1
|
Cheng C, Li Q, Yi Y, Yang H, Coldea TE, Zhao H. Selenium biofortification during barley (Hordeum vulgare L.) germination: Comparative analysis of selenate, selenite, and selenomethionine on se-protein accumulation and phenolic acid profile. Food Chem 2025; 485:144548. [PMID: 40306046 DOI: 10.1016/j.foodchem.2025.144548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Selenate (Na2SeO4), selenite (Na2SeO3) and selenomethionine (Se-Met) treatments were performed to evaluate the impact of selenium (Se) enrichment on Se accumulation, selenoprotein distribution, and phenolic acid metabolism in barley. Selenium was primarily distributed in protein, and Se-Met treatment led to the highest Se-protein concentration (246.91 mg/kg DW). The accumulation of Se in protein components was in the following order: glutelin > albumin > globulin > gliadin. Across all treatments, gliadin exhibited the highest unit Se concentration. Na2SeO4 and Na2SeO3 treatments enhanced Se accumulation in lower molecular weight proteins (15-25 kDa), while Se-Met treatment promoted Se accumulation in medium molecular weight proteins (35-45 kDa). Moreover, Se treatment contributed to up-regulating the transcription of genes related to phenolic acid metabolism and enhancing enzyme activity. Se-Met treatment led to a significant increase in phenolic acid content, particularly free phenolic acids, which made it advantageous over Na2SeO4 and Na2SeO3 treatments.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Frieda Saeysstraat 1, Gent 9052, Belgium
| | - Qing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Mazraeh A, Tavallali H, Tavallali V. Variations in the biochemical characteristics of Lavandula sublepidota Rech.f. in response to the foliar enrichment of green-synthesized copper nano complexes from extract of neem and jujube. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108885. [PMID: 38971088 DOI: 10.1016/j.plaphy.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Copper (Cu) is an essential micronutrient in plant physiology and biochemistry. This article synthesized copper nano complexes (Cu-NCs) based on aqueous extracts of jujube and neem leaves. The effects of foliar application of Cu-jujube and Cu-neem Cu-NCs at concentrations of 0, 10, 25, and 50 mg L-1 on the bioactive compounds, antioxidant capacity, and essential oil of the Iranian native medicinal herb Lavandula sublepidota Rech. f. was investigated. The highest levels of flavonoids and polyphenols were observed in the plants treated with Cu-NCs at 25 mg L-1. However, no superiority was observed between the two types of Cu-NCs. Furthermore, 25 mg L-1 nCu-Z and nCu-N foliar application boosted essential oil yield (48 and 52%, respectively) over control. This suggests an ideal threshold beyond which toxicity was found. Similarly, the amount of commercially significant secondary metabolites increased at 25 mg L-1 CuNCs compared to 10 and 50 mg L-1 concentrations. The maximum antioxidant activity was found in extracts of lavender that had been treated with 25 mg L-1 CuNCs. When CuNCs were applied exogenously, the extracts' antibacterial activity (MIC μg mL-1) was substantially increased against the three pathogen strains. The results suggest that CuNCs demonstrate notably greater effectiveness, particularly at an ideal concentration of 25 mg L-1, in enhancing the production of essential oil and bioactive compounds in Lavandula sublepidota Rech. f. Therefore, these findings indicate the importance of the biosynthesis of NCs using plants and measuring the phytochemical changes of lavender plants.
Collapse
Affiliation(s)
- Ali Mazraeh
- Department of Chemistry, Payame Noor University PNU, P. O. Box 19395-4697, Tehran, Iran
| | - Hossein Tavallali
- Department of Chemistry, Payame Noor University PNU, P. O. Box 19395-4697, Tehran, Iran.
| | - Vahid Tavallali
- Department of Agriculture, Payame Noor University PNU, P.O. Box 19395-4697, Tehran, Iran.
| |
Collapse
|
3
|
Nath S, Shyanti RK, Singh RP, Mishra M, Pathak B. Thespesia lampas mediated green synthesis of silver and gold nanoparticles for enhanced biological applications. Front Microbiol 2024; 14:1324111. [PMID: 38304863 PMCID: PMC10832436 DOI: 10.3389/fmicb.2023.1324111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
The present study investigated the synthesis and biological applications of green, economical, and multifunctional silver and gold nanoparticles (TSAgNPs and TSAuNPs) using the ethnomedical important medicinal plant Thespesia lampas for biological activities. Relatively higher levels of antioxidant components were measured in T. lampas compared to the well-known Adhatoda vasica, and Diplocyclos palmatus suggested the potential of T. lampas for the study. Synthesized TSAgNPs and TSAuNPs were characterized through UV-Vis, XRD, SEM-EDS, HR-TEM, SAED, and FTIR techniques. SEM revealed that TSAgNPs and TSAuNPs were predominantly spherical in shape with 19 ± 7.3 and 43 ± 6.3 nm crystal sizes. The sizes of TSAgNPs and TSAuNPs were found to be12 ± 4.8 and 45 ± 2.9 nm, respectively, according to TEM measurements. The FTIR and phytochemical analyses revealed that the polyphenols and proteins present in T. lampas may act as bio-reducing and stabilizing agents for the synthesis. Synthesized NPs exhibited enhanced scavenging properties for ABTS and DPPH radicals. TSAgNPs and TSAuNPs were able to protect DNA nicking up to 13.48% and 15.38%, respectively, from oxidative stress. TSAgNPs possessed efficient antibacterial activities in a concentration-dependent manner against human pathogenic bacteria, such as E. coli, B. subtilis, P. vulgaris, and S. typhi. Furthermore, TSAgNPs and TSAuNPs showed significant cytotoxicity against FaDu HNSCC grown in 2D at 50 and 100 μg mL-1. Tumor inhibitory effects on FaDu-derived spheroid were significant for TSAgNPs > TSAuNPs at 100 μg mL-1 in 3D conditions. Dead cells were highest largely for TSAgNPs (76.65% ± 1.76%), while TSAuNPs were non-significant, and Saq was ineffectively compared with the control. However, the diameter of the spheroid drastically reduced for TSAgNPs (3.94 folds) followed by TSAuNPs (2.58 folds), Saq (1.94 folds), and cisplatin (1.83 folds) at 100 μg mL-1. The findings of the study suggested the bio-competence of TSAgNPs and TSAuNPs as multi-responsive agents for antioxidants, DNA protection, antibacterial, and anti-tumor activities to provide a better comprehension of the role of phytogenic nanoparticles in healthcare systems.
Collapse
Affiliation(s)
- Sunayana Nath
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Ritis Kumar Shyanti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Bhawana Pathak
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
M'Rah S, Marichali A, M'Rabet Y, Chatti S, Casabianca H, Hosni K. Morphology, physiology, and biochemistry of zinc-stressed caraway plants. PROTOPLASMA 2023; 260:853-868. [PMID: 36329347 DOI: 10.1007/s00709-022-01818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A greenhouse pot experiment was conducted to evaluate the impact of zinc supply (0, 1, and 2 mM Zn as ZnSO4) on morpho-physiological and biochemical parameters of caraway (Carum carvi L.). Exposure to different Zn concentrations for 12 weeks compromised severely all growth parameters (plant height, number of secondary branches, diameter of primary and secondary branches, fresh and dry weight of aerial parts and roots) yield and its components (number of umbels per primary branches and secondary branches; number of umbel per plant; number of seeds per plant; and the weight of 1000 seeds). These manifestations were intimately linked with excessive accumulation of Zn in roots and leaves, alteration of the content of photosynthetic pigments, and extended lipid peroxidation. A manifest increment of proline and soluble sugar content was also observed in response to Zn application. Lipid content in seeds was dropped in Zn-treated plants and the fatty acid profiles were profoundly affected as they were enriched with saturated fatty acids at the expense of unsaturated ones. While improving their oxidative stability as revealed by the reduced values calculated oxidizability and oxidative susceptibility, Zn treatment reduced the lipid nutritional quality of caraway seeds. Moreover, Zn treatment reduced the essential oil yield and its main component carvone while it enhanced the content of its precursor limonene. It also induced alteration of terpene metabolism as revealed in the redirection of the carbon flux to the shikimate/phenylpropanoid pathway resulting in the stimulation of the production of phenolic compounds and their subsequent antioxidant activities.
Collapse
Affiliation(s)
- Sabah M'Rah
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
- Laboratoire Productivité Végétale Et Contraintes Environnementales, Faculté Des Sciences de Tunis, Université Tunis El-Manar, 2092, Tunis, Tunisia
| | - Ahmed Marichali
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Yassine M'Rabet
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Saber Chatti
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia
| | - Hervé Casabianca
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut Des Sciences Analytiques, UMR 5280, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Karim Hosni
- Laboratoire Des Substances Naturelles, Institut National de Recherche Et d'Analyse Physico-Chimique (INRAP), Biorechpôle de Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
5
|
Antioxidant Activity and Selenium and Polyphenols Content from Selected Medicinal Plants Natives from Various Areas Abundant in Selenium (Poland, Lithuania, and Western Ukraine). Processes (Basel) 2019. [DOI: 10.3390/pr7120878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The study was performed on Centaurea cyanus, Chamomilla recutita, Majorana hortensis, Ocimum basilicum, Plantago lanceolata, Sinapis alba, and Valeriana officinalis harvested in Lithuania, Poland, and Ukraine. Our aim was to determine the differences in selenium concentrations, total polyphenols, and the antioxidant activity in same-species samples from different regions. Another goal was to assess the correlations between these variables within the species. We found variations in most species, but not in all regions of harvesting. In four of the six species from Ukraine, we observed the highest concentration of Se. The selenium concentrations ranged from 15–182 µg/kg DW, and the greatest variation between the regions occurred in S. alba. The level of polyphenols was 5.52–53.25 mg TAE/100 g DW, and the largest differences between the sampling regions occurred in P. lanceolata and O. basilicum. ABTS radicals scavenging ability ranged from 5.20–59.79 μM AAE/100 g DW, while the FRAP potential was 13.56–409.14 μM FeE/100 g DW. The largest differences in antioxidant activity were found in O. basilicum and M. hortensis. Pearson’s correlation coefficients indicate that polyphenols may be responsible for antioxidant activity in Ch. recutita, O. basilicum, and V. officinalis, and selenium is responsible for antioxidant activity in M. hortensis. However, both polyphenols and selenium play a role in the antioxidant properties of C. cyanus and P. lanceolata. Also, selenium in C. cyanus and Ch. recutita may affect the level of total polyphenols. The examined species may supplement the human diet with exogenous antioxidants.
Collapse
|
6
|
Ghani MA, Barril C, Bedgood DR, Prenzler PD. Development of a Method Suitable for High-Throughput Screening to Measure Antioxidant Activity in a Linoleic Acid Emulsion. Antioxidants (Basel) 2019; 8:antiox8090366. [PMID: 31480679 PMCID: PMC6769521 DOI: 10.3390/antiox8090366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
An improved system for measuring antioxidant activity via thiobarbituric acid reactive substances and ferric thiocyanate assays is reported, on the basis of oxidation of a linoleic acid (LA) emulsion. Oxidation times were reduced from 20 h to 5 h by increasing the reaction temperature from 37 °C to 50 °C and with an acceptable precision of <10% coefficient of variation (CV). Antioxidants varying in polarity and chemical class—250 µM Trolox, quercetin, ascorbic acid and gallic acid—were used for method optimisation. Further reductions in reaction time were investigated through the addition of catalysts, oxygen initiators or increasing temperature to 60 °C; however, antioxidant activity varied from that established at 37 °C and 20 h reaction time—the method validation conditions. Further validation of the method was achieved with catechin, epicatechin, caffeic acid and α-tocopherol, with results at 50 °C and 5 h comparable to those at 37 °C and 20 h. The improved assay has the potential to rapidly screen antioxidants of various polarities, thus making it useful in studies where large numbers of plant extracts require testing. Furthermore, as this assay involves protection of a lipid, the assay is likely to provide complementary information to well-established tests, such as the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay.
Collapse
Affiliation(s)
- Md Ahsan Ghani
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga 2650, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga 2650, Australia
| | - Celia Barril
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga 2650, Australia
| | - Danny R Bedgood
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga 2650, Australia
| | - Paul D Prenzler
- School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga 2650, Australia.
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga 2650, Australia.
| |
Collapse
|
7
|
Mleczek M, Gąsecka M, Waliszewska B, Magdziak Z, Szostek M, Rutkowski P, Kaniuczak J, Zborowska M, Budzyńska S, Mleczek P, Niedzielski P. Salix viminalis L. - A highly effective plant in phytoextraction of elements. CHEMOSPHERE 2018; 212:67-78. [PMID: 30142567 DOI: 10.1016/j.chemosphere.2018.08.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 05/22/2023]
Abstract
The aim of the study was to compare specimens of Salix viminalis L. able to grow in polluted mining sludge (A1) with specimens of the same willow clone growing in two unpolluted areas (A2 and A3). Plants from the polluted area were characterized by the highest accumulation of the majority of elements in their organs with a clear limitation of their uptake to roots and effective translocation to aboveground organs. Willows from the unpolluted areas were characterized by significantly higher biomass than the treated plants, as shown in the content of cellulose/holocellulose. The different chemical characteristics of the substrates influenced tree physiology, including the organic acids and phenolic compounds profile and/or content. The total content of organic acids in lateral roots was higher for S. viminalis L. grown in unpolluted areas, while for leaves the opposite situation was observed. However, their creation was significantly correlated with the content of the majority of elements in the organs of S. viminalis L. Enhanced synthesis of phenolic compounds in roots (besides quercetin) and in leaves (besides myricetin and quercetin) was confirmed in the polluted area, and correlated with metal content in plant organs. Resilient plants characterized not only by their survivability but also by their effective phytoextraction of toxic metals, have great potential for widespread practical application on highly polluted mining sludge and for reducing the associated threat to human health. The obtained results suggest that further investigation of these plants is necessary to determine the mechanism(s) responsible for their high survivability.
Collapse
Affiliation(s)
- Mirosław Mleczek
- Poznan University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Monika Gąsecka
- Poznan University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Bogusława Waliszewska
- Poznan University of Life Sciences, Institute of Chemical Wood Technology, Wojska Polskiego 38/42, 60-637, Poznań, Poland
| | - Zuzanna Magdziak
- Poznan University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Małgorzata Szostek
- University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, Zelwerowicza 8b, 35-601, Rzeszów, Poland
| | - Paweł Rutkowski
- Poznań University of Life Sciences, Department of Forest Sites and Ecology, Wojska Polskiego 71F, 60-625, Poznań, Poland
| | - Janina Kaniuczak
- University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, Zelwerowicza 8b, 35-601, Rzeszów, Poland
| | - Magdalena Zborowska
- Poznan University of Life Sciences, Institute of Chemical Wood Technology, Wojska Polskiego 38/42, 60-637, Poznań, Poland
| | - Sylwia Budzyńska
- Poznan University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Patrycja Mleczek
- Poznan University of Life Sciences, Department of Ecology and Environmental Protection, Piątkowska 94C, 60-649, Poznań, Poland
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614, Poznań, Poland
| |
Collapse
|
8
|
Biofortification (Se): Does it increase the content of phenolic compounds in virgin olive oil (VOO)? PLoS One 2017; 12:e0176580. [PMID: 28448631 PMCID: PMC5407816 DOI: 10.1371/journal.pone.0176580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Extra-Virgin Olive Oil (EVOO) is a fundamental component of the Mediterranean diet and it may contain several anti-oxidant substances, such as phenols. Previous research has shown that this food may be enriched in phenols by spraying a sodium-selenate solution (100 mg L-1 Se) onto the crop canopy before flowering. The aim of this research was to evaluate the effect of this Se-fertilization before flowering (cv. Leccino) on the phenolic profile of EVOOs, and test to what extent such effects depend on the weather pattern, as observed in two contrasting experimental seasons (2013 and 2014). Results showed that Se-fertilisation enriched EVOOs both in selenium (up to 120 μg kg-1) and in phenols (up to 401 mg kg-1). This latter enrichment was related to an increase in PAL (L-Phenylalanine Ammonia-Lyase) activities and it was largely independent on the climatic pattern. Considering the phenolic profile, oleacein, ligustroside, aglycone and oleocanthal were the most affected compounds and were increased by 57, 50 and 32%, respectively. All these compounds, especially oleacein, have been shown to exert a relevant anti-oxidant activity, contributing both to the shelf-life of EVOOs and to positive effects on human health. It is suggested that Se-fertilisation of olive trees before flowering may be an interesting practice, particularly with poor cultivars and cold and rainy weather patterns, which would normally lead to the production of EVOOs with unfavourable phenolic profile.
Collapse
|
9
|
Ghani MA, Barril C, Bedgood DR, Prenzler PD. Substrate and TBARS variability in a multi‐phase oxidation system. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201500500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Md Ahsan Ghani
- School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaNSWAustralia
- Graham CentreCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Celia Barril
- School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Danny R. Bedgood
- School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Paul D. Prenzler
- School of Agricultural and Wine SciencesCharles Sturt UniversityWagga WaggaNSWAustralia
- Graham CentreCharles Sturt UniversityWagga WaggaNSWAustralia
| |
Collapse
|
10
|
Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem 2017; 230:195-207. [PMID: 28407901 DOI: 10.1016/j.foodchem.2017.02.127] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 10/01/2016] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
The thiobarbituric acid reactive substances (TBARS) assay is widely used to measure lipid oxidation and antioxidant activity in food and physiological systems. However, there has been no review (to our knowledge) that focuses exclusively on this test. This review presents an overview of the current use of the TBARS test in food and physiological systems, before looking at the various ways in which the assay is used in studies on antioxidant activity. As an antioxidant assay, the TBARS test may lack acceptable reproducibility, and long reaction times may preclude its adoption as a rapid screening method. Despite these potential limitations, there are features of the TBARS test that make it useful as a complement to popular screening tests such as Trolox equivalent antioxidant capacity. This review concludes with proposals for development of the TBARS test so that it can be used as a rapid and robust antioxidant assay.
Collapse
|
11
|
Borgognone D, Rouphael Y, Cardarelli M, Lucini L, Colla G. Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to [Formula: see text]:Cl(-) Ratio and Nitrate Deprivation from the Nutrient Solution. FRONTIERS IN PLANT SCIENCE 2016; 7:978. [PMID: 27446196 PMCID: PMC4928370 DOI: 10.3389/fpls.2016.00978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Leaf extracts of cultivated cardoon (Cynara cardunculus L. var. altilis DC) are an important source of phenols. Soilless culture represents an important and alternative tool to traditional agriculture, since it allows a precise control of plant nutrition and the maximization of yield and quality of the product. Reducing N supply, while keeping quantity as high as possible is desirable for environmental and health-related reasons, especially that N deficiency can lead to improved concentrations of secondary plant metabolites. Two greenhouse experiments were carried out in order to determine the effect of a decreasing [Formula: see text]:Cl(-) ratio (80:20, 60:40, 40:60, or 20:80) and nitrate deprivation (0, 5, 10, or 15 days before harvest) on biomass production, leaf chlorophyll content and fluorescence, mineral composition, and phytochemicals in leaves of cardoon 'Bianco Avorio' grown in a floating system. Total phenols, flavonoids and antioxidant capacity increased linearly with Cl(-) availability, especially when nitrate was replaced by 80% of chloride (20:80 [Formula: see text]:Cl(-) ratio), without having a detrimental effect on yield. Total nitrogen and nitrate concentration in leaves decreased linearly with increasing Cl(-) in the nutrient solution. Total phenols and antioxidant capacity recorded after 15 days of nitrate deprivation were higher by 43.1, 42.8, and 44.3% and by 70.5, 40.9, and 62.2%, at 59, 97 and 124 days after sowing, respectively compared to the control treatment. The decrease in leaf nitrate content recorded under N-deprivation occurred more rapidly than the reduction in total nitrogen. Thus, up to 15 days of nitrate withdrawal can lower nitrates without sharply reduce total nitrogen or affecting growth and biomass of cultivated cardoon. The use of N-free nutrient solution prior to harvest or the replacement of nitrates with chlorides could be adopted among growers to improve the quality of the product and enhance sustainability of crop production system.
Collapse
Affiliation(s)
- Daniela Borgognone
- Department of Agricultural and Forestry Sciences, Tuscia University, ViterboItaly
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, PorticiItaly
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, RomaItaly
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, PiacenzaItaly
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, Tuscia University, ViterboItaly
| |
Collapse
|
12
|
Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALTG, Schwarz K, Tezotto T, Morzelle MC. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 2015. [PMID: 26213037 DOI: 10.1016/j.foodchem.2015.06.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)).
Collapse
Affiliation(s)
- Patricia Bachiega
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil.
| | - Jocelem Mastrodi Salgado
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, UNICAMP, CP 6171, 13083-970 Paulínia, SP, Brazil
| | - Ana Lúcia T G Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, UNICAMP, CP 6171, 13083-970 Paulínia, SP, Brazil
| | - Kélin Schwarz
- Centro de Energia Nuclear na Agricultura (CENA)/Universidade de São Paulo (USP), Avenida Centenário, 303, 13418900 Piracicaba, SP, Brazil
| | - Tiago Tezotto
- Departamento de Produção Vegetal, Laboratório Multiusuário em Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| | - Maressa Caldeira Morzelle
- Departamento de Agroindústria, Alimentos e Nutrição, Laboratório de Bromatologia, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (Esalq/USP), Avenida Pádua Dias, 111, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
13
|
Terfi S, Sadi F. Optimization of Extraction of Toxic Metals from Medicinal Plants,Malva sylvestris L., andPistacia lentiscus. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.976869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Evaluation of antioxidant and antibacterial properties of extracts from Trollius chinensis Bunge. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Optimization of Phenolics Extracted from Idesia polycarpa Defatted Fruit Residue and Its Antioxidant and Depigmenting Activity In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:931269. [PMID: 25045392 PMCID: PMC4087257 DOI: 10.1155/2014/931269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/23/2022]
Abstract
Extraction of phenolics from Idesia polycarpa defatted fruit residue was optimized by the maximization of the yield in total phenolics, using the response surface methodology. The optimized conditions were 50% ethanol, 5 h extraction time, 1 : 40 liquid to solid ratio, and 80°C extraction temperature. The experimental average total phenolics yield was 54.49 ± 4.26 mg/g. These antioxidant properties of phenolics were comprehensively analyzed for the first time. All the extracts not only demonstrated the significant free radical scavenging activities and metal chelating activity but also inhibited lipid, lipoprotein peroxidation and revealed reducing power activity. Ethyl acetate extraction (EAE) also inhibited mushroom tyrosinase activity and significantly increased the average skin-whitening index (L value) of the skin of C57BL/6 mice, indicating its potential use for skin hyperpigmentation in humans. The results of cell experiments showed EAE could strongly inhibit cellular tyrosinase activity, which had led to the decrease of melanogenesis in B16 mouse melanoma cells. Overall, EAE is an excellent natural antioxidant and depigmenting agent, which can be developed as a new food additive, medicine, and cosmetic.
Collapse
|
16
|
Borgognone D, Cardarelli M, Rea E, Lucini L, Colla G. Salinity source-induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1231-7. [PMID: 24105819 DOI: 10.1002/jsfa.6403] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/01/2013] [Accepted: 09/17/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Leaves of artichoke (Cynara cardunculus L. subsp. scolymus (L.) Hegi) and cardoon (Cynara cardunculus L. var. altilis DC) are traditionally used as herbal medicine. Moderate salt stress could enhance antioxidant activity and phytochemicals in leaves. The aim of this study was to evaluate the effect of chloride salts (NaCl, KCl and CaCl2) on biomass production, mineral composition, phenolic and flavonoid contents and antioxidant activity in leaves of artichoke and cardoon grown in a floating system. RESULTS In both crops, NaCl and KCl treatments reduced biomass production, while similar values were recorded in CaCl2 and control treatments. In both crops, KCl treatment enhanced total phenolic and flavonoid contents, antioxidant activity and target polyphenols in leaves harvested at 48, 82 and 105 days after sowing (DAS), while leaf quality was improved by NaCl and CaCl2 treatments only at 82 and 105 DAS. Irrespective of salinity, leaves of cardoon had higher total phenolic and flavonoid contents, antioxidant activity and target polyphenols than those of artichoke. CONCLUSION The results showed that application of KCl can be considered an effective way to produce high-quality leaves of artichoke and cardoon during the whole cropping cycle, although resulting in a 30% reduction in plant biomass.
Collapse
Affiliation(s)
- Daniela Borgognone
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, Via San Camillo De Lellis snc, I-01100, Viterbo, Italy
| | | | | | | | | |
Collapse
|
17
|
Yuan JF, Liu XQ, Yang JX, Cui XQ. Forsythia suspense leaves, a plant: extraction, purification and antioxidant activity of main active compounds. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2179-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Amoo SO, Aremu AO, Moyo M, Van Staden J. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. Altern Ther Health Med 2012; 12:87. [PMID: 22769046 PMCID: PMC3433328 DOI: 10.1186/1472-6882-12-87] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/07/2012] [Indexed: 11/10/2022]
Abstract
Background Medicinal plants are possible sources for future novel antioxidant compounds in food and pharmaceutical formulations. Recent attention on medicinal plants emanates from their long historical utilisation in folk medicine as well as their prophylactic properties. However, there is a dearth of scientific data on the efficacy and stability of the bioactive chemical constituents in medicinal plants after prolonged storage. This is a frequent problem in African Traditional Medicine. Methods The phytochemical, antioxidant and acetylcholinesterase-inhibitory properties of 21 medicinal plants were evaluated after long-term storage of 12 or 16 years using standard in vitro methods in comparison to freshly harvested materials. Results The total phenolic content of Artemisia afra, Clausena anisata, Cussonia spicata, Leonotis intermedia and Spirostachys africana were significantly higher in stored compared to fresh materials. The flavonoid content were also significantly higher in stored A. afra, C. anisata, C. spicata, L. intermedia, Olea europea and Tetradenia riparia materials. With the exception of Ekebergia capensis and L. intermedia, there were no significant differences between the antioxidant activities of stored and fresh plant materials as measured in the β-carotene-linoleic acid model system. Similarly, the EC50 values based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay were generally lower for stored than fresh material. Percentage inhibition of acetylcholinesterase was generally similar for both stored and fresh plant material. Stored plant material of Tetradenia riparia and Trichilia dregeana exhibited significantly higher AChE inhibition than the fresh material. Conclusions The current study presents evidence that medicinal plants can retain their biological activity after prolonged storage under dark conditions at room temperature. The high antioxidant activities of stable bioactive compounds in these medicinal plants offer interesting prospects for the identification of novel principles for application in food and pharmaceutical formulations.
Collapse
|