1
|
Paparella A, Schirone M, López CC. The Health Impact of Cocoa from Cultivation to the Formation of Biogenic Amines: An Updated Review. Foods 2025; 14:255. [PMID: 39856922 PMCID: PMC11764846 DOI: 10.3390/foods14020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Cocoa and chocolate are known for their health benefits, which depend on factors like cocoa variety, post-harvest practices, and manufacturing processes, including fermentation, drying, roasting, grinding, and refining. These processing methods can influence the concentration and bioavailability of bioactive compounds, such as polyphenols that are linked to cardiovascular health and antioxidant effects. Recent scientific research has led to the development of cocoa-based products marketed as functional foods. However, despite the growing interest in the functional potential of cocoa, the literature lacks crucial information about the properties of different varieties of cocoa and their possible implications for human health. Moreover, climate change is affecting global cocoa production, potentially altering product composition and health-related characteristics. In addition to polyphenols, other compounds of interest are biogenic amines, due to their role and potential toxic effects on human health. Based on toxicological data and recent research on the complex relationship between biogenic amines and cocoa fermentation, setting limits or standards for biogenic amines in cocoa and chocolate could help ensure product safety. Finally, new trends in research on biogenic amines in chocolate suggest that these compounds might also be used as quality markers, and that product formulation and process conditions could change content and diversity of the different amines.
Collapse
Affiliation(s)
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (C.C.L.)
| | | |
Collapse
|
2
|
Tsiasioti A, Tzanavaras PD. High performance liquid chromatography coupled with post - Column derivatization methods in food analysis: Chemistries and applications in the last two decades. Food Chem 2024; 443:138577. [PMID: 38309023 DOI: 10.1016/j.foodchem.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
High performance liquid chromatography coupled with post-column derivatization is used for increasing the sensitivity and selectivity of the desirable analytes after the chromatographic separation. The transformation of the analytes can be conducted through the addition of a suitable reagent in the eluted stream or the ultraviolet irradiation of the eluted analytes, forming detectable derivatives for ultraviolet or fluorescence detectors. This review focuses on the developed methods using high performance liquid chromatography coupled with post-column derivatization for the determination of substances in food samples during the last two decades. The significance of the determination of each analyte in foods and the existing guidelines in each case are discussed. Preparation of the samples and the analytical methods are commented. For each analyte, official methods and commercially available systems and reagents are mentioned, as well.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|
3
|
van Vliet S, Blair AD, Hite LM, Cloward J, Ward RE, Kruse C, van Wietmarchsen HA, van Eekeren N, Kronberg SL, Provenza FD. Pasture-finishing of bison improves animal metabolic health and potential health-promoting compounds in meat. J Anim Sci Biotechnol 2023; 14:49. [PMID: 37004100 PMCID: PMC10067211 DOI: 10.1186/s40104-023-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum). RESULTS Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial. CONCLUSIONS Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA.
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA.
| | - Amanda D Blair
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Lydia M Hite
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Jennifer Cloward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Robert E Ward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Carter Kruse
- Turner Institute of Ecoagriculture, Bozeman, MT, 59718, USA
| | | | | | - Scott L Kronberg
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| | - Frederick D Provenza
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| |
Collapse
|
4
|
Xiang Y, Chen X, Sun H, Zhan Q, Zhong L, Hu Q, Zhao L. The critical roles of α-amylase and amyloglucosidase in improving the quality of black waxy corn beverages: Special attentions to the color and flavor. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Bartkiene E, Starkute V, Zokaityte E, Klupsaite D, Bartkevics V, Zokaityte G, Cernauskas D, Ruzauskas M, Ruibys R, Viksna A. Combined Thermomechanical-Biological Treatment for Corn By-Product Valorization into Added-Value Food (Feed) Material. PLANTS (BASEL, SWITZERLAND) 2022; 11:3080. [PMID: 36432808 PMCID: PMC9696026 DOI: 10.3390/plants11223080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to apply the combined thermomechanical-biological treatment for corn processing by-product (CPBP) valorization to added-value food and feed material. The mechanical-thermal pre-treatment was performed by applying the extrusion technique. Extruded CPBPs (14, 16, and 18% moisture) were further biodegraded with Lactiplantibacillus plantarum-LUHS122 (Lpl), Liquorilactobacillus uvarum-LUHS245 (Lu), Lacticaseibacillus casei-LUHS210 (Lc), and Lacticaseibacillus paracasei-LUHS244 (Lpa). Acidity parameters, microbial characteristics, sugars concentration, amino and fatty acids profile, biogenic amines (BA), and antibacterial and antifungal properties of CPBP were analyzed. Fermented CPBP had a reduced count of mould/yeast. A significantly lower (p ≤ 0.05) count of total enterobacteria was found in most of the extruded-fermented CPBP. Fermentation of extruded CPBP (moisture of 16 and 18%) increased valine and methionine content. Cadaverine and spermidine were not found after treatment of CPBP, and the lowest content of BA was found in the extruded-fermented (Lpa, moisture 18%) CPBP. Applied treatment had a significant effect on most of the fatty acids. CPBP fermented with Lpl, Lu, and Lpa displayed inhibition properties against 3 of the 10 tested pathogenic/opportunistic bacterial strains. Extruded-fermented (Lu, Lc, and Lpa moisture of 14 and 18%) CPBP showed antifungal activity against Rhizopus. Extruded-fermented (14% moisture, Lpl) CPBP inhibited Rhizopus and Aspergillus fumigatus. In conclusion, combined treatment can improve certain parameters and properties of CPBP in order to produce safer and more nutritious ingredients for food and feed industries.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - Darius Cernauskas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
- Food Institute, Kaunas University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Street 58, LT-47181 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Street 58, LT-44244 Kaunas, Lithuania
| | - Arturs Viksna
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| |
Collapse
|
6
|
Paiva CL, Netto DA, Queiroz VA, Gloria MBA. Germinated sorghum (Sorghum bicolor L.) and seedlings show expressive contents of putrescine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
|
8
|
Chatterjee S, Harden I, Bistoni G, Castillo RG, Chabbra S, van Gastel M, Schnegg A, Bill E, Birrell JA, Morandi B, Neese F, DeBeer S. A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N-O Reagent as the "Amino" Source and "Oxidant". J Am Chem Soc 2022; 144:2637-2656. [PMID: 35119853 PMCID: PMC8855425 DOI: 10.1021/jacs.1c11083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Herein, we study
the mechanism of iron-catalyzed direct synthesis
of unprotected aminoethers from olefins by a hydroxyl amine derived
reagent using a wide range of analytical and spectroscopic techniques
(Mössbauer, Electron Paramagnetic Resonance, Ultra-Violet Visible
Spectroscopy, X-ray Absorption, Nuclear Resonance Vibrational Spectroscopy,
and resonance Raman) along with high-level quantum chemical calculations.
The hydroxyl amine derived triflic acid salt acts as the “oxidant”
as well as “amino” group donor. It activates the high-spin
Fe(II) (St = 2) catalyst [Fe(acac)2(H2O)2] (1) to generate
a high-spin (St = 5/2) intermediate (Int I), which decays to a second intermediate (Int II) with St = 2. The analysis of spectroscopic
and computational data leads to the formulation of Int I as [Fe(III)(acac)2-N-acyloxy] (an alkyl-peroxo-Fe(III)
analogue). Furthermore, Int II is formed by N–O
bond homolysis. However, it does not generate a high-valent
Fe(IV)(NH) species (a Fe(IV)(O) analogue), but instead a high-spin
Fe(III) center which is strongly antiferromagnetically coupled (J = −524 cm–1) to an iminyl radical,
[Fe(III)(acac)2-NH·], giving St = 2. Though Fe(NH) complexes as isoelectronic surrogates
to Fe(O) functionalities are known, detection of a high-spin Fe(III)-N-acyloxy intermediate (Int I), which undergoes
N–O bond cleavage to generate the active iron–nitrogen
intermediate (Int II), is unprecedented. Relative to
Fe(IV)(O) centers, Int II features a weak elongated Fe–N
bond which, together with the unpaired electron density along the
Fe–N bond vector, helps to rationalize its propensity for N-transfer reactions onto styrenyl olefins, resulting in
the overall formation of aminoethers. This study thus demonstrates
the potential of utilizing the iron-coordinated nitrogen-centered
radicals as powerful reactive intermediates in catalysis.
Collapse
Affiliation(s)
- Sayanti Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ingolf Harden
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Zheng J, Tian L, Bayen S. Chemical contaminants in canned food and can-packaged food: a review. Crit Rev Food Sci Nutr 2021; 63:2687-2718. [PMID: 34583591 DOI: 10.1080/10408398.2021.1980369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Canning, as a preservation technique, is widely used to extend the shelf life as well as to maintain the quality of perishable foods. During the canning process, most of the microorganisms are killed, reducing their impact on food quality and safety. However, the presence of a range of undesirable chemical contaminants has been reported in canned foods and in relation to the canning process. The present review provides an overview of these chemical contaminants, including metals, polymeric contaminants and biogenic amine contaminants. They have various origins, including migration from the can materials, formation during the canning process, or contamination during steps required prior to canning (e.g. the disinfection step). Some other can-packaged foods (e.g. beverages or milk powder), which are not canned foods by definition, were also discussed in this review, as they have been frequently studied simultaneously with canned foods in terms of contamination. The occurrence of these contaminants, the analytical techniques involved, and the factors influencing the presence of these contaminants in canned food and can-packaged food are summarized and discussed.
Collapse
Affiliation(s)
- Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
11
|
Santos JTDC, Petry FC, Tobaruela EDC, Mercadante AZ, Gloria MBA, Costa AM, Lajolo FM, Hassimotto NMA. Brazilian native passion fruit (Passiflora tenuifila Killip) is a rich source of proanthocyanidins, carotenoids, and dietary fiber. Food Res Int 2021; 147:110521. [PMID: 34399499 DOI: 10.1016/j.foodres.2021.110521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Passiflora tenuifila is a Brazilian native passion fruit consumed by the local population and is a dietary source of bioactive compounds with potential biological activity. The aim of this study is to evaluate the nutritional value of P. tenuifila fruit and its bioactive compounds at two ripening stages. Three batches of fruit were collected at mature-green and ripe stages, and phenolic compounds, carotenoids, and polyamines were analyzed by HPLC-DAD and LC-MS/MS. The fruit is a good source of dietary fiber. Proanthocyanidin dimers are the major phenolic compounds (up to 84%) at both stages, followed by the C-glycosylated luteolin. Lutein and β-carotene are the major carotenoids, contributing up to 50% of total carotenoids. The OPLS-DA segregates the mature-green and ripe fruits, as carotenoids are responsible for this separation. In conclusion, passion fruit can be consumed at both stages of maturation without losses of bioactive compound contents or nutritional value.
Collapse
Affiliation(s)
- José Thiago do Carmo Santos
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiane Cristina Petry
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eric de Castro Tobaruela
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana Zerlotti Mercadante
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria Beatriz Abreu Gloria
- Food Biochemistry (LBqA) & Quality Control Laboratory (LCC) Laboratories, College of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Costa
- Laboratory of Food Science, Brazilian Agricultural Research Corporation (Embrapa Cerrados), Planaltina, Federal District, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Occurrence of Polyamines in Foods and the Influence of Cooking Processes. Foods 2021; 10:foods10081752. [PMID: 34441529 PMCID: PMC8392025 DOI: 10.3390/foods10081752] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary polyamines are involved in different aspects of human health and play an important role in the prevention of certain chronic conditions such as cardiovascular diseases and diabetes. Different polyamines can be found in all foods in variable amounts. Moreover, several culinary practices have been reported to modify the content and profile of these bioactive compounds in food although experimental data are still scarce and even contradictory. Therefore, the aim of this study was to evaluate the occurrence of polyamines in a large range of foods and to assess the effect of different cooking processes on the polyamine content of a few of them. The highest level of polyamines was found in wheat germ (440.6 mg/kg). Among foods of a plant origin, high levels of total polyamines over 90 mg/kg were determined in mushrooms, green peppers, peas, citrus fruit, broad beans and tempeh with spermidine being predominant (ranging from 54 to 109 mg/kg). In foods of an animal origin, the highest levels of polyamines, above all putrescine (42-130 mg/kg), were found in raw milk, hard and blue cheeses and in dry-fermented sausages. Regarding the influence of different domestic cooking processes, polyamine levels in food were reduced by up to 64% by boiling and grilling but remained practically unmodified by microwave and sous-vide cooking.
Collapse
|
13
|
Dala-Paula BM, Starling MDFV, Gloria MBA. Vegetables consumed in Brazilian cuisine as sources of bioactive amines. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Bartolić D, Maksimović V, Maksimović JD, Stanković M, Krstović S, Baošić R, Radotić K. Variations in polyamine conjugates in maize (Zea mays L.) seeds contaminated with aflatoxin B1: a dose-response relationship. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2905-2910. [PMID: 32031245 DOI: 10.1002/jsfa.10317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cereal seeds, such as maize seeds, are frequently contaminated with aflatoxin B1 (AFB1), one of the most dangerous naturally occurring carcinogens. In plants, phenolamides are involved in biotic stress response. The data on variations of phenolamides in AFB1-containing seeds are limited. RESULTS Five polyamine conjugates, including two spermidine and three putrescine conjugates, were tentatively identified in methanolic extracts, using HPLC-DAD-MS. The ratio of putrescine to spermidine conjugates changed with increasing AFB1 concentration in a logistic dose-response manner, with a ratio of below 1 up to a concentration of 51.51 μg kg-1 , and approximately 2.54 and 3 at higher concentrations of 177.4 and 308.13 μg kg-1 , respectively. The observed variations of the total antioxidant activity and the total phenolic content may support this biphasic behaviour of the seeds against AFB1 stress. CONCLUSIONS The obtained data are a contribution to the understanding of the roles of polyamine conjugates in seed defence to increasing AFB1 concentrations. According to our knowledge, this study reports for the first time the biphasic response of maize seeds to increasing AFB1 contamination level, comprising the induction of polyamine conjugate accumulation and variation in the ratio of conjugates. This dose-response relationship may provide useful information in the field of agricultural and food chemistry as an indicator of AFB1 contamination level and, hence, for selecting an appropriate seed quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dragana Bartolić
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena D Maksimović
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Mira Stanković
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Saša Krstović
- Faculty of Agriculture, Department of Animal Science, University of Novi Sad, Novi Sad, Serbia
| | - Rada Baošić
- Faculty of Chemistry, Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods 2020; 9:foods9050547. [PMID: 32369919 PMCID: PMC7278799 DOI: 10.3390/foods9050547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
Collapse
|
16
|
Delgado-Ospina J, Di Mattia CD, Paparella A, Mastrocola D, Martuscelli M, Chaves-Lopez C. Effect of Fermentation, Drying and Roasting on Biogenic Amines and Other Biocompounds in Colombian Criollo Cocoa Beans and Shells. Foods 2020; 9:foods9040520. [PMID: 32326283 PMCID: PMC7231058 DOI: 10.3390/foods9040520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
The composition of microbiota and the content and pattern of bioactive compounds (biogenic amines, polyphenols, anthocyanins and flavanols), as well as pH, color, antioxidant and reducing properties were investigated in fermented Criollo cocoa beans and shells. The analyses were conducted after fermentation and drying (T1) and after two thermal roasting processes (T2, 120 °C for 22 min; T3, 135 °C for 15 min). The fermentation and drying practices affected the microbiota of beans and shells, explaining the great variability of biogenic amines (BAs) content. Enterobacteriaceae were counted in a few samples with average values of 103 colony forming units per gram (CFU g−1), mainly in the shell, while Lactobacillus spp. was observed in almost all the samples, with the highest count in the shell with average values of 104 CFU g−1. After T1, the total BAs content was found to be in a range of 4.9÷127.1 mg kg−1DFW; what was remarkable was the presence of cadaverine and histamine, which have not been reported previously in fermented cocoa beans. The total BAs content increased 60% after thermal treatment T2, and of 21% after processing at T3, with a strong correlation (p < 0.05) for histamine (ß = 0.75) and weakly correlated for spermidine (ß = 0.58), spermine (ß = 0.50), cadaverine (ß = 0.47) and serotonine (ß = 0.40). The roasting treatment of T3 caused serotonin degradation (average decrease of 93%) with respect to unroasted samples. However, BAs were detected in a non-alarming concentration (e.g., histamine: n.d ÷ 59.8 mg kg−1DFW; tyramine: n.d. ÷ 26.5 mg kg−1DFW). Change in BAs level was evaluated by principal component analysis. PC1 and PC2 explained 84.9% and 4.5% of data variance, respectively. Antioxidant and reducing properties, polyphenol content and BAs negatively influenced PC1 with both polyphenols and BA increasing during roasting, whereas PC1 was positively influenced by anthocyanins, catechin and epicatechin.
Collapse
Affiliation(s)
- Johannes Delgado-Ospina
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Carla Daniela Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Dino Mastrocola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Maria Martuscelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Clemencia Chaves-Lopez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
17
|
|
18
|
Wang R, Xiao L, Yang L, Lu Q. Oxidative stress with the damage of scavenging system: a mechanism for the nutrients loss in rice seeds during post-harvest storage. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1576771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruolan Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Lei Xiao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Longsong Yang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qian Lu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
19
|
Comments on two recent publications on GM maize and Roundup. Sci Rep 2018; 8:13338. [PMID: 30177715 PMCID: PMC6120907 DOI: 10.1038/s41598-018-30440-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
Two -omics studies on genetically modified maize and Roundup-fed rats, recently published in the journal Scientific Reports, contain serious flaws in the experimental design, methodology and interpretation of results, which we point out here. The use of -omics technologies are of increasing importance in research, however we argue for a cautious approach to the potential application in food safety assessments as these exceptionally sensitive and complex methods require a thorough and detailed evaluation of the biological significance of obtained results. Arising from: Mesnage et al. Sci Rep 7:39328 (2017), Mesnage et al. Sci Rep 6:37855 (2016).
Collapse
|
20
|
Tette PA, Guidi LR, Bastos EM, Fernandes C, Gloria MBA. Synephrine – A potential biomarker for orange honey authenticity. Food Chem 2017; 229:527-533. [DOI: 10.1016/j.foodchem.2017.02.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 11/27/2022]
|
21
|
Bualuang O, Onwude DI, Pracha K. Microwave drying of germinated corn and its effect on phytochemical properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2999-3004. [PMID: 27859376 DOI: 10.1002/jsfa.8140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Drying is a preservation method that removes or reduces the moisture content of a product. This process can affect the nutritional properties of agricultural crops. Therefore this research sought to investigate the effect of microwave drying power (100-700 W) on the drying rate, effective diffusivity, β-carotene content (BCC), total flavonoid content (TFC), total phenolic content (TPC) and antioxidant capacity of sprouted corn, which can be applied as a rich antioxidant source. RESULTS With increasing microwave drying power from 100 to 700 W, the effective diffusivity was in the range from 1.50 × 10-6 to 1.81 × 10-5 m2 s-1 , while BCC ranged from 614.20 ± 3.10 to 229.90 ± 1.00 µg β-carotene equivalent g-1 dry weight (DW), decreasing gradually by 62.57%. Meanwhile, TPC and TFC of samples dried at 300 W were the highest, with levels of 315.94 ± 0.69 mg gallic acid equivalent g-1 DW and 190.16 ± 1.33 mg catechin equivalent g-1 DW respectively, which were higher by 8.66 and 98.97% as compared with samples dried at 100 W. Similar development was found in the antioxidant ability of germinated corn. CONCLUSION Drying at a microwave power of 300 W provided the highest nutritive and antioxidant values. The results of this study are useful in the selection of optimal drying conditions during microwave drying of germinated corn, as a baseline for other agricultural crops. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oraporn Bualuang
- Chemistry Program, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, Thailand
| | | | - Kwanta Pracha
- Chemistry Program, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, Thailand
| |
Collapse
|
22
|
Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem 2017; 228:484-490. [PMID: 28317753 DOI: 10.1016/j.foodchem.2017.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022]
Abstract
Cocoa is the target of increased scientific research as it is one of the richest source of bioactive compounds. The formation of bioactive amines and their changes in cocoa beans during seven days of traditional fermentation was investigated for the first time. In addition, total phenolic compounds, anthocyanins contents and the scavenging capacity against ABTS radical were determined to monitor the fermentation process. Only two biogenic amines (tryptamine and tyramine) and two polyamines (spermidine and spermine) were detected in cocoa beans during fermentation. Fermentation was characterized by three stages: i) high levels of tryptamine, phenolics, and scavenging capacity; ii) high contents of spermine, total biogenic amines and total polyamines; and iii) the highest spermidine levels and total acidity, but the lowest total phenolic compounds and anthocyanins contents. The scavenging capacity of cocoa beans during fermentation correlated with total phenolic compounds and anthocyanins contents.
Collapse
|
23
|
Tahmasebi M, Labbafi M, Emam-Djomeh Z, Yarmand MS. Manufacturing the novel sausages with reduced quantity of meat and fat: The product development, formulation optimization, emulsion stability and textural characterization. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Paiva CL, Evangelista WP, Queiroz VAV, Glória MBA. Bioactive amines in sorghum: method optimisation and influence of line, tannin and hydric stress. Food Chem 2014; 173:224-30. [PMID: 25466016 DOI: 10.1016/j.foodchem.2014.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022]
Abstract
The profile and levels of bioactive amines in different sorghum lines were reported for the first time. The amines were quantified by ion-pair HPLC, post-column derivatisation with o-phthalaldehyde and fluorimetric detection. The extraction procedure was optimised: 420 μm particle size, extraction with 5% trichloroacetic acid and three extractions. The screening of 22 sorghum lines showed that four of the ten amines investigated were detected. Spermine and spermidine were the prevalent amines (100%), followed by putrescine (77%) and cadaverine (14%). Total amines ranged from 5.8 to 41.4 mg/100 g, and the polyamines represented 60-100% of the total. Sorghum without tannin had higher amines levels compared to sorghum with tannin and cadaverine was specific to samples without tannin. Hydric stress caused accumulation of spermidine in the grains and affected the levels of other amines at rates depending on the presence or not of tannin. Sorghum is a significant source of polyamines.
Collapse
Affiliation(s)
- Caroline Liboreiro Paiva
- LBqA - Laboratório de Bioquímica de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, bloco 3, sala 2091, Pampulha, CEP 31210-901 Belo Horizonte, MG, Brazil
| | - Warlley Pinheiro Evangelista
- LBqA - Laboratório de Bioquímica de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, bloco 3, sala 2091, Pampulha, CEP 31210-901 Belo Horizonte, MG, Brazil
| | | | - Maria Beatriz Abreu Glória
- LBqA - Laboratório de Bioquímica de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, bloco 3, sala 2091, Pampulha, CEP 31210-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem 2014; 161:27-39. [PMID: 24837918 DOI: 10.1016/j.foodchem.2014.03.102] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
Abstract
This review continues a previous one (Kalač & Krausová, 2005). Dietary polyamines spermidine and spermine participate in an array of physiological roles with both favourable and injurious effects on human health. Dieticians thus need plausible information on their content in various foods. The data on the polyamine contents in raw food materials increased considerably during the reviewed period, while information on their changes during processing and storage have yet been fragmentary and inconsistent. Spermidine and spermine originate mainly from raw materials. Their high contents are typical particularly for inner organs and meat of warm-blooded animals, soybean and fermented soybean products and some mushroom species. Generally, polyamine contents range widely within the individual food items.
Collapse
|
26
|
Oracz J, Nebesny E. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.10.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|