1
|
Zhang H, Yu Y, Zhang H, Zhao X, Wang J. A comprehensive profiling of phenolic compounds and antioxidant activities of 24 varieties of red raspberry cultivated in Northeast China. J Food Sci 2025; 90:e17623. [PMID: 39731726 DOI: 10.1111/1750-3841.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024]
Abstract
Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities. The results showed that 'DNS1' had the highest total phenolic content (TPC), 'Willamette' had the highest total flavonoid content (TFC), and 'Boyne' had the highest total anthocyanin content (TAC). Phenolic compounds in red raspberries were predominantly found in esterified form, while glycosylated phenolics should not be overlooked. Chlorogenic acid, cryptochlorogenic acid, ellagic acid, and arbutin were the main phenolic compounds, and the distribution of their contents varied between varieties. The antioxidant activity in the red raspberry had a close association with the content of phenolic compounds. Principal component analysis (PCA) showed that phenolic compounds and antioxidant activities were higher in samples from 'DNS1', 'Boyne', 'Beijing10', 'DNS5', and 'Willamette' varieties. These varieties should be given priority in breeding programs that aim to boost the utility and bioactive profile of red raspberries. PRACTICAL APPLICATION: Red raspberry is becoming a desirable commercially grown fruit species and is viewed as a new functional food. In this context, this research offers strong support for confirming the quality of 24 varieties of red raspberry and plays a critical role in the food industry. It also indicates the potential sources of superior varieties of red raspberry, which are advantageous for growers and consumers in search of high-quality red raspberry varieties.
Collapse
Affiliation(s)
- Haonan Zhang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Yiping Yu
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Hegu Zhang
- Faulty of Arts and Sciences, University of Toronto, Toronto, Canada
| | - Xin Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, China
| |
Collapse
|
2
|
Saini H, Panthri M, Bhatia P, Gupta M. Role of phenylpropanoid pathway in genetic regulation and physiological adaptation in arsenic stressed rice genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109291. [PMID: 39546947 DOI: 10.1016/j.plaphy.2024.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the role of the phenylpropanoid pathway in arsenic (As) contaminated rice genotypes under natural conditions, exploring the intricate relationship between genetic regulation and physiological adaptation. Differential approaches adapted by rice genotypes to counteract As exposure are elucidated here through analysis of enzyme activities and related gene expression patterns, docking simulations, and nutrient dynamics. Enzymatic analysis from the phenylpropanoid pathway revealed significant variations across rice genotypes, with Mini mansoori exhibiting notably higher activity levels of key enzymes (PAL, C4H, 4CL, CHI, DFR and F3H) compared to Sampoorna and Pioneer. Additionally, the gene expression profiling unveiled differential responses, with Mini mansoori and Pioneer demonstrating higher expression of genes (OsPAL, OsCHS, OsCHI, OsF3H, OsF3'H, OsFLS, OsDFR, and OsLAR) associated with As resistance and tolerance, compared to Sampoorna. Enrichment analysis emphasized the involvement of cinnamic acid biosynthesis and related pathways. Molecular docking depicted certain proteins, such as Os4CL, OsFLS, OsDFR, and OsLAR susceptible to As binding, potentially affecting enzymatic activity. Ionomic analysis unveiled that Mini mansoori maintained higher levels of essential nutrients such as Na, Ca, P, Mn, Mg, and Zn in grains. However, this contrasted with Pioneer and Sampoorna, which experienced nutrient imbalance likely due to higher As accumulation. Chlorophyll fluorescence analysis depicted that Mini mansoori and Pioneer maintained better photosynthetic efficiency under As toxicity compared to Sampoorna. Moreover, network analysis highlights the critical role of Mg and Na interaction with essential phenolics and flavonoids, in combating the stress. Harnessing this understanding, targeted breeding effort could yield As-resistant rice varieties with enhanced nutrient and flavonoid contents, addressing both food safety and malnutrition in affected regions.
Collapse
Affiliation(s)
- Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India; National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 25, India.
| |
Collapse
|
3
|
Guo Y, Xia S, Shi C, Ma N, Pei F, Yang W, Hu Q, Kimatu BM, Fang D. The Effect of Cold Plasma Treatment on the Storage Stability of Mushrooms ( Agaricus bisporus). Foods 2024; 13:3393. [PMID: 39517177 PMCID: PMC11545018 DOI: 10.3390/foods13213393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Postharvest Agaricus bisporus is susceptible to browning, water loss, and microbial infection. In order to extend its shelf life, cold plasma technology was used to treat and evaluate A. bisporus. Firstly, according to the results of a single factor test and response surface analysis, the optimal conditions for cold plasma treatment were determined as a voltage of 95 kV, a frequency of 130 Hz, and a processing time of 10 min. Secondly, storage experiments were carried out using the optimized cold plasma treatment. The results showed that the cold plasma treatment in the packaging significantly reduced the total viable count in A. bisporus by approximately 16.5%, maintained a browning degree at 26.9% lower than that of the control group, and a hardness at 25.6% higher than that of the control group. In addition, the cold plasma treatment also helped to preserve the vitamin C and total protein content of A. bisporus. In conclusion, cold plasma treatment showed great potential in enhancing the postharvest quality of fresh A. bisporus.
Collapse
Affiliation(s)
- Yalong Guo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (S.X.)
| | - Shuqiong Xia
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (S.X.)
| | - Chong Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China;
| | - Ning Ma
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Fei Pei
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Wenjian Yang
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Qiuhui Hu
- Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; (N.M.); (F.P.); (W.Y.); (Q.H.)
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton 20115, Kenya;
| | - Donglu Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
4
|
Yousef RS, Ahmed OK, Taha ZK. Stimulating action of sodium nitroprusside and vinasse on salicin and direct regeneration in Salix Safsaf Forssk. 3 Biotech 2024; 14:236. [PMID: 39310031 PMCID: PMC11413276 DOI: 10.1007/s13205-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024] Open
Abstract
The present study aimed to enhance salicin and direct regeneration in willow (Salix safsaf Forssk) using the sodium nitroprusside (SNP) regulation of nitric oxide (NO) and vinasse for its nutrition effect in culture medium. Internodes of Salix safsaf were cultured on Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA) (0.25 mg L-1) and different concentrations of SNP (0, 5, 10, 15, and 20 mg L-1) or vinasse (0, 5, 10, and 20%) to examine shoot regeneration, antioxidant defense enzyme activity, total phenolic compounds, flavonoids, and salicine contents. The reported data revealed that application of SNP at 15 mg L-1 and vinasse at 10% induced a significant effect in vitro Salix safsaf shoot regeneration. To confirm that, nitric oxide is required for auxin-mediated activation of cell division in a dose-dependent manner. A concentration of 15 mg L-1 SNP promotes regeneration and salicin accumulation (3162.16 mg/100 g) during signaling action. On the other hand, the cross talk effect of nitric oxide and vinasse combination in Salix safsaf significantly induced a synergistic effect on direct propagation more than vinasse alone. SNP significantly stimulates salicylate accumulation in a dose-dependent manner, but the data on the association of vinasse and SNP on salicylate up-regulation showed a significant reduction in salicin accumulation when SNP was combined with 10% vinasse, which directly affected the signaling action of SNP as secondary product stimulators. Vinasse's phenolic compounds affect directly on the reduction activity of SNP to suppress its signaling action, or indirectly by inhibiting the sequence cascade of the SNP signaling transduction process to decrease the accumulation of salicin contents. Data confirmed that vinasse and SNP stimulated the antioxidant enzymes activity throw quenching the stimulated reactive oxygen species that produced via SNP. Results show that modified media with SNP administration at 15 mg L-1 and the combination of vinasse at 10% and SNP at 15 mg L-1 are recommended for modifying tissue culture media for induced direct regeneration and salicin accumulation in tissue culture applications, which will be very useful for commercial salicin overproduction as a biological active ingredient in willows.
Collapse
Affiliation(s)
- Rania Saber Yousef
- Biochemistry Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| | - Osama Konsowa Ahmed
- Biochemistry Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| | - Zeinab K. Taha
- Agricultural Botany Department, Faculty of Agriculture, Cairo University, 7 Gamaa St., Giza, 12613 Egypt
| |
Collapse
|
5
|
Yu NN, Veerana M, Ketya W, Sun HN, Park G. RNA-Seq-Based Transcriptome Analysis of Nitric Oxide Scavenging Response in Neurospora crassa. J Fungi (Basel) 2023; 9:985. [PMID: 37888241 PMCID: PMC10607626 DOI: 10.3390/jof9100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Mayura Veerana
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
6
|
Liu XD, Zeng YY, Zhang XY, Tian XQ, Hasan MM, Yao GQ, Fang XW. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide. PHYSIOLOGIA PLANTARUM 2023; 175:e13903. [PMID: 37002824 DOI: 10.1111/ppl.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan-Yuan Zeng
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xia-Yi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Zhang C, Liu Y, Liu X, Chen X, Chen R. Comprehensive Review of Recent Advances in Chiral A-Ring Flavonoid Containing Compounds: Structure, Bioactivities, and Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010365. [PMID: 36615559 PMCID: PMC9822200 DOI: 10.3390/molecules28010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Flavonoids are a group of natural polyphenolic substances that are abundant in vegetables, fruits, grains, and tea. Chiral A-ring-containing flavonoids are an important group of natural flavonoid derivatives applicable in a wide range of biological activities such as, cytotoxic, anti-inflammatory, anti-microbial, antioxidant, and enzyme inhibition. The desirable development of chiral A-ring-containing flavonoids by isolation, semi-synthesis or total synthesis in a short duration proves their great value in medicinal chemistry research. In this review, the research progress of chiral A-ring-containing flavonoids, including isolation and extraction, structural identification, pharmacological activities, and synthetic methods, is comprehensively and systematically summarized. Furthermore, we provide suggestions for future research on the synthesis and biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Changyue Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yanzhi Liu
- College of Basic Medicine, Jining Medical University, Jining 272067, China
| | | | - Xiaochuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
8
|
Zhao J, Wang T, Zhang C, Han X, Yan J, Gan B. A comparative analysis of the umami taste of five fresh edible mushrooms by simulating the chemical environment of oral digestion in vitro. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Wang X, Yang Z, Cui J, Zhu S. Nitric Oxide Made a Major Contribution to the Improvement of Quality in Button Mushrooms ( Agaricus bisporus) by the Combined Treatment of Nitric Oxide with 1-MCP. Foods 2022; 11:foods11193147. [PMID: 36230224 PMCID: PMC9562864 DOI: 10.3390/foods11193147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Browning is one of the major effects of shelf-life responsible for the reduction in the commercial value of the button mushrooms (Agaricus bisporus). In this study, the individual and the combined effects of exogenous sodium nitroprusside (SNP, a nitric oxide donor) and 1-methylcyclopropene (1-MCP) on the quality of button mushrooms were evaluated. The results demonstrated that mushrooms treated with SNP+1-MCP promoted reactive oxygen species (ROS) metabolism thereby protecting cell membrane integrity, hindering polyphenol oxidase (PPO) binding to phenolic compounds, and downregulating the PPO activity. In addition, the SNP+1-MCP treatment effectively maintained quality (firmness, color, total phenol, and flavonoid) and mitigated oxidative damage by reducing ROS accumulation and malondialdehyde production through the stimulation of the antioxidant enzymes activities and the enhancement of ascorbic acid (AsA) and glutathione (GSH) contents. Moreover, the correlation analysis validated the above results. The SNP+1-MCP treatment was observed to be more prominent on maintaining quality than the individual effects of SNP followed by 1-MCP, suggesting that the combination of NO and 1-MCP had synergistic effects in retarding button mushrooms senescence, and NO signaling molecules might be predominant in the synergy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
| | - Zhifeng Yang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
| | - Jinxia Cui
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
- Correspondence: (J.C.); (S.Z.)
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
- Correspondence: (J.C.); (S.Z.)
| |
Collapse
|
10
|
Hanaei S, Bodaghi H, Ghasimi Hagh Z. Alleviation of postharvest chilling injury in sweet pepper using Salicylic acid foliar spraying incorporated with caraway oil coating under cold storage. FRONTIERS IN PLANT SCIENCE 2022; 13:999518. [PMID: 36160955 PMCID: PMC9495611 DOI: 10.3389/fpls.2022.999518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The decrease in the postharvest quality of sweet peppers in terms of the physiological disorders resulting from cold storage (<7-10°C) results in the significant economic losses. The ability of pre-harvest foliar spraying of Salicylic acid (SA) (1.5 and 3 mM) and the postharvest caraway (Carum carvi) oil coating (0.3% and 0.6%) on chilling injury (CI) and the quality of stored sweet pepper at 4 ± 2°C for 60 d followed by an additional 2 d at 20°C were investigated. The antifungal activity of caraway oil (0.15%, 0.3%, and 0.6%) on Botrytis cinerea mycelia in in vitro showed that the maximum percentage of inhibition was equal to 95% in the medium with 0.6% of this oil. The CI of sweet pepper was significantly reduced by increasing SA, and caraway oil concentrations compared to the control, especially the lowest CI (14.36%), were obtained at 3 mM SA and 0.6% caraway oil treatment. The results showed a significant delay in the changes of weight loss (79.43%), firmness (30%), pH (6%), total soluble solids (TSS) (17%), titratable acidity (TA) (32%), and color surface characteristics and capsaicin content (5%) compared to control fruits at 3 mM SA and 0.6% caraway oil concentrations. Results indicated that the decrease in CI was related to a decrease in electrolyte leakage, malondialdehyde (MDA) content, total phenolic production, decay incidence, and an increase in the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). Thus, the incorporation of SA (3 mM) and caraway oil (0.6%) to reduce the CI of stored sweet pepper at low temperature can be considered a practical solution to improve the quality and marketability of this product.
Collapse
|
11
|
Dong S, Guo J, Yu J, Bai J, Xu H, Li M. Effects of electron-beam generated X-ray irradiation on the postharvest storage quality of Agaricus bisporus. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Transcriptomic and Non-Targeted Metabolomic Analyses Reveal the Flavonoid Biosynthesis Pathway in Auricularia cornea. Molecules 2022; 27:molecules27072334. [PMID: 35408732 PMCID: PMC9000485 DOI: 10.3390/molecules27072334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Flavonoids, which are abundant in plants, are recognized for their antioxidant and anticancer roles in clinical applications. However, little is known about the molecular basis of flavonoid biosynthesis in fungi. In this study, we found that inclusion of leachate of Korshinsk peashrub (Caragana korshinskii) in the fermentation medium increased the total flavonoid content of the edible fungus Auricularia cornea by 23.6% relative to that grown in a control medium. Combined transcriptomic and non-targeted metabolomic analysis of the flavonoid biosynthesis pathway in A. cornea illustrated that there are important metabolites in the phenylpropanoid, coumarin and isoflavonoid biosynthesis pathways. In addition, we found that certain homologous genes encode phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and chalcone isomerase (CHI) in these biosynthesis pathways. These results, in this study, provide a new line for studying the regulation of flavonoid production in edible fungi.
Collapse
|
13
|
Wu X, Yuan J, Wang X, Yu M, Ma R, Yu Z. Synergy of Nitric Oxide and 1-Methylcyclopropene Treatment in Prolong Ripening and Senescence of Peach Fruit. Foods 2021; 10:foods10122956. [PMID: 34945506 PMCID: PMC8701743 DOI: 10.3390/foods10122956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Peach is a putrescible fruit thus drastically restricting its postharvest storage life. In recent years, the application of 1-methylcyclopropene (1-MCP) and nitric oxide (NO) in postharvest fruit quality control has received considerable attention and investigative efforts due to the advantages of using relatively low concentrations and short-time treatment duration. In the present study, the effects of various 1-MCP and NO treatments on peach fruit (Prunus persica L. cv. Xiahui-8) stored at 25 °C were evaluated and compared. Results indicated that the combination treatment with both chemical agents (MN) was most effective in postponing peach ripening and preserving fruit quality, followed by 1-MCP and NO treatment alone. We also demonstrated that NO could delay fruit senescence mainly by stimulating antioxidant enzymes, while 1-MCP overly outperformed NO in the treatment of ‘Xiahui-8′ peach in slowing down respiration rate, inhibiting ethylene production, maintaining high firmness and reducing ROS content. NO treatment showed a greater influence on phenolic compounds than 1-MCP especially anthocyanins, flavanones and flavones according to LC/MS analysis. The phenolic change in MN group were highly associated to NO treatment. Through this study we provide informative physiological, biochemical and molecular evidence for the beneficial effects of the combined 1-MCP and NO treatment on peach fruit based on a functional synergy between these two chemical agents.
Collapse
Affiliation(s)
- Xiaoqin Wu
- College of Biological and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China; (X.W.); (J.Y.); (X.W.)
- College of Food Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Yuan
- College of Biological and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China; (X.W.); (J.Y.); (X.W.)
| | - Xiaoqing Wang
- College of Biological and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China; (X.W.); (J.Y.); (X.W.)
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticulture Crop Genetic Improvement, Nanjing 210014, China;
- Correspondence: (M.Y.); (Z.Y.); Tel.: +86-1395-169-2350 (Z.Y.)
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticulture Crop Genetic Improvement, Nanjing 210014, China;
| | - Zhifang Yu
- College of Food Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (M.Y.); (Z.Y.); Tel.: +86-1395-169-2350 (Z.Y.)
| |
Collapse
|
14
|
Magdziak Z, Gąsecka M, Stuper-Szablewska K, Siwulski M, Budzyńska S, Jasińska A, Niedzielski P, Kalač P, Mleczek M. A Possibility to Use Selected Crop Post-Extraction Wastes to Improve the Composition of Cultivated Mushroom Pleurotus citrinopileatus. J Fungi (Basel) 2021; 7:jof7110894. [PMID: 34829183 PMCID: PMC8625471 DOI: 10.3390/jof7110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
A cultivated mushroom species, Pleurotus citrinopileatus, is becoming increasingly popular thanks to its attractive colour and medicinal properties. In this study, P. citrinopileatus was grown in a cultivation medium enriched with wheat bran (WB), thymus post-extraction waste (TPEW) and pumpkin post-extraction waste (PPEW) products. The study showed that the post-extraction wastes are a crucial factor determining the accumulation of minerals, the content/profile of low-molecular-weight organic acids (LMWOAs) and phenolic compounds in fruit bodies, thereby increasing their nutritional value. The use of the waste materials significantly increased LMWOAs contents. The sum of LMWOAs under all cultivation mediums increased, especially quinic, malic and citric acids under the 20% PPEW, 25 and 50% TPEW addition. Total phenolic content, phenolic content, as well as the composition and scavenging effect on DPPH radicals, were strongly dependent on the used substrate. The control variant was poor in phenolic compounds, while the supplementation increased the contents and diversity of these metabolites. In the control, only four phenolic compounds were quantified (chlorogenic, gallic, syringic and vanillic acids), while in the supplemented substrates up to 14 different phenolic compounds (caffeic, chlorogenic, p-coumaric, 2,5-dihydroxybenzoic acid, ferulic, gallic, protocatechuic, salicylic, sinapic, syringic, trans-cinnamic and vanillic acids, catechin and rutin).
Collapse
Affiliation(s)
- Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (K.S.-S.); (S.B.); (M.M.)
- Correspondence:
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (K.S.-S.); (S.B.); (M.M.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (K.S.-S.); (S.B.); (M.M.)
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-025 Poznań, Poland; (M.S.); (A.J.)
| | - Sylwia Budzyńska
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (K.S.-S.); (S.B.); (M.M.)
| | - Agnieszka Jasińska
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-025 Poznań, Poland; (M.S.); (A.J.)
| | | | - Pavel Kalač
- Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic;
| | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (K.S.-S.); (S.B.); (M.M.)
| |
Collapse
|
15
|
The importance of Cu × Pb interactions to Lentinula edodes yield, major/trace elements accumulation and antioxidants. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractDue to the use of various substrates
in the production of edible mushrooms which may contain metals, including Cu and Pb, it is important to understand the influence of mutual interactions between them in the process of their accumulation in fruit bodies. For this reason, the effects of Cu, Pb, and Cu × Pb on yield, accumulation of five major elements (Ca, K, Mg, Na and P), trace elements (Cu, Pb and Fe) and some bioactive compounds in Lentinula edodes fruit bodies were studied. Both the metals were added in doses of 0.1 and 0.5 mM (Cu0.1, Cu0.5, Pb0.1, Pb0.5 and their combinations). The addition of the metals resulted in a reduction in size, amount and finally yield of fruit bodies. Depending on the presence of Cu and or Pb and their concentration in the substrate, both antagonism and synergism may occur. The influence on the accumulation of other determining elements was also recorded. Among phenolic compounds, phenolic acids and flavonoids were detected. 2,5-Dihydroxybenzoic acid dominated in fruit bodies in the control variant, Pb0.1, Pb0.5 and all experimental variants enriched with Cu + Pb, while gallic acid was the major phenolic after Cu0.1 and Cu0.5 addition. Only protocatechuic acid content increased in all combinations. A significant decrease of all aliphatic acid contents in comparison to the control variant was observed in the Cu0.1 and Pb0.1 variants. Significant stimulation of aliphatic acid synthesis was recorded in Cu0.5 and Pb0.5 variants and in the mixture of both the metals. The additions pointed to the possible role of the determined molecules in detoxification mechanisms.
Collapse
|
16
|
Hou L, Zhao M, Huang C, He Q, Zhang L, Zhang J. Alternative oxidase gene induced by nitric oxide is involved in the regulation of ROS and enhances the resistance of Pleurotus ostreatus to heat stress. Microb Cell Fact 2021; 20:137. [PMID: 34281563 PMCID: PMC8287771 DOI: 10.1186/s12934-021-01626-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background In China, during the cultivation process of Pleurotus ostreatus, the yield and quality of fruiting bodies are easily affected by high temperatures in summer. Nitric oxide (NO) plays an important regulatory role in the response to abiotic stress, and previous studies have found that NO can induce alternative oxidase (aox) experssion in response to heat stress (HS) by regulating aconitase. However, the regulatory pathway of NO is complex, and the function and regulation of the aox gene in the response to HS remain unclear. Results In this study, we found that NO affected nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) levels, reduced hydrogen peroxide (H2O2) and superoxide anion (O2−) contents, and slowed O2− production. Further RNA-Seq results showed that NO regulated the oxidation-reduction process and oxidoreductase activity, affected the cellular respiration pathway and activated aox gene expression. The function of aox was determined by constructing overexpression (OE) and RNA interference (RNAi) strains. The results showed that the OE-aox strains exhibited obviously improved growth recovery after exposure to HS. During exposure to HS, the OE-aox strains exhibited reduced levels of NADH, the product of the tricarboxylic acid (TCA) cycle, and decreased synthesis of ATP, which reduced the production and accumulation of reactive oxygen species (ROS), whereas the RNAi-aox strains exhibited the opposite result. In addition, aox mediated the expression of antioxidant enzyme genes in the mycelia of P. ostreatus under HS through the retrograde signaling pathway. Conclusions This study shows that the expression of the aox gene in P. ostreatus mycelia can be induced by NO under HS, that it regulates the TCA cycle and cell respiration to reduce the production of ROS, and that it can mediate the retrograde signaling pathway involved in the mycelial response to HS. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01626-y.
Collapse
Affiliation(s)
- Ludan Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Qi He
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China.,Jilin Agricultural University, 130118, Jilin, China
| | - Lijiao Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 10081, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, 10081, Beijing, China.
| |
Collapse
|
17
|
Kim MJ, Kim P, Chen Y, Chen B, Yang J, Liu X, Kawabata S, Wang Y, Li Y. Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in Anthocyanin fruit (Aft) tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:210-220. [PMID: 32492761 DOI: 10.1111/plb.13141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
The tomato accession LA1996, which carries a dominant allele of anthocyanin fruit (Aft) locus, accumulates anthocyanins in the epidermis of fruits when exposed to sunlight. The involvement of blue, UV-A, UV-B and a combination of these wavelengths on anthocyanin accumulation and the molecular mechanism of their regulation was investigated in LA1996. The most effective treatment for inducing anthocyanin biosynthesis in Aft fruits was co-irradiation with blue and UV-B (blue + UV-B) light. Finding the correlated genes is an important approach towards understanding their molecular mechanisms. In the present study, the nitrate reductase (NR) gene SlNIA was isolated using RNA-seq profiling of Aft fruits given different light treatments. The functions of NR-mediated anthocyanin induction by blue + UV-B were confirmed using a series of chemical treatments, followed by assessment of NR activity and nitric oxide (NO) detection. The expression of NR was highly induced by blue + UV-B, and this specificity was also confirmed with the enzyme activity of NR and the NO concentration. The NR inhibitors, which reduce NO generation, the expression levels of anthocyanin related genes and decreased anthocyanin accumulation in LA1996. Our results suggest that NR plays a key role in blue + UV-B-mediated anthocyanin accumulation in LA1996 fruits.
Collapse
Affiliation(s)
- M-J Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - P Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Biotechnology, Wonsan University of Agriculture, Wonsan, Democratic People's Republic of Korea
| | - Y Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - B Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - J Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - X Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - S Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Y Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Y Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Ma YJ, Li XP, Wang Y, Wang JW. Nitric oxide donor sodium nitroprusside-induced transcriptional changes and hypocrellin biosynthesis of Shiraia sp. S9. Microb Cell Fact 2021; 20:92. [PMID: 33910564 PMCID: PMC8082767 DOI: 10.1186/s12934-021-01581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Nitric oxide (NO) is a ubiquitous signaling mediator in various physiological processes. However, there are less reports concerning the effects of NO on fungal secondary metabolites. Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from fungal perylenequinone pigments of Shiraia. NO donor sodium nitroprusside (SNP) was used as a chemical elicitor to promote hypocrellin biosynthesis in Shiraia mycelium cultures. Results SNP application at 0.01–0.20 mM was found to stimulate significantly fungal production of perylenequinones including hypocrellin A (HA) and elsinochrome A (EA). SNP application could not only enhance HA content by 178.96% in mycelia, but also stimulate its efflux to the medium. After 4 days of SNP application at 0.02 mM, the highest total production (110.34 mg/L) of HA was achieved without any growth suppression. SNP released NO in mycelia and acted as a pro-oxidant, thereby up-regulating the gene expression and activity of reactive oxygen species (ROS) generating NADPH oxidase (NOX) and antioxidant enzymes, leading to the increased levels of superoxide anion (O2−) and hydrogen peroxide (H2O2). Gene ontology (GO) analysis revealed that SNP treatment could up-regulate biosynthetic genes for hypocrellins and activate the transporter protein major facilitator superfamily (MFS) for the exudation. Moreover, SNP treatment increased the proportion of total unsaturated fatty acids in the hypha membranes and enhanced membrane permeability. Our results indicated both cellular biosynthesis of HA and its secretion could contribute to HA production induced by SNP. Conclusions The results of this study provide a valuable strategy for large-scale hypocrellin production and can facilitate further understanding and exploration of NO signaling in the biosynthesis of the important fungal metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01581-8.
Collapse
Affiliation(s)
- Yan Jun Ma
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,College of Life Sciences, Northwest Normal University, Lanzhou, 730000, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yue Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X. Molecular functions of nitric oxide and its potential applications in horticultural crops. HORTICULTURE RESEARCH 2021; 8:71. [PMID: 33790257 PMCID: PMC8012625 DOI: 10.1038/s41438-021-00500-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) regulates plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants, making NO a potential tool for use in improving the yield and quality of horticultural crop species. Although the use of NO in horticulture is still in its infancy, research on NO in model plant species has provided an abundance of valuable information on horticultural crop species. Emerging evidence implies that the bioactivity of NO can occur through many potential mechanisms but occurs mainly through S-nitrosation, the covalent and reversible attachment of NO to cysteine thiol. In this context, NO signaling specifically affects crop development, immunity, and environmental interactions. Moreover, NO can act as a fumigant against a wide range of postharvest diseases and pests. However, for effective use of NO in horticulture, both understanding and exploring the biological significance and potential mechanisms of NO in horticultural crop species are critical. This review provides a picture of our current understanding of how NO is synthesized and transduced in plants, and particular attention is given to the significance of NO in breaking seed dormancy, balancing root growth and development, enhancing nutrient acquisition, mediating stress responses, and guaranteeing food safety for horticultural production.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuxue Zhang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijuan Liu
- Interdisciplinary Research Academy, Zhejiang Shuren University, 310015, Hangzhou, China
| | - Xiaoxia Liu
- Zhejiang Provincial Cultivated Land Quality and Fertilizer Administration Station, Hangzhou, China
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
20
|
Yousefi N, Jones M, Bismarck A, Mautner A. Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydr Polym 2021; 253:117273. [PMID: 33278945 DOI: 10.1016/j.carbpol.2020.117273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Membranes and filters are essential devices, both in the laboratory for separation of media, solvent recovery, organic solvent and water filtration purposes, and in industrial scale applications, such as the removal of industrial pollutants, e.g. heavy metal ions, from water. Due to their solvent stability, biologically sourced and renewable membrane or filter materials, such as cellulose or chitin, provide a low-cost, sustainable alternative to synthetic materials for organic solvent filtration and water treatment. Here, we investigated the potential of fungal chitin nanopapers derived from A. bisporus (common white-button mushrooms) as ultrafiltration membranes for organic solvents and aqueous solutions and hybrid chitin-cellulose microfibril papers as high permeance adsorptive filters. Fungal chitin constitutes a renewable, easily isolated, and abundant alternative to crustacean chitin. It can be fashioned into solvent stable nanopapers with pore sizes of 10-12 nm, as determined by molecular weight cut-off and rejection of gold nanoparticles, that exhibit high organic solvent permeance, making them a valuable material for organic solvent filtration applications. Addition of cellulose fibres to produce chitin-cellulose hybrid papers extended membrane functionality to water treatment applications, with considerable static and dynamic copper ion adsorption capacities and high permeances that outperformed other biologically derived membranes, while being simpler to produce, naturally porous, and not requiring crosslinking. The simple nanopaper production process coupled with the remarkable filtration properties of the papers for both organic solvent filtration and water treatment applications designates them an environmentally benign alternative to traditional membrane and filter materials.
Collapse
Affiliation(s)
- Neptun Yousefi
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Mitchell Jones
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; School of Engineering, RMIT University, Bundoora East Campus, PO Box 71, Bundoora 3083, VIC, Australia
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria; Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, South Africa; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Andreas Mautner
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria.
| |
Collapse
|
21
|
Zhang P, Sun H, Fang T, Zhao Y, Duan Y, Lin Q. Effects of nitric oxide treatment on flavour compounds and antioxidant enzyme activities of button mushroom (Agaricus bisporus) during storage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Button mushroom (Agaricus bisporus) is sold well for its unique flavour and nutritional benefits. However, the mushroom flavour deteriorates quickly during storage because of its delicate structure and high moisture. In this study, the effects of nitric oxide (NO) application on flavour compounds and antioxidant enzyme activities of stored button mushrooms were investigated. The button mushrooms were immersed in the NO donor sodium nitroprusside (15 μmol/L) for 3 min and then stored under the condition of 4 °C, 90% relative humidity for 12 days. Results showed that the treated mushrooms have reduced weight loss rate, uniform white colour, and higher firmness during storage. Compared to the control, the ketones, alcohols, esters, and aldehydes in the NO-treated button mushroom increased sharply at 3 days of storage and then showed a continuing decline trend, except ester compounds which reached the peak value at 6 days of storage. In addition, NO treatment increased the total phenolics and catalase activity and inhibited the polyphenol oxidase activity in the stored button mushroom. These results indicated that NO treatment is an alternative storage technology to enhance antioxidant capacity and maintain flavour and consumer acceptance of stored button mushroom.
Collapse
Affiliation(s)
- Peiyu Zhang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoyue Sun
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Fang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Gąsecka M, Magdziak Z, Siwulski M, Jasińska A, Budzyńska S, Rzymski P, Kalač P, Niedzielski P, Pankiewicz J, Mleczek M. Effect of
Thymus
vulgaris
post‐extraction waste and spent coffee grounds on the quality of cultivated
Pleurotus eryngii. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monika Gąsecka
- Department of Chemistry Poznan University of Life Sciences Poznań Poland
| | - Zuzanna Magdziak
- Department of Chemistry Poznan University of Life Sciences Poznań Poland
| | - Marek Siwulski
- Department of Vegetable Crops Poznan University of Life Sciences Poznań Poland
| | - Agnieszka Jasińska
- Department of Vegetable Crops Poznan University of Life Sciences Poznań Poland
| | - Sylwia Budzyńska
- Department of Chemistry Poznan University of Life Sciences Poznań Poland
| | - Piotr Rzymski
- Department of Environmental Medicine Poznan University of Medical Sciences Poznan Poland
| | - Pavel Kalač
- Department of Applied Chemistry, Faculty of Agriculture University of South Bohemia České Budějovice Czech Republic
| | | | - Jan Pankiewicz
- Department of Chemistry Poznan University of Life Sciences Poznań Poland
| | - Mirosław Mleczek
- Department of Chemistry Poznan University of Life Sciences Poznań Poland
| |
Collapse
|
23
|
Zhao Y, Lim J, Xu J, Yu J, Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol Microbiol 2020; 113:872-882. [DOI: 10.1111/mmi.14465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| | - Jieyin Lim
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jianyang Xu
- Department of Traditional Chinese Medicine General Hospital of Shenzhen University Shenzhen China
| | - Jae‐Hyuk Yu
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Systems Biotechnology Konkuk University Seoul Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| |
Collapse
|
24
|
Effect of Peppermint Oil on the Storage Quality of White Button Mushrooms (Agaricus bisporus). FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-019-02385-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Poniedziałek B, Siwulski M, Wiater A, Komaniecka I, Komosa A, Gąsecka M, Magdziak Z, Mleczek M, Niedzielski P, Proch J, Ropacka-Lesiak M, Lesiak M, Henao E, Rzymski P. The Effect of Mushroom Extracts on Human Platelet and Blood Coagulation: In vitro Screening of Eight Edible Species. Nutrients 2019; 11:nu11123040. [PMID: 31842490 PMCID: PMC6950045 DOI: 10.3390/nu11123040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases remain the leading global cause of mortality indicating the need to identify all possible factors reducing primary and secondary risk. This study screened the in vitro antiplatelet and anticoagulant activities of hot water extracts of eight edible mushroom species (Agaricus bisporus, Auricularia auricularia-judae, Coprinuscomatus, Ganodermalucidum, Hericium erinaceus, Lentinulaedodes, Pleurotuseryngii, and Pleurotusostreatus) increasingly cultivated for human consumption, and compared them to those evoked by acetylsalicylic acid (ASA). The antioxidant capacity and concentration of polysaccharides, phenolic compounds, organic acids, ergosterol, macro elements, and trace elements were also characterized. The most promising antiplatelet effect was exhibited by A. auricularia-judae and P. eryngii extracts as demonstrated by the highest rate of inhibition of adenosine-5′-diphosphate (ADP)-induced and arachidonic acid (AA)-induced aggregation. The response to both extracts exceeded the one evoked by 140 µmol/L of ASA in the ADP test and was comparable to it in the case of the AA test. Such a dual effect was also observed for G. lucidum extract, even though it was proven to be cytotoxic in platelets and leukocytes. The extract of P. ostreatus revealed an additive effect on AA-induced platelet aggregation. None of the mushroom extracts altered the monitored coagulation parameters (prothrombin time, prothrombin ratio, and International Normalized Ratio). The effect of mushroom extracts on platelet function was positively related to their antioxidative properties and concentration of polysaccharides and ergosterol, and inversely related to zinc concentration. The study suggests that selected mushrooms may exert favorable antiplatelet effects, highlighting the need for further experimental and clinical research in this regard.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| | - Marek Siwulski
- Department of Vegetable Crops, Poznan University of Life Sciences, 60-594 Poznan, Poland;
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Sklodowska University in Lublin, 20-033 Lublin, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Anna Komosa
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Monika Gąsecka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Zuzanna Magdziak
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Mirosław Mleczek
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznań, Poland; (M.G.); (Z.M.); (M.M.)
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Jędrzej Proch
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (P.N.); (J.P.)
| | - Mariola Ropacka-Lesiak
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.K.); (M.L.)
| | - Eliana Henao
- Department of Biology, Universidad del Valle, 100-00 Cali, Colombia;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Correspondence: (B.P.); (P.R.); Tel.: +48-61854-7604 (B.P. & P.R.)
| |
Collapse
|
26
|
The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of Food Science and Technology 2019; 57:513-525. [PMID: 32116361 PMCID: PMC7016157 DOI: 10.1007/s13197-019-04081-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
In the study the effect of drying temperature on phenolic and organic acid content, total phenolic content, ergosterol content, antioxidant activity and content of 40 elements in fruiting bodies of Leccinum scabrum and Hericium erinaceus was estimated. The analysis was performed for fresh fruiting bodies and those dried at 20, 40 and 70 °C. Drying resulted in changes in the profile of phenolic and organic acids. Drying generally resulted in losses of the content of total phenolics, ergosterol and antioxidant activity in both species. However, a reduction and an increase of phenolic acids and organic acids were observed. The greatest reduction of the compounds was generally observed at 70 °C. The greatest losses concerned organic acids (some single components and total) (even more than 90% of some compounds). The inhibition of free radicals decreased in the following order: fresh samples > air-dried samples > samples dried at 40 °C > samples dried at 70 °C. The drying temperature affected only selected element contents in fruiting bodies.
Collapse
|
27
|
Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Karimirad R, Behnamian M, Dezhsetan S, Sonnenberg A. Chitosan nanoparticles-loaded Citrus aurantium essential oil: a novel delivery system for preserving the postharvest quality of Agaricus bisporus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5112-5119. [PMID: 29635845 DOI: 10.1002/jsfa.9050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND One of the main problems in the button mushroom industry is the rapid deterioration of fruit bodies after harvest. Today, nanotechnology has become a more reliable technique to improve the quality of products in food packaging. In the present study, the effectiveness of chitosan nanoparticles containing Citrus aurantium essential oil on postharvest quality of white button mushroom was examined and compared to essential oil fumigation and control treatments. RESULTS Based on high-resolution transmission electron microscopy and dynamic light scattering, nanoparticles exhibited a spherical shape of 20-60 nm diameter. The results revealed that the application of chitosan nanoparticles loaded with C. aurantium oil significantly decelerated the rate of color change, weight loss and firmness compared to fumigation with essential oil and control treatments. Treatment of fruit bodies with chitosan nanoparticles loaded with C. aurantium oil promoted the accumulation of phenolic compounds and ascorbic acid, and resulted in increases in catalase and superoxide dismutase and a decrease in polyphenol oxidase activities, as the highest antioxidant capacity was observed after 15 days of cold storage. CONCLUSION This present research demonstrates that gradual release of C. aurantium essential oil from chitosan nanoparticles could be an effective and practical method for extending the shelf life of white button mushroom up to 15 days without significant decrease in antioxidant capacity. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roghayeh Karimirad
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahdi Behnamian
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sara Dezhsetan
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Anton Sonnenberg
- Department of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
29
|
Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2952-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Li G, Zhu S, Wu W, Zhang C, Peng Y, Wang Q, Shi J. Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3030-3038. [PMID: 27859285 DOI: 10.1002/jsfa.8146] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/23/2016] [Accepted: 11/15/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nitric oxide (NO) is a multifunctional signaling molecule involved in plant-induced resistance to disease. The present study aimed to investigate the relationship between disease resistance induced by NO and the phenylpropanoid pathway in peach fruit. The present study investigated the effect of NO on the main enzymes and metabolites of the phenylpropanoid pathway of harvested peach, which are probably related to disease resistance against Monilinia fructicola. RESULTS The results showed that treatment with 15 µmol L-1 NO significantly (P < 0.05) enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumaroyl-CoA ligase, chalcone synthase and chalcone isomerase and the expression of their genes. Furthermore, NO treatment significantly (P < 0.05) increased the contents of total phenolics, flavonoids and lignin over the entire storage period and maintained higher total anthocyanin, phenolic acid and anthocyanin contents during the earlier storage period. CONCLUSION These results suggest that NO treatment could activate the phenylpropanoid pathway to enhance the activity of related enzymes and the contents of phenylpropanoid metabolites in peach to improve disease resistance and prevent pathogenic invasion. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangjin Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong Province, China
| | - Wenxue Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
| | - Chang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yong Peng
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
| | - Jingying Shi
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
31
|
Dong C, Hu H, Hu Y, Xie J. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1291. [PMID: 27625665 PMCID: PMC5003829 DOI: 10.3389/fpls.2016.01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/12/2016] [Indexed: 05/23/2023]
Abstract
Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. 'Xiangfen 1,' a novel flavonoid-rich banana germplasm, was studied with 'Brazil' serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with 'Brazil,' 'Xiangfen 1' fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and 'Xiangfen 1' banana can be a rich source of natural antioxidants in human diets.
Collapse
|
32
|
|
33
|
Gąsecka M, Mleczek M, Siwulski M, Niedzielski P, Kozak L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Nitric oxide prevents wound-induced browning and delays senescence through inhibition of hydrogen peroxide accumulation in fresh-cut lettuce. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Jiang T, Luo Z, Ying T. Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes). Food Chem 2015; 172:692-8. [DOI: 10.1016/j.foodchem.2014.09.130] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/07/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
|
36
|
UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels. Food Chem 2015; 169:417-23. [DOI: 10.1016/j.foodchem.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 06/22/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022]
|
37
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
38
|
Effect of Nitric Oxide on Lachnum YMU50 Extracellular Polyphenol Accumulation and Antioxidant Defense System. Appl Biochem Biotechnol 2014; 174:1761-70. [DOI: 10.1007/s12010-014-1154-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
39
|
Antioxidant properties of mushroom mycelia obtained by batch cultivation and tocopherol content affected by extraction procedures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:974804. [PMID: 25110715 PMCID: PMC4119741 DOI: 10.1155/2014/974804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/21/2014] [Accepted: 06/25/2014] [Indexed: 11/17/2022]
Abstract
The determination of the antioxidant potential of lyophilized mushroom mycelia from 5 strains of the species Pleurotus ostreatus and Coprinus comatus (obtained by submerged cultivation in batch system) was analyzed as ethanolic extracts by evaluating ABTS and the hydroxyl scavenging activity, FRAP method, the chelating capacity, the inhibition of human erythrocyte hemolysis, and the inhibition of xanthine oxidase activity. The main compounds present in all extracts were determined by HPLC chromatography. Overall, results demonstrated that the biologically active substances content is modulated by the extraction method used. The most beneficial extract, characterized by determining the EC50 value, was that of C. comatus M8102, followed by P. ostreatus PQMZ91109. Significant amount of α-tocopherol (179.51 ± 1.51 mg/100 g extract) was determined as well as flavones such as rutin and apigenin. In the P. ostreatus PQMZ91109 extract, 4.8 ± 0.05 mg/100 g extract of tocopherol acetate known to play a significant role as an antioxidant in skin protection against oxidative stress generated by UV rays was determined. The various correlations (r2 = 0.7665–0.9426 for tocopherol content) assessed and the composition of extracts in fluidized bed from the mycelia of the tested species depicted a significant pharmacological potential as well as the possibility of usage in the development of new functional products.
Collapse
|
40
|
Wang XM, Zhang J, Wu LH, Zhao YL, Li T, Li JQ, Wang YZ, Liu HG. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 2014; 151:279-85. [DOI: 10.1016/j.foodchem.2013.11.062] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/25/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
41
|
Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L. Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8880-7. [PMID: 23952496 DOI: 10.1021/jf401447y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effect of exogenous nitric oxide (NO) on chilling injury to banana fruit was investigated. Banana fruit was treated with NO donor sodium nitroprusside of 0.05 mM at 20 °C for 10 min and then stored at 7 °C for up to 20 days. Banana fruit treated with NO sustained a lower chilling injury index and higher firmness and kept lower electrolyte leakage and malondialdehyde content than the control. Further investigation showed that NO treatment enhanced activities of guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase compared to the control. It also maintained higher ascorbic acid, reduced glutathione content, and total antioxidant capacity but reduced hydrogen peroxide and superoxide anion to lower levels compared to control fruit during storage. NO treatment significantly enhanced the accumulation of total phenolics and proline, which resulted from the increased activities of phenylalanine ammonia-lyase and Δ¹-pyrroline-5-carboxylate synthetase and decreased proline dehydrogenase activity. We proposed that the enhanced chilling tolerance induced by NO treatment may result from the reduction of oxidative stress and proline accumulation.
Collapse
Affiliation(s)
- Yansheng Wang
- Department of Food Science and Nutrition, Zhejiang University , Hangzhou, 310058 People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Protective effects of extracts from Fructus rhodomyrti against oxidative DNA damage in vitro and in vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:507407. [PMID: 24089629 PMCID: PMC3780630 DOI: 10.1155/2013/507407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the potential protective effects of extracts from Fructus rhodomyrti (FR) against oxidative DNA damage using a cellular system and the antioxidant ability on potassium bromate- (KBrO3-) mediated oxidative stress in rats. METHODS The effects of FR on DNA damage induced by hydrogen peroxide (H2O2) were evaluated by comet assay in primary spleen lymphocytes cultures. The effects of FR on the activities of SOD, CAT, and GPx and the levels of GSH, hydroperoxides, and 8-OHdG were determined in the plasma and tissues of rats treated with KBrO3. RESULTS FR was shown to effectively protect against DNA damage induced by H2O2 in vitro, and the maximum protective effect was observed when FR was diluted 20 times. Endogenous antioxidant status, namely, the activities of SOD, CAT, and GPx and the levels of GSH were significantly decreased in the plasma, the liver, and the kidney of the KBrO3-treated rats, while the pretreatment of FR prevented the decreases of these parameters. In addition, the pretreatment of FR was also able to prevent KBrO3-induced increases in the levels of hydroperoxides and 8-OHdG in the plasma, the liver, and the kidney in rats. CONCLUSIONS Our findings suggested that FR might act as a chemopreventive agent with antioxidant properties offering effective protection against oxidative DNA damage in a concentration-dependent manner in vitro and in vivo.
Collapse
|
43
|
Huang C, Qian ZG, Zhong JJ. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N,N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 2013; 165:30-6. [DOI: 10.1016/j.jbiotec.2013.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 01/12/2013] [Accepted: 02/04/2013] [Indexed: 01/15/2023]
|