on the emulsifying performance of microgels was investigated.
Collapse
Affiliation(s)
- Wenxin Jiang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Jing Wang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Dan Yuan
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China.
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| | - Yuehan Wu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, PR China
| |
Collapse
|
14
|
Machado M, Sousa SC, Rodríguez-Alcalá LM, Pintado M, Gomes AM. Bigels as Delivery Systems of Bioactive Fatty Acids Present in Functional Edible Oils: Coconut, Avocado, and Pomegranate. Gels 2023; 9:gels9040349. [PMID: 37102961 PMCID: PMC10137725 DOI: 10.3390/gels9040349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Bioactive fatty acids possess several benefits for human health; however, these molecules show a reduced oxidative stability and consequently reduced bioavailability. This work aimed to develop novel bigels as a strategy to protect bioactive fatty acids present in three different vegetable oils with nutritional attributes (coconut oil, avocado oil, and pomegranate oil) during passage through the gastrointestinal tract (GIT). Bigels were prepared using monoglycerides-vegetable oil oleogel and carboxymethyl cellulose hydrogel. These bigels were analyzed in terms of structure and rheological characteristics. According to the rheological properties, bigels exhibited a solid-like behavior since G' was higher than G". The results showed that the proportion of oleogel was essential to the viscosity of the final formulation as an increase in this fraction was responsible for an increase in viscosity. The fatty acids profile was evaluated before and after simulated GIT. The bigels protected the fatty acids against degradation; in the case of coconut oil, the reduction of key fatty acids was 3 times lower; for avocado oil, 2 times lower; and for pomegranate oil, 1.7 times lower. These results suggest that bigels can be used as part of an important strategy for bioactive fatty acid delivery for food applications.
Collapse
Affiliation(s)
- Manuela Machado
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Cruz Sousa
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís Miguel Rodríguez-Alcalá
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- CBQF Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
15
|
Lipolytic behavior and bioaccessibility of curcumin nanoemulsions stabilized by rice bran protein hydrolysate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
16
|
Li J, Zhai J, Chang C, Yang Y, Drummond CJ, Conn CE. Protective effect of surfactant modified phytosterol oleogels on loaded curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:135-142. [PMID: 35833377 DOI: 10.1002/jsfa.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Oleogels represent one of the most important carriers for the delivery of lipophilic nutraceuticals. Phytosterols (PS), plant-derived natural sterol compounds, are preferred for oleogel preparation due to their self-assembly properties and health function. However, the relationship between the physical properties of PS-based oleogels and the chemical stability of loaded bioactive compounds is still unclear. RESULTS The influence of lecithin (LC) and glycerol monostearate (GMS) on the physical properties of PS-based oleogels made of liquid coconut oil and the stability of curcumin as a model bioactive loaded in the oleogels was investigated. Results showed that the flow consistency index was much higher for GMS-containing oleogels than that for LC-containing oleogels. The optical microscopy and X-ray scattering analysis showed that the addition of GMS in the PS oleogels promoted the formation of a crystal mixture with different crystal polymorph structures, whereas LC addition promoted the formation of needle-like crystals of PS. Using curcumin as a model lipophilic nutraceutical, the GMS-enriched PS oleogels with high crystallinity and flow consistency index exhibited a good retention ratio and scavenging activity of the loaded curcumin when stored at room temperature. CONCLUSION This study shows that enhancing the firmness of oleogels made from PS and liquid coconut oil is beneficial to the retention and chemical stability of a loaded bioactive (curcumin). The findings of the study will boost the development of PS-based oleogel formulations for lipophilic nutraceutical delivery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
17
|
Yuan J, Yan P, Liu X, Kang X, Jin Y, Sheng L, Xia J. Enhancing solid-like characteristics of porcine plasma protein-carrageenan-based high internal phase emulsion: As solid fat alternative of loading curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Oleogels-Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022; 12:foods12010131. [PMID: 36613347 PMCID: PMC9818335 DOI: 10.3390/foods12010131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions.
Collapse
|
19
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
20
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Arora A, Kumar S, Kumar S, Kumar R, Prasad AK. Chemical Features and Therapeutic Applications of Curcumin (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222090201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
22
|
Curcumin loaded core-shell biopolymers colloid and its incorporation in Indian Basmati rice: An enhanced stability, anti-oxidant activity and sensory attributes of fortified rice. Food Chem 2022; 387:132860. [DOI: 10.1016/j.foodchem.2022.132860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
|
23
|
Zhang Y, Yang Y, Mao Y, Zhao Y, Li X, Hu J, Li Y. Effects of mono- and di-glycerides/phospholipids (MDG/PL) on the bioaccessibility of lipophilic nutrients in a protein-based emulsion system. Food Funct 2022; 13:8168-8178. [PMID: 35822541 DOI: 10.1039/d2fo01190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipophilic nutrients are known to have relatively poor absorption, thus limiting their bioaccessibility. Consequently, researchers in food and pharmaceutical areas are exploring different techniques to promote the efficient delivery of lipophilic nutrients. The effects of two polar lipids, namely mono-, di-glycerides (MDG) and lecithin (PL), on the bioaccessibility of lipophilic nutrients were investigated in this study with a protein-based emulsion model system. During the emulsion preparation and formation, the incorporation of MDG/PL was found to benefit the dissolution and stabilization of lipophilic nutrients, such as lutein, and could also modify the construction of the emulsion surface. An in vitro digestion study showed that the use of MDG/PL could significantly increase the bioaccessibility of lipophilic nutrients [lutein, vitamin E, and docosahexaenoic acid (DHA)] by 13.52%, 186.90%, and 36.17% in a protein-based emulsion system. The use of MDG and PL decreased the interfacial tension in all the samples: protein only 20.65 mN m-1, protein-PL 6.47 mN m-1, and protein-MDG/PL 4.23 mN m-1, as well as 12.11 mN m-1, 1.26 mN m-1 and 1.16 mN m-1 with the presence of bile salts. Caco-2 cell culture results showed that, with the application of MDG/PL, the absorption rate of micelles was higher than that in the other groups and this resulted in a 70% absorption increase for lutein. Therefore, MDG/PL can improve the lipophilic nutrient absorption via promoting the affinity of formed micelles to the enterocytes of the small intestine. This study exhibited the effectiveness of MDG/PL on improving the bioaccessibility of lipophilic nutrients in a protein-based emulsion system mimicking the digestion and absorption fate of breast milk in an infant's gastric intestinal tract, thus suggesting that MDG/PL can be used as a technical pathway to improve the absorption of lipophilic nutrients.
Collapse
Affiliation(s)
- Yingzhu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ying Yang
- Abbott Nutrition Research & Development Center, Abbott Ltd, Shanghai 200233, People's Republic of China
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Abbott Ltd, Shanghai 200233, People's Republic of China
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Abbott Ltd, Shanghai 200233, People's Republic of China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Abbott Ltd, Shanghai 200233, People's Republic of China
| | - Junjie Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| |
Collapse
|
24
|
Kavimughil M, Leena MM, Moses JA, Anandharamakrishnan C. 3D printed MCT oleogel as a co-delivery carrier for curcumin and resveratrol. Biomaterials 2022; 287:121616. [PMID: 35716629 DOI: 10.1016/j.biomaterials.2022.121616] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Designing a suitable matrix to protect sensitive bioactive compounds is an important stage in nutraceutical development. In this study, emulsion templated medium-chain triglycerides (MCT) oleogel was developed as co-delivery carriers for synergistic nutraceuticals, curcumin, and resveratrol and to 3D print in customized shapes for personalized nutrition. To obtain the stable emulsion, gelatin and gellan gum were added such that their protein-polysaccharide interaction helps in the structuring of the oil phase. Increasing the amount of gellan gum had a positive effect on stabilizing the emulsion but became the critical parameter during 3D printing. Hence, gellan gum of 1.5% (w/v) and gelatin at 10% (w/v) of water were considered optimum to produce a stable 30% O/W emulsion for 3D printing. Upon analyzing the in-vitro digestion behavior of the oleogel, it was observed that the bioactives were protected under oral and gastric conditions and allowed intestinal targeted delivery. The total bioaccessible fraction increased up to 1.13-fold and 1.2-fold for curcumin and resveratrol respectively compared to control (MCT oil). The FFAs release profile also indicated that gelators play an important role in lipase activity. Also, the ex-vivo everted gut sac analysis showed enhanced permeation of about 1.83 times and 1.13 times for curcumin and resveratrol respectively. Thus, this study provides useful insights into the 3D printing of emulsion templated oleogel as personalized nutraceutical carriers.
Collapse
Affiliation(s)
- M Kavimughil
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India.
| |
Collapse
|
25
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Water‐in‐oleogel emulsion based on γ‐oryzanol and phytosterol mixtures: Challenges and its potential use for the delivery of bioactives. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto Porto Portugal
- INL—International Iberian Nanotechnology Laboratory Braga Portugal
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory Braga Portugal
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory Braga Portugal
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering University of Porto Porto Portugal
| | | |
Collapse
|
26
|
Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Palla CA, Dominguez M, Carrín ME. Recent advances on food‐based applications of monoglyceride oleogels. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camila A. Palla
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - Martina Dominguez
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| | - María Elena Carrín
- Departamento de Ingeniería Química Universidad Nacional del Sur (UNS) Bahía Blanca Argentina
- Planta Piloto de Ingeniería Química PLAPIQUI (UNS‐CONICET) Bahía Blanca Argentina
| |
Collapse
|
28
|
Sivakanthan S, Fawzia S, Madhujith T, Karim A. Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. Compr Rev Food Sci Food Saf 2022; 21:3507-3539. [PMID: 35591753 DOI: 10.1111/1541-4337.12966] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
Conventional solid fats play a crucial role as an ingredient in many processed foods. However, these fats contain a high amount of saturated fats and trans fats. Legislations and dietary recommendations related to these two types of fats set forth as a consequence of evidence showing their deleterious health impact have triggered the attempts to find alternate tailor-made lipids for these solid fats. Oleogels is considered as a novel alternative, which has reduced saturated fat and no trans fat content. In addition to mimicking the distinctive characteristics of solid fats, oleogels can be developed to contain a high amount of polyunsaturated fatty acids and used to deliver bioactives. Although there has been a dramatic rise in the interest in developing oleogels for food applications over the past decade, none of them has been commercially used in foods so far due to the deficiency in their crystal network structure, particularly in monocomponent gels. Very recently, there is a surge in the interest in using of combination of gelators due to the synergistic effects that aid in overcoming the drawbacks in monocomponent gels. However, currently, there is no comprehensive insight into synergism among oleogelators reported in recent studies. Therefore, a comprehensive intuition into the findings reported on synergism is crucial to fill this gap. The objective of this review is to give a comprehensive insight into synergism among gelators based on recent literature. This paper also identifies the future research propositions towards developing oleogels capable of exactly mimicking the properties of conventional solid fats to bridge the gap between laboratory research and the food industry.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi, Sri Lanka.,Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Dent T, Hallinan R, Chitchumroonchokchai C, Maleky F. Rice bran wax structured oleogels and in vitro bioaccessibility of curcumin. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Terrence Dent
- Department of Food Science and Technology The Ohio State University Columbus Ohio USA
| | - Robert Hallinan
- Department of Food Science and Technology The Ohio State University Columbus Ohio USA
| | | | - Farnaz Maleky
- Department of Food Science and Technology The Ohio State University Columbus Ohio USA
| |
Collapse
|
30
|
Tang XM, Liu PD, Chen ZJ, Li XY, Huang R, Liu GD, Dong RS, Chen J. Encapsulation of a Desmodium intortum Protein Isolate Pickering Emulsion of β-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods 2022; 11:foods11070936. [PMID: 35407023 PMCID: PMC8997623 DOI: 10.3390/foods11070936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Owing to their excellent characteristics, Pickering emulsions have been widely used in the development and the application of new carriers for embedding and for delivering active compounds. In this study, β-carotene was successfully encapsulated in a Pickering emulsion stabilized using Desmodium intortum protein isolate (DIPI). The results showed that the encapsulation efficiencies of β-carotene in the control group Tween 20 emulsion (TE) and the DIPI Pickering emulsion (DIPIPE) were 46.7 ± 2.5% and 97.3 ± 0.8%, respectively. After storage for 30 days at 25 °C and 37 °C in a dark environment, approximately 79.4% and 72.1% of β-carotene in DIPIPE were retained. Compared with TE, DIPIPE can improve the stability of β-carotene during storage. In vitro digestion experiments showed that the bioaccessibility rate of β-carotene in DIPIPE was less than that in TE. Cytotoxicity experiments showed that DIPI and β-carotene micelles within a specific concentration range exerted no toxic effects on 3T3 cells. These results indicate that DIPIPE can be used as a good food-grade carrier for embedding and transporting active substances to broaden the application of the protein-based Pickering emulsion system in the development of functional foods.
Collapse
Affiliation(s)
- Xue-Mei Tang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, One Health Institute, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Pan-Dao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
| | - Zhi-Jian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
| | - Xin-Yong Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
| | - Rui Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
| | - Guo-Dao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
| | - Rong-Shu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (X.-M.T.); (P.-D.L.); (Z.-J.C.); (X.-Y.L.); (R.H.); (G.-D.L.)
- Correspondence: (R.-S.D.); (J.C.); Tel./Fax: +86-13648660908 (R.-S.D.); +86-18976956535 (J.C.)
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, One Health Institute, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China
- Correspondence: (R.-S.D.); (J.C.); Tel./Fax: +86-13648660908 (R.-S.D.); +86-18976956535 (J.C.)
| |
Collapse
|
31
|
Li L, Liu G, Bogojevic O, Pedersen JN, Guo Z. Edible oleogels as solid fat alternatives: Composition and oleogelation mechanism implications. Compr Rev Food Sci Food Saf 2022; 21:2077-2104. [DOI: 10.1111/1541-4337.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 01/05/2022] [Accepted: 01/26/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Linlin Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety South China University of Technology Guangzhou China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Jacob Nedergaard Pedersen
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science Aarhus University Aarhus Denmark
| |
Collapse
|
32
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr Rev Food Sci Food Saf 2022; 21:843-867. [PMID: 35181994 DOI: 10.1111/1541-4337.12926] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
Abstract
Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| |
Collapse
|
33
|
Chang C, Li J, Su Y, Gu L, Yang Y, Zhai J. Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.106963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Zhang R, Cui M, Ye J, Yuan D, Mao L. Physicochemical stability of oleogel-in-water emulsions loaded with β-carotene against environmental stresses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Effect of ultrasound and coagulant types on properties of β-carotene bulk emulsion gels stabilized by soy protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Monié A, Franceschi S, Balayssac S, Malet-Martino M, Delample M, Perez E, Garrigues JC. Study of rapeseed oil gelation induced by commercial monoglycerides using a chemometric approach. Food Chem 2022; 369:130870. [PMID: 34455323 DOI: 10.1016/j.foodchem.2021.130870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/04/2022]
Abstract
Commercial oleogelators rich in monoglycerides (MGs) are complex mixtures of acylglycerides with variable gelling properties, depending on the oil used and their concentration. In this study we developed a chemometric approach to identify the key parameters involved in gelling process. Analytical parameters have been defined, using GC and NMR analysis to identify fatty acids and acylglycerides composing the mixtures. Specific acylglyceride families and compound ratios were calculated to streamline the analytical results. To determine the key analytical parameters, artificial neural networks were used in a QSPR study related to the gelling properties measured by rheology through oscillatory experiments. At low oleogelator concentrations, the MGs especially rich in C16:0 and the ratio of specific isomers both have a positive influence on G'. For high oleogelator concentrations, C18:0-rich acylglycerides and unsaturated/saturated fatty acid ratios have a positive influence on G'. Conversely, at low concentrations, C18:0-rich acylglycerides show a lesser effect on G'.
Collapse
Affiliation(s)
- Aurélie Monié
- CRT AGIR, 37 Avenue Albert Schweitzer, BP 100 Talence Cedex, France; Laboratoire des IMRCP, Université de Toulouse, UMR 5623, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Sophie Franceschi
- Laboratoire des IMRCP, Université de Toulouse, UMR 5623, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, UMR 5623, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; Groupe de RMN Biomédicale, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, UMR CNRS 5068, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Mathieu Delample
- CRT AGIR, 37 Avenue Albert Schweitzer, BP 100 Talence Cedex, France
| | - Emile Perez
- Laboratoire des IMRCP, Université de Toulouse, UMR 5623, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jean-Christophe Garrigues
- Laboratoire des IMRCP, Université de Toulouse, UMR 5623, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
37
|
Wang S, Chen K, Liu G. Monoglyceride oleogels for lipophilic bioactive delivery - Influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin. Food Chem 2021; 375:131880. [PMID: 34952389 DOI: 10.1016/j.foodchem.2021.131880] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
The present study investigated the influence of self-assembled structures on stability and in vitro bioaccessibility of astaxanthin by modifying the structures with different processing conditions. The self-assembled structures of GMS oleogels were changed to produce smaller crystals and more compact network at higher glycerol monostearate (GMS) concentration and lower cooling temperature, resulting in higher hardness, oil binding capacity, and viscoelastic properties of oleogels. In the stability test, the highest retention ratio of astaxanthin was observed in oleogels formed at 4 °C and 10% GMS, indicating that the denser network structures were more effective to prevent the degradation of astaxanthin. During in vitro digestion, the self-assembled structures of oleogels and the nature of GMS molecules affected the lipolysis and micellization, which in turn regulated the bioaccessibility of astaxanthin. Collectively, GMS oleogels were effective delivery materials for improving the stability and bioaccessibility of lipophilic bioactives.
Collapse
Affiliation(s)
- Shujie Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kefei Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
38
|
Vellido-Perez JA, Ochando-Pulido JM, Brito-de la Fuente E, Martinez-Ferez A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6395-6406. [PMID: 33969886 DOI: 10.1002/jsfa.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Curcumin is a natural antioxidant with important beneficial properties for health, although its low bioavailability and sensitivity to many environmental agents limits its use in the food industry. Furthermore, some studies mention a potential synergistic effect with omega-3 polyunsaturated fatty acids, comprising other bioactive compounds extremely unstable and susceptible to oxidation. A relatively novel strategy to avoid oxidation processes is to transform liquid oils into three-dimensional structures by adding a gelling agent and forming a self-assembled network that can later be vectorized by incorporating it into other systems. The present study aimed to design and optimize an oil gelled-in-water curcumin-loaded emulsion to maximize curcumin stability and minimize lipid oxidation in terms of some critical operating parameters, such as dispersed phase, emulsifier and stabilizer concentrations, and homogenization rate. RESULTS The operating conditions that had a significant effect on the formulation were the dispersed phase weight fraction affecting droplet size and total lipid oxidation, homogenization conditions affecting droplet size and primary lipid oxidation, and emulsifier concentration affecting droplet size (significance level = 95%). The optimal formulation for maximizing curcumin load and minimizing lipid oxidation in the oleogelified matrix was 140.4 g kg-1 dispersed phase, 50.0 g kg-1 emulsifier, 4.9 g kg-1 stabilizer and homogenization speed 1016 × g. CONCLUSION The results obtained in the present study provide a valuable tool for the rational design and development of oil gelled-in-water emulsions that stabilize and transport bioactive compounds such as curcumin. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Edmundo Brito-de la Fuente
- Innovation & Development Centers China & Germany Business Unit Parenteral Nutrition, Ketoanalogues & IV Fluids Pharmaceuticals & Devices Division, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Antonio Martinez-Ferez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
39
|
Citrus flavanones enhance the bioaccessibility of β-carotene by improving lipid lipolysis and incorporation into mixed micelles. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Ding J, Dong Y, Huang G, Zhang Y, Jiang L, Sui X. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food Funct 2021; 12:10875-10886. [PMID: 34622257 DOI: 10.1039/d1fo01462e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural soy oleosomes are known to have a remarkable stability, given the advantage of their sophisticated membrane. The aim of the present study is to examine the concept of fabricating a β-carotene emulsion stabilized by soy oleosin (OLE) and lecithin (LEC) mixtures mimicking the membrane composition of soy oleosomes while providing preferable stability and bioaccessibility. For this, the fabricated emulsion was characterized in terms of droplet size distribution, and emulsion structure, stability and digestion (release and absorption of lipophilic β-carotene). Compared to SPI/LEC (10 : 1) stabilized emulsions, the OLE/LEC (10 : 1) mixture stabilized emulsion exhibited the highest emulsifying activity index (EAI) and emulsifying stability index (ESI) values, and higher encapsulation efficiency. Results show that the β-carotene emulsion stabilized by OLE and LEC mixtures at the ratio of 10 : 1 (w/w) has the most uniform droplet distribution and highest stability. The in vitro gastrointestinal digestion test revealed that the β-carotene emulsion stabilized by OLE and LEC mixtures was digested more rapidly than the emulsion stabilized by soy protein isolate (SPI) and LEC mixtures. In turn, the bioaccessibility and cellular uptake of β-carotene were enhanced, resulting in a higher absorption, a desirable feature of nutrition delivery systems. Our results demonstrated a promising way to fabricate emulsions mimicking natural soy oleosomes.
Collapse
Affiliation(s)
- Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
41
|
Zhang M, Pan Y, Dong Q, Tang X, Xin Y, Yin B, Zhu J, Kou X, Ho CT, Huang Q. Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Food Res Int 2021; 148:110592. [PMID: 34507737 DOI: 10.1016/j.foodres.2021.110592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
5-Demethylnobiletin (5-DMN), identified in the aged citrus peels, has received increasing attentions due to its outstanding bioactivity among citrus polymethoxyflavones (PMFs). However, the poor water solubility and high crystallinity limit its oral bioavailability. Besides, the solubility of 5-DMN in the oil is very limited, which restricts its loading capacity in emulsions for bioavailability enhancement. In this study, an organogel formulation was developed to improve the solubility of 5-DMN in medium-chain triacylglycerols by 3.5 times higher without crystal formation during 5-day storage at room temperature. Increasing the gelator (i.e., sugar ester) concentration led to the increase of viscosity and a gel-like structure of the organogel. The ternary phase diagram of organogel-based emulsions was explored, and 40% organogel was selected as the oil phase for emulsion preparation. Increasing the concentration of Tween 80 from 0% to 6% decreased the droplet size and viscoelasticity of the emulsions. Two in vitro models, the pH-stat lipolysis model and TNO gastro-intestinal model (TIM-1), were applied to investigate the bioaccessibility of 5-DMN in different delivery systems. Compared with the conventional emulsion and oil suspension, the pH-stat lipolysis demonstrated that the organogel-based emulsion was the most efficient tool to enhance 5-DMN bioacccessibility. Moreover, TIM-1 digestive study indicated that 5-DMN bioaccessibility delivered by organogel-based emulsions was about 3.26-fold higher than that of oil suspension. Our results suggested that the organogel-based emulsion was an effective delivery route to enhance the loading and bioaccessibility of lipophilic compounds of high crystallinity.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yijun Pan
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Qiaoru Dong
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xudong Tang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baoer Yin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
42
|
Liu K, Chen YY, Zha XQ, Li QM, Pan LH, Luo JP. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 2021; 147:110542. [PMID: 34399519 DOI: 10.1016/j.foodres.2021.110542] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Some bioactive ingredients in foods are unstable and easily degraded during processing, storage, transportation and digestion. To enhance the stability and bioavailability, some food hydrogels have been developed to encapsulate these unstable compounds. In this paper, the preparation methods, formation mechanisms, physicochemical and functional properties of some protein hydrogels, polysaccharide hydrogels and protein-polysaccharide composite hydrogels were comprehensively summarized. Since the hydrogels have the ability to control the release and enhance the bioavailability of bioactive ingredients, the encapsulation and release mechanisms of polyphenols, flavonoids, carotenoids, vitamins and probiotics by hydrogels were further discussed. This review will provide a comprehensive reference for the deep application of polysaccharide/protein hydrogels in food industry.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
43
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021; 7:gels7030086. [PMID: 34287270 PMCID: PMC8293095 DOI: 10.3390/gels7030086] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
Oleogels are semi-solid materials containing a large fraction of liquid oil entrapped in a network of structuring molecules. In the food industry, these formulations can be used to mimic fats and to deliver bioactive compounds. In the last decade, there has been increasing interest in these structures, not only from a scientific point of view, i.e., studying new molecules, methodologies for gelification, and new structures, but also from a technological point of view, with researchers and companies exploring these structures as a way to overcome certain challenges and/or create new and innovative products. One of the exciting applications of oleogels is the delivery of functional molecules, where the incorporation of oil-soluble functional compounds can be explored not only at the macroscale but also at micro- and nanoscales, resulting in different release behaviors and also different applications. This review presents and discusses the most recent works on the development, production, characterization, and applications of oleogels and other oleogel-based systems to deliver functional molecules in foods.
Collapse
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
- Correspondence:
| |
Collapse
|
44
|
Cinnamon essential oil nanoemulsions by high-pressure homogenization: Formulation, stability, and antimicrobial activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Sánchez CO, Zavaleta EB, García GU, Solano GL, Díaz MR. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
47
|
Tan KX, Ng LLE, Loo SCJ. Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2783. [PMID: 34073859 PMCID: PMC8197192 DOI: 10.3390/ma14112783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Esco Aster, Block 71, Ayer Rajah Crescent, Singapore 139951, Singapore
| | - Ling-Ling Evelyn Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
48
|
Huang Z, Guo B, Deng C, Tang C, Liu C, Hu X. Fabrication and characterization of the W/O/W multiple emulsion through oleogelation of oil. Food Chem 2021; 358:129856. [PMID: 33933975 DOI: 10.1016/j.foodchem.2021.129856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 01/11/2023]
Abstract
W/O/W emulsions were easily prepared by oleogelation of the oil phase using rice bran wax (RBX) and their microstructure, stability, rheology and protection of proanthocyanidins and β-carotene were investigated. Formation of the W/O/W emulsion was confirmed using confocal laser scanning microscopy and staining of the inner aqueous phase by tartrazine. The average particle size and viscosity of the emulsion increased as the RBX concentration increased. Moreover, RBX increased the stability of the emulsion and the emulsion was the most stable when the RBX concentration was 8.0% or 10.0%. On the other hand, the W/O/W emulsions were used to simultaneously encapsulate proanthocyanidins and β-carotene. Specifically, proanthocyanidins and β-carotene in RBX-containing emulsions were more stable and had higher bioaccessibility than in the emulsion without RBX. Besides, both their chemical stability and bioaccessibility reached the maximum value when the RBX concentration was 8.0% or 10.0%. In summary, the optimal RBX concentration was 8.0%.
Collapse
Affiliation(s)
- Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Baozhong Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chong Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Can Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
49
|
Pattnaik M, Mishra HN. Amelioration of the stability of polyunsaturated fatty acids and bioactive enriched vegetable oil: blending, encapsulation, and its application. Crit Rev Food Sci Nutr 2021; 62:6253-6276. [PMID: 33724100 DOI: 10.1080/10408398.2021.1899127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lipid oxidation in vegetable oils is the primary concern for food technologists. Modification of oils like hydrogenation, fractionation, inter-esterification, and blending are followed to improve nutritional quality. Blending non-conventional/conventional vegetable oils to obtain a synergistic oil mixture is commonly practiced in the food industry to enhance the nutritional characteristics and stability of oil at an affordable price. Microencapsulation of these oils provides a functional barrier of core and coating material from the adverse environmental conditions, thereby enhancing the oxidative stability, thermo-stability, shelf-life, and biological activity of oils. Microencapsulation of oils has been conducted and commercialized by employing different conventional methods including emulsification, spray-drying, freeze-drying, coacervation, and melt-extrusion compared with new, improved methods like microwave drying, spray chilling, and co-extrusion. The microencapsulated oil emulsion can be either dried to easy-to-handle solids/microcapsules, converted into soft solids, or enclosed in a gel-like matrix, increasing the shelf-life of the liquid oil. The omega-rich microcapsules have a wide application in confectionery, dairy, ice-cream, and pharmaceutical industries. This review summarizes recent developments in blending and microencapsulation technologies in improving the stability and nutritional value of edible oils.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
50
|
Qi W, Li T, Zhang Z, Wu T. Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|