1
|
Dalaka E, Stefos GC, Politis I, Theodorou G. Effect of Milk Origin and Seasonality of Yogurt Acid Whey on Antioxidant Activity before and after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:2130. [PMID: 38136249 PMCID: PMC10740864 DOI: 10.3390/antiox12122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Yogurt acid whey (YAW) is a by-product of Greek strained yogurt production. The disposal of YAW constitutes an environmental problem, and given the increasing demand of Greek yogurt worldwide, its handling is a challenge. However, whey-derived peptides, resulting from microbial fermentation as well as those resulting from further hydrolysis during the digestion process, have been linked to enhanced biological activities. In this study, the antioxidant capacity of 33 samples of YAW obtained from Greek dairy companies of bovine, ovine or caprine origin was investigated using both cell-free and cell-based assays. The YAW samples, their in vitro digestion products (YAW-Ds) and a fraction of the digests (less than 3 kDa; YAW-D-P3) were assessed using four biochemical assays, namely ORAC, ABTS, FRAP and P-FRAP. Our data revealed a higher antioxidant capacity for digested samples compared with undigested samples, with all four methods. ORAC values after in vitro digestion were higher for the ovine samples compared to their bovine (YAW-D and YAW-D-P3) and caprine (YAW-D-P3) counterparts. Furthermore, the YAW-D-P3 fraction derived from samples collected in the summer months exhibited higher ORAC values when compared to the respective fraction from the winter months' samples. The cellular antioxidant activity of ovine YAW-D-P3 was improved in H2O2-treated HT29 cells compared to the control H2O2-treated cells. However, YAW-D-P3 could not trigger either the pathways involving the transcription factors NF-κB or NFE2L2 or the gene expression of SOD1, CAT and HMOX1 in LPS-challenged THP-1-derived macrophages. These results suggest that YAW, and particularly YAW from ovine origin, could be used as a natural source for its antioxidant potential in human and animal nutrition.
Collapse
Affiliation(s)
| | | | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
2
|
Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:758-768. [PMID: 36725371 DOI: 10.1080/27697061.2023.2169208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Functional foods are defined as foods and ingredients that exhibit health benefits beyond their nutritional value. Research on functional foods is increasing rapidly as they may help prevent and manage some non-communicable diseases. Whey proteins are recognized as a high-quality nutrient source and known to contain some bioactive components. They are rich in essential amino acids such as cysteine, branched-chain amino acids such as leucine, valine, and isoleucine, and bioactive peptides. Whey proteins look promising as a potential functional food, given its antioxidant, anti-inflammatory, blood pressure lowering, anti-obesity, and appetite suppressing effects that is discussed in the literature. Whey proteins also show functional properties that play an essential role in food processing as an emulsifier, fat-replacer, gelling and encapsulating agent and are known to improve sensory and textural characteristics of food. This review focuses on the functional food aspects of whey proteins, associated health effects, and current food applications.
Collapse
Affiliation(s)
- Aslı Yiğit
- Faculty of Health Sciences, Nutrition and Dietetics, Süleyman Demirel University, Isparta, Turkey
| | - Paulina Bielska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, University of Life Sciences, Poznań, Poland
| | - Dorota Cais-Sokolińska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, University of Life Sciences, Poznań, Poland
| | - Gülhan Samur
- Faculty of Health Sciences, Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
de Espindola JS, Ferreira Taccóla M, da Silva VSN, Dos Santos LD, Rossini BC, Mendonça BC, Pacheco MTB, Galland F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res Int 2023; 173:113291. [PMID: 37803604 DOI: 10.1016/j.foodres.2023.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.
Collapse
Affiliation(s)
- Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Milena Ferreira Taccóla
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Vera Sônia Nunes da Silva
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Bruna Cavecci Mendonça
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
4
|
Zhang X, Yu P, Yan J, Shi Y, Feng J, Peng X. Effects of Whey Peptides on the Quality of Pork Ball Preprepared Dishes during Repeated Freezing-Thawing. Foods 2023; 12:3597. [PMID: 37835250 PMCID: PMC10573038 DOI: 10.3390/foods12193597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This study evaluated the effect of FI (Fraction I, molecular weight < 1 kDa), which is separated from natural whey protein, on the antioxidant activity, sensory quality, color, texture characteristics, and microbial growth of pork balls during repeated freeze-thaw cycles (F-T cycles). The results indicated that pork balls mixed with FI significantly improved in quality after repeating the F-T cycle, especially with the addition of 10% FI. The quality was improved significantly after repeated F-T cycles by adding 10% FI, and the antioxidant activity after seven F-T cycles decreased by 40.78%, a similar result to that obtained with the addition of 0.02% BHA. In addition, FI effectively reduced the sensory damage of pork balls caused by repeated freezing-thawing and also significantly inhibited the growth of microorganisms. In summary, FI not only has excellent antioxidant capacity under repeated freeze-thaw conditions but also has significant antibacterial and quality preservation effects and is expected to be quantified as a kind of natural food additive with antibacterial and antioxidant properties. This paper not only explores the effect of FI on the quality characteristics of frozen and thawed pork balls in prepared dishes but also provides a theoretical basis for the application of whey polypeptides in prepared meat.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264005, China; (X.Z.); (P.Y.); (J.Y.); (Y.S.); (J.F.)
| |
Collapse
|
5
|
Dalaka E, Politis I, Theodorou G. Antioxidant Activity of Sweet Whey Derived from Bovine, Ovine and Caprine Milk Obtained from Various Small-Scale Cheese Plants in Greece before and after In Vitro Simulated Gastrointestinal Digestion. Antioxidants (Basel) 2023; 12:1676. [PMID: 37759979 PMCID: PMC10525972 DOI: 10.3390/antiox12091676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Whey-derived peptides have been associated with different biological properties, but most peptides are usually further hydrolyzed during the digestive process. In the present study, the antioxidant capacity of 48 samples of sweet whey (SW) derived from cheeses obtained from small-scale cheese plants made with bovine, ovine, caprine or a mixture of ovine/caprine milk was assessed using both cell-free and cell-based assays. SW digestates (SW-Ds) and a fraction (<3 kDa; SW-D-P3) thereof were obtained after in vitro digestion and subsequent ultrafiltration. Antioxidant properties using four different assays were evaluated before and after digestion. Our data showed higher values (p < 0.05) for ORAC, ABTS, FRAP and P-FRAP after in vitro digestion (SW-Ds and SW-D-P3) when compared with the corresponding values before digestion. In the non-digested SW, ORAC values were higher (p < 0.05) for the bovine SW compared with all the other samples. In contrast, the ABTS assay indicated a higher antioxidant activity for the ovine SW both before digestion and for SW-D-P3 compared with the bovine SW. The fraction SW-D-P3 of the ovine SW, using HT29 cells and H2O2 as an oxidizing agent, increased (p < 0.05) the cellular antioxidant activity. Furthermore, the same fraction of the ovine/caprine mixed SW increased, through the NF-κB pathway, the expression of SOD1 and CAT, genes implicated in the oxidative response in macrophage-like THP-1 cells. These findings indicate that SW, and particularly bovine and ovine SW, could be a candidate source for physical antioxidants in human and animal nutrition.
Collapse
Affiliation(s)
| | | | - Georgios Theodorou
- Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece; (E.D.); (I.P.)
| |
Collapse
|
6
|
Yu P, Yan J, Kong L, Yu J, Zhao X, Peng X. Whey Protein Hydrolysate Improved the Structure and Function of Myofibrillar Protein in Ground Pork during Repeated Freeze-Thaw Cycles. Foods 2023; 12:3135. [PMID: 37628134 PMCID: PMC10453259 DOI: 10.3390/foods12163135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Whey protein hydrolysate (WPH) has made a breakthrough in inhibiting oxidative deterioration and improving the quality of meat products during storage. Based on our previous study of extracting the most antioxidant active fraction I (FI, the molecular weight < 1 kDa) from whey protein hydrolysates of different molecular weights, the present study continued to delve into the effects of WPH with fraction I on the structure and function of myofibrillar proteins (MP) in ground pork during the freeze-thaw (F-T) cycles. With the number of F-T cycles raised, the total sulfhydryl content, the relative contents of α-helix, Ca2+-ATPase activity, K+-ATPase activity, solubility, emulsion activity index (EAI), and emulsion stability index (ESI) of MP gradually decreased. Conversely, the carbonyl content and the relative content of random curl showed an increasing trend. In particular, the damage to the structure and the function of MP became more pronounced after three F-T cycles. But, during F-T cycles, FI stabilized the structure of MP. Compared to the control group, the 10% FI group showed a remarkable improvement (p < 0.05) in the total sulfhydryl content, Ca2+-ATPase activity, K+-ATPase activity, solubility, EAI and ESI after multiple F-T cycles, suggesting that 10% FI could effectively inhibit protein oxidation and had the influence of preserving MP function properties. In conclusion, WPH with fraction I can be used as a potential natural antioxidant peptide for maintaining the quality of frozen processed meat products.
Collapse
Affiliation(s)
- Pengjuan Yu
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Jiayan Yan
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Lingru Kong
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Juan Yu
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264005, China; (P.Y.); (J.Y.); (L.K.); (J.Y.)
| |
Collapse
|
7
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Tyagi A, Chelliah R, Banan-Mwine Daliri E, Sultan G, Madar IH, Kim N, Shabbir U, Oh DH. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2023; 404:134747. [PMID: 36444095 DOI: 10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
Abstract
Oxidative stress is known to cause cell apoptosis, tissue damage, and pathological changes in the body, but antioxidant peptides are renowned radical scavengers. This study investigated the antioxidative and protective effect of six novel peptides obtained after microbial fermentation of brown rice. The selected peptides (MW ≤ 8 KDa), namely AVPYPQ (P1), ILTAV (P2), LGDVIGVP (P3), NPIFDYVLLP (P4), VAPFPEV (P5), and VLPVPK (P6) exhibited strong antioxidant potential against in vitro radicals with IC50 values for DPPH (5.12 ± 0.9-12.54 ± 0.6 µg/ml), ABTS (5.97 ± 0.2-14.20 ± 1.5 µg/ml), FRAP (4.98 ± 2.2-12.19 ± 0.8 µg/ml) and PSC (9.71 ± 0.5-17.84 ± 1.3 µg/ml),respectively. Additionally, these peptides reduced ROS concentrations in Caco-2 cells treated with hydrogen peroxide. In silico studies indicated all six peptides had a higher binding score for the Keap1-Kelch domain than TX6, a potential Keap1 reference ligand. These findings suggest peptides derived from fermented brown rice might be functional components in foods.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | | | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Inamul Hasan Madar
- Department of Pharmacology, Saveetha College and Hospitals, Chennai 600077, Tamil Nadu, India
| | - Namehyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
9
|
Tyagi A, Chelliah R, Banan-Mwine Daliri E, Sultan G, Madar IH, Kim NH, Shabbir U, Oh DH. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2023; 404:134747. [DOI: https:/doi.10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
10
|
Investigating the cellular antioxidant and anti-inflammatory effects of the novel peptides in lingzhi mushrooms. Heliyon 2022; 8:e11067. [PMID: 36303910 PMCID: PMC9593296 DOI: 10.1016/j.heliyon.2022.e11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The lingzhi mushroom (Ganoderma lucidum) is well known for its medicinal properties and has long played a role in traditional oriental medicine due to its health-giving benefits and potential to extend life expectancy. The mushroom contains a number of highly bioactive compounds and can also act as an excellent source of protein. This research investigated the peptides obtained from the protein hydrolysates of lingzhi mushrooms to assess their free radical scavenging abilities. These peptides were acquired via different proteases (Alcalase, Neutrase, papain, and pepsin-pancreatin) and were tested at a range of different concentrations (1.0%, 2.5%, and 5.0% w/v). The highest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activities were presented by lingzhi mushroom hydrolysate using 2.5% (w/v) pepsin-pancreatin after 6 h of digestion. The hydrolysate was then fractionated using 10, 5, 3, and 0.65 kDa molecular weight cut-off membranes. The results showed that the MW 0.65 kDa fraction had the highest level of free radical scavenging activity. Further analysis of this MW 0.65 kDa fraction began with another RP-HPLC fractionation technique to obtain three further sub-fractions. De novo peptide sequencing using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was chosen as the optimum method for studying the F3 sub-fraction. DRVSIYGWG and ALLSISSF were discovered as new peptides with different antioxidant properties. Adenocarcinoma colon (Caco-2) cells showed the antioxidant action of these synthesized peptides. This activity was linked to peptide concentration. The peptides and their pure synthetic counterparts were found to reduce NO generation by RAW 264.7 macrophages without causing cytotoxicity. The results of gene expression reveal that the DRVSIYGWG and ALLSISSF peptides were able to cut the expression of the proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in the context of RAW 264.7 macrophages.
Collapse
|
11
|
Thampy A, Palani Kumar MK, Serva Peddha M, Reddy M. The effectiveness of whey proteins in prevention and treatment of cancer: a review. Crit Rev Food Sci Nutr 2022; 64:2088-2104. [PMID: 36111369 DOI: 10.1080/10408398.2022.2121256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer prevalence is rising rapidly around the globe, contributing immensely to the burden on health systems, hence the search for more effective and selective treatments still remains enticing. Whey, as a natural source, has received extensive focus in recent years because of its intriguing applications to health benefits. Growing consumer appreciation of the nutraceutical effects of whey components makes them an attractive field within cancer research. Whey is a valuable source of superior-quality proteins, lactose, vitamins, and minerals that contribute to proper nutrition as well as help hamper illness and even complement certain disease-related therapy prognosis. As a result, industry leaders and dairy producers are devising new ways to valorize it. Great emphasis on cancer prevention and treatment has been given to whey protein (WP) by the scientific community. WP intake has been proven to induce anti-cancer effects in various in vitro and in vivo studies. Nutritionists and dietitians are now enormously endorsing the role of WP in the therapeutic field, notably for cancer cachexia management. However, human intervention studies with WP are in their infancy and remain to be established with different tumor entities to provide valid proof of its ability to act as a coadjuvant in cancer treatment.
Collapse
Affiliation(s)
- Anjana Thampy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Meena Kumari Palani Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Madhavi Reddy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| |
Collapse
|
12
|
Jevremović A, Stanojković A, Arsenijević D, Arsenijević A, Arzumanyan G, Mamatkulov K, Petrović J, Nedić Vasiljević B, Bajuk-Bogdanović D, Milojević-Rakić M. Mitigating toxicity of acetamiprid removal techniques - Fe modified zeolites in focus. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129226. [PMID: 35739746 DOI: 10.1016/j.jhazmat.2022.129226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
All remediation pathways in aqueous solutions come down to three dominant ones - physical, chemical, and combinations thereof. Materials proposed for adsorption and oxidative degradation can induce positive or negative effects on cells compared to the pollutants themselves. Present research deals with the effects different methods for pesticide remediation have and how they impact cytotoxicity. With this particular intention, Fe-modified zeolites (obtained via citrate/oxalate complexes) of three zeotypes (MFI, BEA and FAU) were prepared and tested as adsorbents and Fenton catalysts for the removal of the acetamiprid pesticide. The materials are characterized by AFM, FTIR spectroscopy and ICP-OES. A different effect of the zeolite framework and modification route was found among the samples, which leads to pronounced adsorption (FAU), efficient Fenton degradation (MFI) or synergistic effect of both mechanisms (BEA). The cytotoxic effects of acetamiprid in the presence of zeolites, in pristine and modified forms, were tested on the MRC-5 human fibroblast cell line. A complete survey of the toxicity effect behind different pesticide removal methods is presented. Since neither adsorption nor catalytic degradation is the best option for pesticide removal, the focus is shifted to a combination of these methods, which proved to be optimal for pesticide toxicity reduction.
Collapse
Affiliation(s)
- Anka Jevremović
- University of Belgrade Faculty of Physical Chemistry, 11000 Belgrade, Serbia.
| | - Ana Stanojković
- University of Belgrade Faculty of Physical Chemistry, 11000 Belgrade, Serbia
| | - Dragana Arsenijević
- University of Kragujevac Faculty of Medical Sciences, Department of Pharmacy and Center for Molecular Medicine and Stem Cells Research, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- University of Kragujevac Faculty of Medical Sciences, Department of Pharmacy and Center for Molecular Medicine and Stem Cells Research, 34000 Kragujevac, Serbia
| | - Grigory Arzumanyan
- Joint Institute for Nuclear Research, Laboratory of Neutron Physics, Sector of Raman Spectroscopy Centre Nanobiophotonics, Dubna, Russia
| | - Kahramon Mamatkulov
- Joint Institute for Nuclear Research, Laboratory of Neutron Physics, Sector of Raman Spectroscopy Centre Nanobiophotonics, Dubna, Russia
| | - Jelena Petrović
- University of Belgrade "VINČA" Institute of Nuclear Sciences National Institute of the Republic of Serbia, Department of Physical Chemistry, Mike Petrovića Alasa, 11000 Belgrade, Serbia
| | | | | | | |
Collapse
|
13
|
|
14
|
Shen Y, Zhang N, Tian J, Xin G, Liu L, Sun X, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J Control Release 2021; 341:285-299. [PMID: 34822910 DOI: 10.1016/j.jconrel.2021.11.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are a group of phytochemicals responsible for the purple or red color of plants. Additionally, they are recognized to have health promoting functions including anti-cardiovascular, anti-thrombotic, anti-diabetic, antimicrobial, neuroprotective, and visual protective effect as well as anti-cancer activities. Thus, consumption of anthocyanin supplement or anthocyanin-rich foods has been recommended to prevent the risk of development of chronic diseases. However, the low stability and bioavailability of anthocyanins limit the efficacy and distribution of anthocyanins in human body. Thus, strategies to achieve target site-local delivery with good bioavailability and controlled release rate are necessary. This review introduced and discussed the latest advanced techniques of designing lipid-based, polysaccharide-based and protein-based complexes, nano-encapsulation and exosome to overcome the limitation of anthocyanins. The improved bioavailability and controlled release of anthocyanins have great significance for gastrointestinal tract absorption, transepithelial transportation and cellular uptake. The techniques of applying different biocompatible materials and modifying the solubility of anthocyanins complex could achieve target site-local delivery with negligible degradation and good bioavailability in human body.
Collapse
Affiliation(s)
- Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ning Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Horticulture Germplasm Excavation and Innovative Utilization Qinhuangdao, Hebei, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China.
| |
Collapse
|
15
|
Whey protein concentrate protects against age-dependent alteration in redox biomarkers. Biol Futur 2021; 71:273-281. [PMID: 34554512 DOI: 10.1007/s42977-020-00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Aging is associated with decreased cellular cysteine uptake, which acts as a precursor for glutathione biosynthesis. Whey protein, a liquid aspect of milk, is an effective cysteine delivery system. The study was undertaken to evaluate the potential role of whey protein concentrate (WPC) on the redox biomarkers during aging. Male Wistar rats were divided into following four groups: young control (4 months old); young treated with WPC (300 mg/kg b.w./day orally); old (24 months old) control; old treated with WPC for 28 days. After treatment, changes in body weight, lipid profile and levels of redox biomarkers were determined. A marked decrease in prooxidants such as reactive oxygen species, lipid peroxidation and protein carbonyl and significant (p ≤ 0.05) increase in antioxidants such as reduced glutathione and GST levels were observed after WPC supplementation in old age rats. We also found marked decrease in the level of sialic acid and AGEs after WPC supplementation. In conclusion, WPC provides protection against age-dependent redox imbalance which might be attributed to its antioxidant activity.
Collapse
|
16
|
Ma J, Zeng X, Zhou M, Cheng L, Ren D. Inhibitory effect of low-molecular-weight peptides (0-3 kDa) from Spirulina platensis on H 2O 2-induced oxidative damage in L02 human liver cells. BIORESOUR BIOPROCESS 2021; 8:36. [PMID: 38650240 PMCID: PMC10992845 DOI: 10.1186/s40643-021-00388-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Spirulina platensis protein hydrolysates were prepared by digesting protein extracts with papain, and the hydrolysates were separated into 30, 10, and 3 kDa weights using membrane ultrafiltration. The 0-3 kDa low-molecular-weight Spirulina peptides (LMWSPs) proved the highest chemical antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical (·OH) scavenging activities and total antioxidant capacity. Cellular antioxidant ability of LMWPs fractions against 2000 μg/mL H2O2 induced oxidative damage of L02 cells were investigated. The MTT assay results displayed that LMWSPs at different concentrations (0-1000 μg/mL) had proliferation effect on the L02 cells and that treatment of the L02 cells with the 1000 μg/mL LMWSPs (0-3 kDa) significantly prevented H2O2-induced oxidative damage compared with control cells. Moreover, the 2',7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe assay showed that the levels of ROS and NO were significantly lower in the experimental group that was treated with the peptides for 24 h than in the control group. Furthermore, using the corresponding kits, the treatment inhibited the reduction of SOD activity and the increase of MDA contents in the L02 cells. Therefore, LMWSPs (0-3 kDa) may have potential applications in antioxidant and liver health products.
Collapse
Affiliation(s)
- Jun Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiankun Zeng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Min Zhou
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Le Cheng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
17
|
Bu F, Yi D, Zhang H, Li Q, Pan D, Dang Y. Isolation and identification of antioxidant and DPP-IV inhibitory peptide PYPYEPYEPYPY from yak bone hydrolysate. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fan Bu
- College of Food and Pharmaceutical Sciences, Ningbo University
| | | | | | - Qin Li
- Institute of Materia Medica, Hangzhou Medical College
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University
| | - Yali Dang
- College of Food and Pharmaceutical Sciences, Ningbo University
| |
Collapse
|
18
|
Abstract
With the increased consumer demand for nutritional foods, it is important to develop value-added products, which will not only catch the attention of a wider consumer group but also provide greater benefits in terms of enhanced nutrition and functionality. Milk whey proteins are one of the most valued constituents due to their nutritional and techno-functional attributes. Whey proteins are rich in bioactive peptides, possessing bioactive properties such as being antioxidant and antihypertensive as well as having antimicrobial activities, which, when ingested, confers several health benefits. These peptides have the potential to be used as an active food ingredient in the production of functional foods. In addition to their bioactivities, whey proteins are known to possess enhanced functional attributes that allow them to be utilized in broad applications, such as an encapsulating agent or carrier materials to entrap bioactive compounds, emulsification, and in edible and active packaging. Hence, over the recent years, several whey protein-based ingredients have been developed and utilized in making formulations for a wide range of foods to harness their beneficial properties. This review highlights the bioactive properties, functional characteristics, associated processing limitations, and applications of different whey protein fractions and derivatives in the field of food formulations, encapsulation, and packaging.
Collapse
|
19
|
Wen C, Zhang J, Zhang H, Duan Y, Ma H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
21
|
Yu H, Jing Y, Zhang X, Qayum A, Gantumur MA, Bilawal A, Jiang Z, Li A. Comparison of intracellular glutathione and related antioxidant enzymes: Impact of two glycosylated whey hydrolysates. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Hao L, Gao X, Zhou T, Cao J, Sun Y, Dang Y, Pan D. Angiotensin I-Converting Enzyme (ACE) Inhibitory and Antioxidant Activity of Umami Peptides after In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8232-8241. [PMID: 32662986 DOI: 10.1021/acs.jafc.0c02797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Umami peptides can help reduce the salt content in foods while still maintaining a savory taste. Few studies have reported the bioactivity of umami peptides after consumption. We studied the bioactivities of 12 umami peptides after gastrointestinal digestion. Three umami peptides exhibited angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity after digestion. Six novel peptides were identified from digestion solutions of the peptides by HPLC-MS/MS. Among them, CC, CCNK, and HCHT had both ACE inhibitory activity (IC50 values were 9.81, 9.00, and 114.99 μM, respectively) and antioxidant activity (strong 1,1-Diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging activities). AHSVRF had strong ACE inhibitory activity. These peptides increased the nitric oxide concentration and decreased the content of endothelin-1 in a medium of human umbilical vein endothelial cells in a dose-dependent manner. Experiments with damaged HepG2 cells showed that peptides CC, CCNK, and HCHT had antioxidant activity through their cytoprotective effects and by reducing the reactive oxygen species content. The results indicated that umami peptides may provide many health benefits after consumption.
Collapse
Affiliation(s)
- Li Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tingyi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
23
|
In Vitro Characterisation of the Antioxidative Properties of Whey Protein Hydrolysates Generated under pH- and Non pH-Controlled Conditions. Foods 2020; 9:foods9050582. [PMID: 32380669 PMCID: PMC7278780 DOI: 10.3390/foods9050582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bovine whey protein concentrate (WPC) was hydrolysed under pH-stat (ST) and non pH-controlled (free-fall, FF) conditions using Debitrase (DBT) and FlavorPro Whey (FPW). The resultant whey protein hydrolysates (WPHs) were assessed for the impact of hydrolysis conditions on the physicochemical and the in vitro antioxidant and intracellular reactive oxygen species (ROS) generation in oxidatively stressed HepG2 cells. Enzyme and hydrolysis condition dependent differences in the physicochemical properties of the hydrolysates were observed, however, the extent of hydrolysis was similar under ST and FF conditions. Significantly higher (p < 0.05) in vitro and cellular antioxidant activities were observed for the DBT compared to the FPW-WPHs. The WPHs generated under ST conditions displayed significantly higher (p < 0.05) oxygen radical absorbance capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) values compared to the FF-WPHs. The impact of hydrolysis conditions was more pronounced in the in vitro compared to the cellular antioxidant assay. WPH peptide profiles (LC-MS/MS) were also enzyme and hydrolysis conditions dependent as illustrated in the case of β-lactoglobulin. Therefore, variation in the profiles of the peptides released may explain the observed differences in the antioxidant activity. Targeted generation of antioxidant hydrolysates needs to consider the hydrolysis conditions and the antioxidant assessment method employed.
Collapse
|
24
|
γ-Oryzanol suppresses cell apoptosis by inhibiting reactive oxygen species-mediated mitochondrial signaling pathway in H 2O 2-stimulated L02 cells. Biomed Pharmacother 2019; 121:109554. [PMID: 31678753 DOI: 10.1016/j.biopha.2019.109554] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
γ-Oryzanol, a mixture of ferulic acid esters of plant sterols and triterpene alcohols existed in rice bran oil, can ameliorate lipid metabolism and enhance antioxidant activity. In this study, we used hydrogen peroxide (H2O2)-induced injury in human hepatic L02 cells to investigate the mechanisms involved in the hepatoprotective activity of γ-oryzanol. The injuries produced by H2O2 in L02 cells include increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activities of superoxide dismutase (SOD) and catalase (CAT), loss of mitochondrial membrane potential (MMP), increased protein expressions of caspase-9 and caspase-3, and induced apoptosis. Pretreatment with γ-oryzanol enhanced the ROS scavenging activity of endogenous antioxidant enzymes and decreased lipid peroxidation in H2O2 treated cells. Moreover, pretreatment with γ-oryzanol inhibited H2O2-induced apoptosis by restoring MMP, upregulating the expression ratio of Bcl-2/Bax, and inhibiting the activation of caspase-9 and caspase-3. These findings show that γ-oryzanol can prevent H2O2-induced apoptosis by suppressing intracellular accumulation of ROS and impeding ROS-activated mitochondrial apoptotic pathway.
Collapse
|
25
|
Synthesis, in vitro and cellular antioxidant activity evaluation of novel peptides derived from Saccharomyces cerevisiae protein hydrolysate: structure-function relationship : Antioxidant activity and synthetic peptides. Amino Acids 2019; 51:1167-1175. [PMID: 31209576 DOI: 10.1007/s00726-019-02752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
Abstract
The relationship between structure and function of primary antioxidant peptide, YR-10 (YGKPVAVPAR) was considered by synthesizing three analogues including YHR-10 (YGKHVAVHAR), GA-8 (GKPVAVPA) and PAR-3 (PAR). Antioxidant activity was determined through in vitro and cellular assays. Substitution of Pro with His in the structure of YR-10 led to significant (P < 0.05) higher ABTS radical scavenging and ferric reducing activity. Following in silico simulated gastrointestinal digestion, Tyr and Arg were omitted, respectively, from N and C-terminal positions and resulted in decreasing DPPH, ABTS radical scavenging, and ferric reducing activities. PAR-3 showed the best inhibitory activity on linoleic acid oxidation. Pretreatment of Caco-2 cells with YR-10, YHR-10, and GA-8 (1000 µM) before exposure to H2O2 (160 µM) resulted in 34.10%, 39.66% and 29.159% reduction in malondialdehyde and 53.52%, 17.02% and 24.71% reduction in protein carbonyl levels. The peptide pretreatment reduced catalase level in cells and PAR-3 exhibited the most protective effects on the viability of cells exposed to oxidative stress.
Collapse
|
26
|
Probing the Functionality of Bioactives from Eggplant Peel Extracts Through Extraction and Microencapsulation in Different Polymers and Whey Protein Hydrolysates. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02302-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Mirzaei M, Mirdamadi S, Safavi M. Antioxidant activity and protective effects of Saccharomyces cerevisiae peptide fractions against H2O2-induced oxidative stress in Caco-2 cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00186-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
Corrochano AR, Sariçay Y, Arranz E, Kelly PM, Buckin V, Giblin L. Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. J Dairy Sci 2019; 102:54-67. [DOI: 10.3168/jds.2018-14581] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
|
29
|
di Luca M, Curcio M, Valli E, Cirillo G, Voli F, Butini ME, Farfalla A, Pantuso E, Leggio A, Nicoletta FP, Tavanti A, Iemma F, Vittorio O. Combining antioxidant hydrogels with self-assembled microparticles for multifunctional wound dressings. J Mater Chem B 2019. [DOI: 10.1039/c9tb00871c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A multi-functional composite to be employed as a dressing material was prepared by combining hydrogel and microparticle systems.
Collapse
|
30
|
Corrochano AR, Arranz E, De Noni I, Stuknytė M, Ferraretto A, Kelly PM, Buckin V, Giblin L. Intestinal health benefits of bovine whey proteins after simulated gastrointestinal digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Luo L, Bai R, Zhao Y, Li J, Wei Z, Wang F, Sun B. Protective Effect of Grape Seed Procyanidins against H 2 O 2 -Induced Oxidative Stress in PC-12 Neuroblastoma Cells: Structure-Activity Relationships. J Food Sci 2018; 83:2622-2628. [PMID: 30221772 DOI: 10.1111/1750-3841.14349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
To establish a structure-activity relationship for procyanidins, we verified the cyto-protective effect of 13 grape seed procyanidins, ranging from monomers to trimers against H2 O2 -induced oxidative stress in PC-12 neuroblastoma cells. Our study demonstrated some procyanidins were able to significantly protect PC-12 cells from the H2 O2 -induced cytotoxicity suggesting they possess neuroprotective effects against oxidative stress. Procyanidins' protective effects against oxidative stress mainly depended on their polymerization degree in addition to their structural features. A positive correlation was found between procyanidins' polymerization degree and the protective effect against oxidative stress in PC-12 cells. The presence of 3- or 3'-galloylated groups in the C-ring of procyanidin molecules significantly increased their protective activity as well. These results demonstrated that galloylated high-molecular-mass procyanidins would be of more interesting as promising antioxidant natural compounds. This work for the first time demonstrated the structure-activity relationships of 13 procyanidins' antioxidative stress activity, which could have a significant impact on future development of procyanidins for healthy food products or drugs to treat disease such as neurodegenerative disorders. PRACTICAL APPLICATION This work evaluated the protective effect of procyanidins against oxidative stress in PC-12 neuroblastoma cells and established their activity-structure relationships, which provides useful cellular evidence for the further investigating the structure-optimizing and function-exploiting of procyanidins.
Collapse
Affiliation(s)
- Lanxin Luo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Ruifang Bai
- School of Pharmacy, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Zongmin Wei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical Univ., 110016, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical Univ., 110016, Shenyang, China.,Pólo Dois Portos, Insto. Natl. de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191, Dois Portos, Portugal
| |
Collapse
|
32
|
Sowmya K, Mala D, Bhat MI, Kumar N, Bajaj RK, Kapila S, Kapila R. Bio-accessible milk casein derived tripeptide (LLY) mediates overlapping anti- inflammatory and anti-oxidative effects under cellular (Caco-2) and in vivo milieu. J Nutr Biochem 2018; 62:167-180. [PMID: 30300836 DOI: 10.1016/j.jnutbio.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Inflammation and oxidative stress are closely linked patho-physiological processes which occur concurrently in many diseased conditions. Recently, interdependence between these two processes explains the antioxidant paradox associated with failure to select appropriate agents required for prevention of diseases known to be induced by oxidative stress. Present study established the overlapping anti-inflammatory and anti-oxidative potential along with bio-accessibility of milk casein derived tripeptide (LLY). Tripeptide exhibited anti-inflammatory response under ex vivo conditions by suppressing (P<.01) mice splenocytes proliferation and modulating their cytokines (IFN-γ, IL-10 and TGF-β) with improved phagocytosis of peritoneal macrophages. Conversely, tripeptide displayed extraordinary radical scavenging ability and cellular anti-oxidative potential using chemical assays and H2O2 induced oxidative stress model on Caco-2 cells. Under cellular assessment, on one hand tripeptide inhibited (P<.01) intracellular ROS generation and reduced MDA and protein carbonyls but on the other also increased (P<.01) the activity of anti-oxidative enzyme, catalase without much effect on SOD and GPx. This anti-oxidative potential was further established by studying relative expression of genes (Nrf-2 and Keap1) and Nrf-2 nuclear translocation associated with anti-oxidative signaling in Caco-2 cells. Bio-accessibility of tripeptide and its intact transport across Caco-2 cell monolayer was also found to be 1.72±0.22% through PepT1 mediated transport mechanism. Besides, tripeptide displayed strong anti-oxidative and anti-inflammatory potential under in vivo conditions in mice against ethanol induced oxidative stress by elevating (P<.01) liver GSH content and by decreasing (P<.01) the activities of anti-oxidative enzymes, MDA along with reduced expression of CYP2E1, PPAR-α, TNF-α and COX-2 genes than ethanol control.
Collapse
Affiliation(s)
- Kandukuri Sowmya
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Dev Mala
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohd Iqbal Bhat
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Naveen Kumar
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Bajaj
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
33
|
Protective effects of radish (Raphanus sativus L.) leaves extract against hydrogen peroxide-induced oxidative damage in human fetal lung fibroblast (MRC-5) cells. Biomed Pharmacother 2018; 103:406-414. [PMID: 29674276 DOI: 10.1016/j.biopha.2018.04.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/23/2022] Open
Abstract
Natural antioxidants play a critical role in the promotion of good health for its prevention of oxidative stress. The main purpose of this study is to investigate the protective effects of radish leaves extract on the oxidative damage in human fetal lung fibroblast (MRC-5) cells. F2, a fraction of radish leaves extracts, which was fractionated by different polarity solvents and AB-8 macroporous resins column shows the best free radical scavenging ability, the highest total polyphenol contents (TPC), and the most potent protective effects on H2O2-induced oxidative damage in MRC-5 cells. The results indicated that pretreatment with F2 before the exposure of cells to H2O2 led to a significant increase in cell viability and internal antioxidant enzyme activities, and a decrease in the content of malondialdehyde (MDA). Furthermore, F2 attenuated the increase in intracellular reactive oxygen species (ROS) level and restored the loss of mitochondria membrane potential (MMP) caused by H2O2. In addition, pretreatment of F2 down-regulated the pro-apoptosis protein (Bax) and up-regulated the anti-apoptosis protein (Bcl-2) suggested its preliminary mechanism of protective effect. In summary, F2 from radish leaves might be used as a source of antioxidant for protecting the oxidative damage of lung.
Collapse
|
34
|
Buffalo Milk Casein Derived Decapeptide (YQEPVLGPVR) Having Bifunctional Anti-inflammatory and Antioxidative Features Under Cellular Milieu. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9708-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Corrochano AR, Buckin V, Kelly PM, Giblin L. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci 2018; 101:4747-4761. [PMID: 29605324 DOI: 10.3168/jds.2017-13618] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers.
Collapse
Affiliation(s)
- Alberto R Corrochano
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996; School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8
| | - Vitaly Buckin
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8
| | - Phil M Kelly
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.
| |
Collapse
|
36
|
Peng X, Ruan S, Liu Y, Huang L, Zhang C. The addition of hydrolyzed whey protein fractions to raw pork patties with subsequent chilled storage and its effect on oxidation and gel properties. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1423111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyan Peng
- Country College of Food Engineering, Ludong University, Yantai, ShandongChina
| | - Shiyan Ruan
- Country College of Food Engineering, Ludong University, Yantai, ShandongChina
| | - Yafei Liu
- Country College of Food Engineering, Ludong University, Yantai, ShandongChina
| | - Lei Huang
- Country College of Food Engineering, Ludong University, Yantai, ShandongChina
| | - Cuiyun Zhang
- Country College of Food Engineering, Ludong University, Yantai, ShandongChina
| |
Collapse
|
37
|
Devi S, Kumar N, Kapila S, Mada SB, Reddi S, Vij R, Kapila R. Buffalo casein derived peptide can alleviates H 2O 2 induced cellular damage and necrosis in fibroblast cells. ACTA ACUST UNITED AC 2017; 69:485-495. [PMID: 28483348 DOI: 10.1016/j.etp.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/16/2017] [Indexed: 01/22/2023]
Abstract
Oxidative stress is one of a critical pathogenic factor in the progression of aging and chronic diseases such as cancer, myocardial inflammation and diabetes. In the present scenario, peptides with short half life and more biological specificities are gaining much attention as prodrugs. Thus, the present investigation carried out to screen potential antioxidative peptide, VLPVPQK to cope with the cellular oxidative damage. Our results showed that treatment of rat fibroblast cells with 0.2mM H2O2 for 6h significantly declined different oxidative stress biomarkers such as SOD, CAT, GSH, and promoted LDH activity. In addition, ROS and TNF-α levels were also increased upon H2O2 exposure for 6h and thereby, it induced cell death. Amazingly, pretreatment of the peptide (VLPVPQK) significantly elevated cell survivability, by reversing all H2O2 induced alterations in fibroblast cells. Therefore, our results indicated that, the peptide (VLPVPQK) acted as a potential cytoprotective agent, who restored redox balance and cell homeostasis in cultured fibroblast cells, even after H2O2 exposure, suggesting that the peptide can be valuable as an effective remedy in treatment of oxidative stress related diseases and skin inflammation related disorders.
Collapse
Affiliation(s)
- Savita Devi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Naveen Kumar
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Sanusi Bello Mada
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Srinu Reddi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Rishika Vij
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
38
|
Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice. Inflammation 2016; 40:205-220. [DOI: 10.1007/s10753-016-0471-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Jiang J, Xiong YL. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci 2016; 120:107-117. [DOI: 10.1016/j.meatsci.2016.04.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022]
|
40
|
Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2776-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Functional food relevance of whey protein: A review of recent findings and scopes ahead. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
42
|
Brandelli A, Daroit DJ, Corrêa APF. Whey as a source of peptides with remarkable biological activities. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.01.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology 2015; 52:6847-58. [PMID: 26884639 DOI: 10.1007/s13197-015-1894-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/18/2015] [Accepted: 05/31/2015] [Indexed: 01/07/2023]
Abstract
The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement.
Collapse
|
44
|
Iskandar MM, Lands LC, Sabally K, Azadi B, Meehan B, Mawji N, Skinner CD, Kubow S. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity. Foods 2015; 4:184-207. [PMID: 28231198 PMCID: PMC5302329 DOI: 10.3390/foods4020184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Michèle M Iskandar
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Larry C Lands
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Kebba Sabally
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| | - Behnam Azadi
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| | - Brian Meehan
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Nadir Mawji
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Cameron D Skinner
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street W., Montreal, QC H4B 1R6 Canada.
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
45
|
Wang JZ, He YT, Zhang H, Zhang CH, Luo J, Ren FZ. Protective effects against H2O2-induced oxidative damage in lung fibroblast cell by peptide isolated from plasma albumin hydrolysate. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2418-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Lee YT, Hsieh YL, Yeh YH, Huang CY. Synthesis of phenolic amides and evaluation of their antioxidant and anti-inflammatory activity in vitro and in vivo. RSC Adv 2015. [DOI: 10.1039/c5ra14137k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
15 phenolic amides (PAs) have been synthesized and examinedin vitrousing four tests: (1) prevention of Cu2+-induced human low-density lipoprotein oxidation, (2) scavenging of stable radicals, (3) anti-inflammatory activity, and (4) scavenging of superoxide radicals.
Collapse
Affiliation(s)
- Ya-Ting Lee
- Department of Beauty Science
- National Taichung University of Science and Technology
- Taichung
- Republic of China
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
| | - Yen-Hung Yeh
- School of Health Diet and Industry Management
- Chung Shan Medical University
- Taichung
- Republic of China
- Department of Nutrition
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung
- Republic of China
- Graduate Institute of Basic Medical Science
| |
Collapse
|
47
|
Shi Y, Kovacs-Nolan J, Jiang B, Tsao R, Mine Y. Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
Protective effects of black currant (Ribes nigrum L.) extract on hydrogen peroxide-induced damage in lung fibroblast MRC-5 cells in relation to the antioxidant activity. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
49
|
Corrêa APF, Daroit DJ, Fontoura R, Meira SMM, Segalin J, Brandelli A. Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides 2014; 61:48-55. [PMID: 25218972 DOI: 10.1016/j.peptides.2014.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022]
Abstract
Enzymatic proteolysis may be employed to release bioactive peptides, which have been investigated for potential benefits from both technological and human health perspectives. In this study, sheep cheese whey (SCW) was hydrolyzed with a protease preparation from Bacillus sp. P7, and the hydrolysates were evaluated for antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities. Soluble protein and free amino acids increased during hydrolysis of SCW for up to 4h. Antioxidant activity of hydrolysates, evaluated by the 2,2'azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid radical scavenging method, increased 3.2-fold from 0 h (15.9%) to 6h of hydrolysis (51.3%). Maximum Fe(2+) chelation was reached in 3h hydrolysates, and the reducing power peaked at 1h of hydrolysis, representing 6.2 and 2.1-fold increase, respectively, when compared to that of non-hydrolyzed SCW. ACE inhibition by SCW (12%) was improved through hydrolysis, reaching maximal values (55% inhibition) in 4h, although 42% inhibition was already observed after 1h hydrolysis. The peptide LAFNPTQLEGQCHV, derived from β-lactoglobulin, was identified from 4-h hydrolysates. Such a biotechnological approach might be an interesting strategy for SCW processing, potentially contributing to the management and valorization of this abundant dairy byproduct.
Collapse
Affiliation(s)
- Ana Paula Folmer Corrêa
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Daniel Joner Daroit
- Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo, 97900-000 Cerro Largo, RS, Brazil
| | - Roberta Fontoura
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Stela Maris Meister Meira
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Jeferson Segalin
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Fu Y, Zhao XH. Utilization of Chum Salmon (Oncorhynchus keta) Skin Gelatin Hydrolysates to Attenuate Hydrogen Peroxide-Induced Oxidative Injury in Rat Hepatocyte BRL Cell Model. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2014. [DOI: 10.1080/10498850.2013.804141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|