1
|
Yang DD, Chutiwitoonchai N, Wang F, Tian P, Sureram S, Lei X, Mahidol C, Ruchirawat S, Kittakoop P. Effects of organic salts of virucidal and antiviral compounds from Nelumbo nucifera and Kaempferia parviflora against SARS-CoV-2. Sci Rep 2025; 15:6380. [PMID: 39984611 PMCID: PMC11845762 DOI: 10.1038/s41598-025-89736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
The present work investigates virucidal and antiviral compounds in the extracts of seed embryos of a lotus, Nelumbo nucifera, and a Thai ginseng, Kaempferia parviflora. Separation of the extracts led to the identification of antiviral compounds against SARS-CoV-2. Neferine (1) and nuciferine (3) from N. nucifera, as well as their respective HCl salts (2 and 4), exhibited virucidal and antiviral activities against SARS-CoV-2. Virucidal activity of neferine salt (2) (EC50 4.78 µM) was 7.5 times better than its free-base, neferine (1) (EC50 36.01 µM), and the salt (2) also improved the selectivity index (SI), showing less cytotoxicity than 1. This work demonstrates that organic salts have an impact on biological activities. A crude extract of K. parviflora rhizomes displayed virucidal activity (EC50 42.11 µg/mL) and antiviral activity (EC50 39.28 µg/mL). Isolation of a crude extract of K. parviflora rhizomes led to the identification of nine flavonoids (5-13). Among these flavonoids, only 5,7,4'-trimethoxyflavone (8) was found to show virucidal (EC50 437.90 µM) and antiviral (EC50 50.97 µM) activities against SARS-CoV-2. However, flavonoids (5-13) did not inhibit SARS-CoV-2 3CLpro enzyme at the concentrations of 10 µM and 100 µM. In conclusion, our data underscores the therapeutic potential of N. nucifera and K. parviflora derived bioactive compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Dan-Dan Yang
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok, 10210, Thailand
| | - Nopporn Chutiwitoonchai
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd, Pathumthani, 12120, Thailand.
| | - Feng Wang
- The Research Center of Chiral Drugs, China-Thailand Joint Research Institute of Natural Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China
| | - Ping Tian
- The Research Center of Chiral Drugs, China-Thailand Joint Research Institute of Natural Medicine, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China
| | - Sanya Sureram
- Chulabhorn Research Institute, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Chulabhorn Mahidol
- Chulabhorn Research Institute, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok, 10210, Thailand
- Chulabhorn Research Institute, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Science, Research and Innovation, Ministry of Higher Education, 10400, Bangkok, Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute, Program in Chemical Sciences, Laksi, Bangkok, 10210, Thailand.
- Chulabhorn Research Institute, Kamphaeng Phet 6, Talat Bang Khen, Lak Si, 10210, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Science, Research and Innovation, Ministry of Higher Education, 10400, Bangkok, Thailand.
| |
Collapse
|
2
|
Thawtar MS, Kusano M, Yingtao L, Thein MS, Tanaka K, Rivera M, Shi M, Watanabe KN. Exploring Volatile Organic Compounds in Rhizomes and Leaves of Kaempferia parviflora Wall. Ex Baker Using HS-SPME and GC-TOF/MS Combined with Multivariate Analysis. Metabolites 2023; 13:metabo13050651. [PMID: 37233692 DOI: 10.3390/metabo13050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from Kaempferia parviflora rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of K. parviflora plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of K. parviflora, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.
Collapse
Affiliation(s)
- May San Thawtar
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Miyako Kusano
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Li Yingtao
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Min San Thein
- Department of Agricultural Research, Ministry of Agriculture, Livestock, and Irrigation, Yezin, Myanmar
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya 156-8502, Japan
- Faculty of Informatics, Tokyo University of Information Sciences, Chiba 65-8501, Japan
| | - Marlon Rivera
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Miao Shi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuo N Watanabe
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
3
|
Singh A, Singh N, Singh S, Srivastava RP, Singh L, Verma PC, Devkota HP, Rahman LU, Kumar Rajak B, Singh A, Saxena G. The industrially important genus Kaempferia: An ethnopharmacological review. Front Pharmacol 2023; 14:1099523. [PMID: 36923360 PMCID: PMC10008896 DOI: 10.3389/fphar.2023.1099523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Kaempferia, a genus of the family Zingiberaceae, is widely distributed with more than 50 species which are mostly found throughout Southeast Asia. These plants have important ethnobotanical significance as many species are used in Ayurvedic and other traditional medicine preparations. This genus has received a lot of scholarly attention recently as a result of the numerous health advantages it possesses. In this review, we have compiled the scientific information regarding the relevance, distribution, industrial applications, phytochemistry, ethnopharmacology, tissue culture and conservation initiative of the Kaempferia genus along with the commercial realities and limitations of the research as well as missing industrial linkages followed by an exploration of some of the likely future promising clinical potential. The current review provides a richer and deeper understanding of Kaempferia, which can be applied in areas like phytopharmacology, molecular research, and industrial biology. The knowledge from this study can be further implemented for the establishment of new conservation strategies.
Collapse
Affiliation(s)
- Arpit Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nitesh Singh
- Department of Plant-Pathology, Faculty of Agriculture and Science, SGT University, Gurgaon, India
| | - Sanchita Singh
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India.,CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | | | - Lav Singh
- 4 PG Department of Botany, R.D and D.J. College, Munger University, Munger, India.,Central Academy for State Forest Services, Burnihat, Assam, India
| | - Praveen C Verma
- CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | - Hari P Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Pharmacy Program, Gandaki University, Pokhara, Nepal
| | - Laiq Ur Rahman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Bikash Kumar Rajak
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Amrita Singh
- Department of Botany, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Hashiguchi A, San Thawtar M, Duangsodsri T, Kusano M, Watanabe KN. Biofunctional properties and plant physiology of Kaempferia spp.: Status and trends. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Song K, Saini RK, Keum YS, Sivanesan I. Analysis of Lipophilic Antioxidants in the Leaves of Kaempferia parviflora Wall. Ex Baker Using LC-MRM-MS and GC-FID/MS. Antioxidants (Basel) 2021; 10:antiox10101573. [PMID: 34679708 PMCID: PMC8533615 DOI: 10.3390/antiox10101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023] Open
Abstract
Lipophilic metabolites such as carotenoids, fatty acids, vitamin K1, phytosterols, and tocopherols are important antioxidants that are used in the cosmetics, foods, and nutraceutical industries. Recently, there has been a growing demand for the use of byproducts (wastes) as a potential source of industrially important compounds. The leaves of Kaempferia parviflora (black ginger) (KP-BG) are major byproducts of KP-BG cultivation and have been reported to contain several bioactive metabolites; however, the composition of lipophilic metabolites in KP-BG leaves has not been examined. In this study, the lipophilic antioxidant profile was analyzed in the leaves of KP-BG plants grown in vitro and ex vitro. Lipophilic compounds, namely carotenoids (80.40-93.84 µg/g fresh weight (FW)), tocopherols (42.23-46.22 µg/g FW), phytosterols (37.69-44.40 µg/g FW), and vitamin K1 (7.25-7.31 µg/g FW), were quantified using LC-MRM-MS. The fatty acid profile of the KP-BG leaves was identified using GC-FID/MS. The content of individual lipophilic compounds varied among the KP-BG leaves. Ex vitro KP-BG leaves had high levels of lutein (44.38 µg/g FW), α-carotene (14.79 µg/g FW), neoxanthin (12.30 µg/g FW), β-carotene (11.33 µg/g FW), violaxanthin (11.03 µg/g FW), α-tocopherol (39.70 µg/g FW), α-linolenic acid (43.12%), palmitic acid (23.78%), oleic acid (12.28%), palmitoleic acid (3.64%), total carotenoids (93.84 µg/g FW), and tocopherols (46.22 µg/g FW) compared with in vitro KP-BG leaves. These results indicate that ex-vitro-grown KP-BG leaves could be used as a valuable natural source for extracting important lipophilic antioxidants.
Collapse
Affiliation(s)
- Kihwan Song
- Department of Bioresource Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 05029, Korea; (R.K.S.); (Y.-S.K.)
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Korea
- Correspondence: or ; Tel.: +82-2450-0576
| |
Collapse
|
6
|
Khairullah AR, Solikhah TI, Ansori ANM, Hanisia RH, Puspitarani GA, Fadholly A, Ramandinianto SC. Medicinal importance of Kaempferia galanga L. (Zingiberaceae): A comprehensive review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Kaempferia galanga included in the Zingiberaceae family is one of the potential medicinal plants with aromatic rhizome. In traditional medicine in Asian countries, this plant is widely used by local practitioners. This plant is widely cultivated in most Southeast Asian countries such as Cambodia, Vietnam, Malaysia, Thailand, and Indonesia. Ethyl-para-methoxycinnamate and ethyl-cinnamate are found as the main compounds in hexane, dichloromethane, and methanol extracts of K. galanga. This plant is traditionally used as an expectorant, stimulant, diuretic, carminative, and antipyretic remedy. In addition, K. galanga is used for treatment of diabetes, hypertension, cough, asthma, joint fractures, rheumatism, urticaria, vertigo, and intestinal injuries. Therefore, this study aimed to give a sneak peek view on galangal’s ethnobotany, toxicology, pharmacology, and phytochemistry.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tridiganita Intan Solikhah
- Division of Veterinary Clinic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arif Nur Muhammad Ansori
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ristag Hamida Hanisia
- Master Program in Biotechnology, School of Life Sciences and Technology, Bandung Institute of Technology, Indonesia
| | - Gavrila Amadea Puspitarani
- Infectious Diseases and One Health, Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Amaq Fadholly
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sancaka Cashyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Establishment of a Rapid Micropropagation System for Kaempferia parviflora Wall. Ex Baker: Phytochemical Analysis of Leaf Extracts and Evaluation of Biological Activities. PLANTS 2021; 10:plants10040698. [PMID: 33916375 PMCID: PMC8066125 DOI: 10.3390/plants10040698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to establish a rapid in vitro plant regeneration method from rhizome buds of Kaempferia parviflora to obtain the valuable secondary metabolites with antioxidant and enzyme inhibition properties. The disinfection effect of silver oxide nanoparticles (AgO NPs) on rhizome and effects of plant growth regulators on shoot multiplication and subsequent rooting were investigated. Surface sterilization of rhizome buds with sodium hypochlorite was insufficient to control contamination. However, immersing rhizome buds in 100 mg L−1 AgO NPs for 60 min eliminated contamination without affecting the survival of explants. The number of shoots (12.2) produced per rhizome bud was higher in Murashige and Skoog (MS) medium containing 8 µM of 6-Benzyladenine (6-BA) and 0.5 µM of Thidiazuron (TDZ) than other treatments. The highest number of roots (24), with a mean root length of 7.8 cm and the maximum shoot length (9.8 cm), were obtained on medium MS with 2 µM of Indole-3-butyric acid (IBA). A survival rate of 98% was attained when plantlets of K. parviflora were acclimatized in a growth room. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to determine the chemical profile of K. parviflora leaf extracts. Results showed that several biologically active flavonoids reported in rhizomes were also present in leaf tissues of both in vitro cultured and ex vitro (greenhouse-grown) plantlets of K. parviflora. We found 40 and 36 compounds in in vitro cultured and ex vitro grown leaf samples, respectively. Greenhouse leaves exhibited more potent antioxidant activities than leaves from in vitro cultures. A higher acetylcholinesterase inhibitory ability was obtained for greenhouse leaves (1.07 mg/mL). However, leaves from in vitro cultures exhibited stronger butyrylcholinesterase inhibitory abilities. These results suggest that leaves of K. parviflora, as major byproducts of black ginger cultivation, could be used as valuable alternative sources for extracting bioactive compounds.
Collapse
|
8
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
9
|
Hashiesh HM, Meeran MN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020; 12:nu12102963. [PMID: 32998300 PMCID: PMC7599522 DOI: 10.3390/nu12102963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - M.F. Nagoor Meeran
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Correspondence: ; Tel.: +971-3-713-7524; Fax: +971-3-767-2033
| |
Collapse
|
10
|
Kariyil B, Devi A, Raj NM, Akhil GH, Balakrishnan-Nair D. Immunomodulatory effect of Kaempferia parviflora against cyclophosphamide-induced immunosuppression in swiss albino mice. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_233_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Elshamy AI, Mohamed TA, Essa AF, Abd-ElGawad AM, Alqahtani AS, Shahat AA, Yoneyama T, Farrag ARH, Noji M, El-Seedi HR, Umeyama A, Paré PW, Hegazy MEF. Recent Advances in Kaempferia Phytochemistry and Biological Activity: A Comprehensive Review. Nutrients 2019; 11:nu11102396. [PMID: 31591364 PMCID: PMC6836233 DOI: 10.3390/nu11102396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Plants belonging to the genus Kaempferia (family: Zingiberaceae) are distributed in Asia, especially in the southeast region, and Thailand. They have been widely used in traditional medicines to cure metabolic disorders, inflammation, urinary tract infections, fevers, coughs, hypertension, erectile dysfunction, abdominal and gastrointestinal ailments, asthma, wounds, rheumatism, epilepsy, and skin diseases. Objective: Herein, we reported a comprehensive review, including the traditional applications, biological and pharmacological advances, and phytochemical constituents of Kaempheria species from 1972 up to early 2019. Materials and methods: All the information and reported studies concerning Kaempheria plants were summarized from library and digital databases (e.g., Google Scholar, Sci-finder, PubMed, Springer, Elsevier, MDPI, Web of Science, etc.). The correlation between the Kaempheria species was evaluated via principal component analysis (PCA) and agglomerative hierarchical clustering (AHC), based on the main chemical classes of compounds. Results: Approximately 141 chemical constituents have been isolated and reported from Kaempferia species, such as isopimarane, abietane, labdane and clerodane diterpenoids, flavonoids, phenolic acids, phenyl-heptanoids, curcuminoids, tetrahydropyrano-phenolic, and steroids. A probable biosynthesis pathway for the isopimaradiene skeleton is illustrated. In addition, 15 main documented components of volatile oils of Kaempheria were summarized. Biological activities including anticancer, anti-inflammatory, antimicrobial, anticholinesterase, antioxidant, anti-obesity-induced dermatopathy, wound healing, neuroprotective, anti-allergenic, and anti-nociceptive were demonstrated. Conclusions: Up to date, significant advances in phytochemical and pharmacological studies of different Kaempheria species have been witnessed. So, the traditional uses of these plants have been clarified via modern in vitro and in vivo biological studies. In addition, these traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt.
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ali S Alqahtani
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Abdelaaty A Shahat
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | | | - Masaaki Noji
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt.
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Akemi Umeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Pitakpawasutthi Y, Palanuvej C, Ruangrungsi N. Quality evaluation of Kaempferia parviflora rhizome with reference to 5,7-dimethoxyflavone. J Adv Pharm Technol Res 2018; 9:26-31. [PMID: 29441321 PMCID: PMC5801584 DOI: 10.4103/japtr.japtr_147_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kaempferia parviflora Wall. ex Baker is a medicinal plant found in the upper Northeastern regions of Thailand, which belongs to Zingiberaceae family. The present study aims to investigate the standardization parameters, to analyze chemical constituents of volatile oil by gas chromatography-mass spectrometry, and to determine the content of 5,7-dimethoxyflavone in K. parviflora rhizomes by thin-layer chromatography (TLC)-densitometry compared to TLC image analysis. K. parviflora rhizomes from 15 different sources throughout Thailand were investigated for morphological and pharmacognostic parameters. 5,7-Dimethoxyflavone contents were determined by TLC-densitometry with winCATS software and TLC image analysis with ImageJ software. The mobile phase for TLC development consisted of toluene: chloroform: Acetone: formic acid (5: 4: 1: 0.2). For the Results, the pharmacognostic parameters of K. parviflora rhizome were demonstrated. The loss on drying, total ash, acid-insoluble ash, water content, volatile oil content, ethanol, and water-soluble extractive values were found to be 8.979 ± 0.041, 5.127 ± 0.060, 2.174 ± 0.092, 9.291 ± 0.458, 0.028 ± 0.003, 5.138 ± 0.092, and 8.254 ± 0.191 g/100 g of dry weight, respectively. K. parviflora volatile oil showed the major components of α-copaene, dauca-5, 8-diene, camphene, β-pinene, borneol, and linalool. The 5,7-dimethoxyflavone content of K. parviflora rhizomes determined by TLC-densitometry and TLC image analysis were found to be 2.15 ± 0.64 and 1.96 ± 0.51 g/100 g of dry rhizomes, respectively. The 5,7-dimethoxyflavone contents of both methods were not significantly different (P > 0.05) using paired t-test.
Collapse
Affiliation(s)
- Yamon Pitakpawasutthi
- Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanida Palanuvej
- Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nijsiri Ruangrungsi
- Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Rangsit University, Pathumthani 12000, Thailand
| |
Collapse
|
13
|
Kamal M, Arif M, Jawaid T. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy–a review. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13596-016-0254-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|