1
|
Zhang W, Yu J, Wang D, Han X, Wang T, Yu D. Ultrasonic-ethanol pretreatment assisted aqueous enzymatic extraction of hemp seed oil with low Δ 9-THC. ULTRASONICS SONOCHEMISTRY 2024; 103:106766. [PMID: 38271781 PMCID: PMC10818077 DOI: 10.1016/j.ultsonch.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.
Collapse
Affiliation(s)
- Wang Zhang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaye Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Donghua Wang
- The University of Sheffield, Sheffield, S10 2TNc, United Kingdom
| | - Xiaoyu Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Zhao Z, Liang C, Zhang W, Yang Y, Bi Q, Yu H, Wang L. Genome-wide association analysis identifies a candidate gene controlling seed size and yield in Xanthoceras sorbifolium Bunge. HORTICULTURE RESEARCH 2024; 11:uhad243. [PMID: 38225982 PMCID: PMC10788774 DOI: 10.1093/hr/uhad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Yellow horn (Xanthoceras sorbifolium Bunge) is a woody oilseed tree species whose seed oil is rich in unsaturated fatty acids and rare neuronic acids, and can be used as a high-grade edible oil or as a feedstock for biodiesel production. However, the genetic mechanisms related to seed yield in yellow horn are not well elucidated. This study identified 2 164 863 SNP loci based on 222 genome-wide resequencing data of yellow horn germplasm. We conducted genome-wide association study (GWAS) analysis on three core traits (hundred-grain weight, single-fruit seed mass, and single-fruit seed number) that influence seed yield for the years 2022 and 2020, and identified 399 significant SNP loci. Among these loci, the Chr10_24013014 and Chr10_24012613 loci caught our attention due to their consistent associations across multiple analyses. Through Sanger sequencing, we validated the genotypes of these two loci across 16 germplasms, confirming their consistency with the GWAS analysis results. Downstream of these two significant loci, we identified a candidate gene encoding an AP2 transcription factor protein, which we named XsAP2. RT-qPCR analysis revealed high expression of the XsAP2 gene in seeds, and a significant negative correlation between its expression levels and seed hundred-grain weight, as well as single-fruit seed mass, suggesting its potential role in the normal seed development process. Transgenic Arabidopsis lines with the overexpressed XsAP2 gene exhibited varying degrees of reduction in seed size, number of seeds per silique, and number of siliques per plant compared with wild-type Arabidopsis. Combining these results, we hypothesize that the XsAP2 gene may have a negative regulatory effect on seed yield of yellow horn. These results provide a reference for the molecular breeding of high-yielding yellow horn.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Chongjun Liang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
- College of Forestry, Hainan University, Haikou 570228, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry Chinese Academy of Forestry, Beijing 100091, China
- College of Forestry, Hainan University, Haikou 570228, China
- College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Gao H, Liu M, Zheng L, Zhang T, Chang X, Liu H, Zhou S, Zhang Z, Li S, Sun J. Comparative Analysis of Key Odorants and Aroma Characteristics in Hot-Pressed Yellow Horn ( Xanthoceras sorbifolia bunge) Seed Oil Via Gas Chromatography-Ion Mobility Spectrometry and Gas Chromatography-Olfactory-Mass Spectrometry. Foods 2023; 12:3174. [PMID: 37685109 PMCID: PMC10487206 DOI: 10.3390/foods12173174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Volatile compounds (VOCs) present in the oil extracted from yellow horn seeds were first analyzed using GC-IMS and GC-O-MS at varying roasting temperatures. A total of 97 VOCs were detected using GC-IMS, while 77 were tentatively identified using GC-O-MS. Moreover, both methods allowed the identification of 24 VOCs, of which the type of aldehydes is the most abundant. Combining the results of GC-IMS, GC-O-MS, OAVs, and VIP, it was concluded that hexanal, 2,5-dimethylpyrazine, heptanal, 2-pentylfuran, 1-hexanol, and 1-octen-3-ol were the key aroma compounds. The PLS-DA and OPLS-DA models have demonstrated the ability to discriminate between different oil roasting temperatures with high accuracy. The roasting temperature of 160 °C was found to yield the highest content of main aroma substances, indicating its optimality for yellow horn seed oil production. These findings will prove beneficial for optimizing industrial production and enhancing oil aroma control.
Collapse
Affiliation(s)
- Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Xiuliang Chang
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (H.G.); (M.L.)
| |
Collapse
|
4
|
Gao Y, Zheng Y, Yao F, Chen F. A Novel Strategy for the Demulsification of Peanut Oil Body by Caproic Acid. Foods 2023; 12:3029. [PMID: 37628028 PMCID: PMC10453783 DOI: 10.3390/foods12163029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
The aqueous enzymatic method is a form of green oil extraction technology with limited industrial application, owing to the need for the demulsification of the oil body intermediate product. Existing demulsification methods have problems, including low demulsification rates and high costs, such that new methods are needed. The free fatty acids produced by lipid hydrolysis can affect the stability of peanut oil body (POB) at a certain concentration. After screening even-carbon fatty acids with carbon chain lengths below ten, caproic acid was selected for the demulsification of POB using response surface methodology and a Box-Behnken design. Under the optimal conditions (caproic acid concentration, 0.22%; solid-to-liquid ratio, 1:4.7 (w/v); time, 61 min; and temperature, 79 °C), a demulsification rate of 97.87% was achieved. Caproic acid not only adjusted the reaction system pH to cause the aggregation of the POB interfacial proteins, but also decreased the interfacial tension and viscoelasticity of the interfacial film with an increasing caproic acid concentration to realize POB demulsification. Compared to pressed oil and soxhlet-extracted oil, the acid value and peroxide value of the caproic acid demulsified oil were increased, while the unsaturated fatty acid content and oxidation induction time were decreased. However, the tocopherol and tocotrienol contents were higher than those of the soxhlet-extracted oil. This study provides a new method for the demulsification of POB.
Collapse
Affiliation(s)
| | | | | | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lian Hua Rd., Zhengzhou 450001, China; (Y.G.); (Y.Z.); (F.Y.)
| |
Collapse
|
5
|
Iweka SC, Falowo OA, Amosun AA, Betiku E. Optimization of microwave-assisted biodiesel production from watermelon seeds oil using thermally modified kwale anthill mud as base catalyst. Heliyon 2023; 9:e17762. [PMID: 37539125 PMCID: PMC10395135 DOI: 10.1016/j.heliyon.2023.e17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
A heterogeneous catalyst was developed from raw Kwale red Anthill mud by thermal treatment in a muffle furnace at 900 °C for 4 h. The resulting heterogeneous catalyst was highly porous with a surface area of 42.16m2/g, possessing excellent stability as well as high catalytic activity. Central Composite Design and Machine Learning approach (Python code) were applied to model and optimize biodiesel yield from extracted watermelon oilseed. Highest biodiesel yield of 93.41 wt% was obtained under the experimental conditions of 4min duration, 350 W microwave power, 4 wt% of catalyst, and MeOH/oil ratio of 8:1 based on Central Composite Design rotatable. The optimum value of the biodiesel yield from Machine Learning was 91.7 wt%, showing a marginal performance over the Central Composite Design rotatable value (91.6 wt%) at the optimized conditions of 3 min, 280 W, 3 wt% catalyst loading and MeOH/oil molar ratio of 6:1. The correlation of the coefficient (R2) of the model was 0.9827 for Central Composite Design rotatable while the R2 of the Machine Learning model was 1.0. Thus, python coding in terms of prediction and accuracy of biodiesel yield was superior to Central Composite Design rotatable, even though both models provide a reliable response within the region of data analyzed. The Gas Chromatography-Mass Spectroscopy of the biodiesel produced revealed the presence of both saturated and unsaturated fatty acid methyl esters. Biodiesel properties from watermelon seed oil transesterification fall within the recommended standard for biodiesel fuel. This study concluded that an effective green biowaste catalyst generated from earthen waste could enhance biodiesel production from watermelon seed oil, hence, ensuring sustainability and economic feasibility for biodiesel industries.
Collapse
Affiliation(s)
- Sunday Chukwuka Iweka
- Department of Mechanical Engineering, Delta State University of Science and Technology, Ozoro, Nigeria
| | | | - Adebimpe Amos Amosun
- Center for Energy Research and Development, Obafemi Awolowo University, IIe-Ife, Nigeria
| | - Eriola Betiku
- Department of Biological Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, United States
| |
Collapse
|
6
|
Lyu S, Wang H, Ma T. Optimization of Supercritical Fluid CO 2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity. Molecules 2023; 28:4853. [PMID: 37375407 DOI: 10.3390/molecules28124853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
A supercritical fluid carbon dioxide (SF-CO2) extraction method was used to obtain the optimum process for extracting yellow horn seed oil. The anti-fatigue and antioxidant properties of the extracted oil were investigated through animal experiments. The optimum process conditions for SF-CO2 extraction of the yellow horn oil were 40 MPa, 50 °C and 120 min, with an extraction yield of 31.61%. The high-dose group of yellow horn oil could significantly increase the weight-bearing swimming time, the hepatic glycogen (HG) content and decrease the lactic acid (LA) content and blood urea nitrogen (BUN) content (p < 0.05) in mice. Moreover, it improved the antioxidant ability by reducing the malondialdehyde (MDA) content (p < 0.01) and raising the glutathione reductase (GR) content and superoxide dismutase (SOD) content (p < 0.05) in mice. Yellow horn oil has the effects of being an anti-fatigue and antioxidant substance, which provides a basis for its further utilization and development.
Collapse
Affiliation(s)
- Siyan Lyu
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Tingjun Ma
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
7
|
Quality control of woody edible oil: The application of fluorescence spectroscopy and the influencing factors of fluorescence. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Zhang RY, Liu AB, Liu C, Zhu WX, Chen PX, Wu JZ, Liu HM, Wang XD. Effects of different extraction methods on the physicochemical properties and storage stability of tiger nut (Cyperus esculentus L.) oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Optimization of ultrasound assisted aqueous enzymatic extraction of oil from Cinnamomum camphora seeds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Zheng Y, Gao P, Wang S, Ruan Y, Zhong W, Hu C, He D. Comparison of Different Extraction Processes on the Physicochemical Properties, Nutritional Components and Antioxidant Ability of Xanthoceras sorbifolia Bunge Kernel Oil. Molecules 2022; 27:molecules27134185. [PMID: 35807441 PMCID: PMC9268096 DOI: 10.3390/molecules27134185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, we investigated and compared the oil yield, physicochemical properties, fatty acid composition, nutrient content, and antioxidant ability of Xanthoceras sorbifolia Bunge (X. sorbifolia) kernel oils obtained by cold-pressing (CP), hexane extraction (HE), aqueous enzymatic extraction (AEE), and supercritical fluid extraction (SFE). The results indicated that X. sorbifolia oil contained a high percentage of monounsaturated fatty acids (49.31–50.38%), especially oleic acid (30.73–30.98%) and nervonic acid (2.73–3.09%) and that the extraction methods had little effect on the composition and content of fatty acids. X. sorbifolia oil is an excellent source of nervonic acid. Additionally, the HE method resulted in the highest oil yield (98.04%), oxidation stability index (9.20 h), tocopherol content (530.15 mg/kg) and sterol content (2104.07 mg/kg). The DPPH scavenging activity rates of the oil produced by SFE was the highest. Considering the health and nutritional value of oils, HE is a promising method for X. sorbifolia oil processing. According to multiple linear regression analysis, the antioxidant capacity of the oil was negatively correlated with sterol and stearic acid content and positively correlated with linoleic acid, arachidic acid and polyunsaturated fatty acid content. This information is important for improving the nutritional value and industrial production of X. sorbifolia.
Collapse
Affiliation(s)
- Yuling Zheng
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Pan Gao
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
- Correspondence: ; Tel./Fax: +86-027-83910015
| | - Shu Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Yuling Ruan
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Wu Zhong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| | - Chuanrong Hu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
| | - Dongping He
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China; (Y.Z.); (Y.R.); (W.Z.); (C.H.); (D.H.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu Road, Wuhan 430023, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan 430012, China;
| |
Collapse
|
11
|
Characteristics and Antioxidant Activity of Walnut Oil Using Various Pretreatment and Processing Technologies. Foods 2022; 11:foods11121698. [PMID: 35741896 PMCID: PMC9222277 DOI: 10.3390/foods11121698] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
This study was the first time the effects of pretreatment technology (microwave roasting, MR; oven roasting, OR; steaming roasting, SR) and processing technology (screw pressing, SP; aqueous enzymatic extraction, AEE; subcritical butane extraction, SBE) on the quality (physicochemical properties, phytochemical content, and antioxidant ability) of walnut oil were systematically compared. The results showed that the roasting pretreatment would reduce the lipid yield of walnut oil and SBE (59.53−61.19%) was the processing method with the highest yield. SR-AEE oil provided higher acid value (2.49 mg/g) and peroxide value (4.16 mmol/kg), while MR-SP oil had the highest content of polyunsaturated fatty acid (73.69%), total tocopherol (419.85 mg/kg) and total phenolic compounds (TPC, 13.12 mg/kg). The DPPH-polar and ABTS free radicals’ scavenging abilities were accorded with SBE > AEE > SP. SBE is the recommended process for improving the extraction yield and antioxidant ability of walnut oil. Hierarchical cluster analysis showed that processing technology had a greater impact on walnut oil than pretreatment technology. In addition, multiple linear regression revealed C18:0, δ-tocopherol and TPC had positive effects on the antioxidant ability of walnut oil, while C18:1n-9, C18:3n-3 and γ-tocopherol were negatively correlated with antioxidant activity. Thus, this a promising implication for walnut oil production.
Collapse
|
12
|
Research on Mechanical–Structural and Oil Yield Properties during Xanthoceras sorbifolium Seed Oil Extraction. Processes (Basel) 2022. [DOI: 10.3390/pr10030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Products from Xanthoceras sorbifolium Bunge seed have gained extensive attention for various applications, especially in the fields of edible oils and industrial applications. In order to study seed kernel mechanical–structural behavior and oil yield mechanisms during extrusion, we set up a self-developed texture analyzer with in situ microscope observation. Test results indicated that seed kernel oil yield and pressing energy showed an approximately parabolic shape under pressing strain, and maximum oil yield reached 25.7%. Only local tissue damage occurred on seed kernels at strain 45–85%, cracks formed from the kernel edge to the inside zone and small cracks obviously increased in number, corresponding with the oil yield and energy–strain curve. The effect of speed on oil yield showed an opposite trend to strain effect; high pressing speed led to lower oil yield due to the short time for oil precipitation and lower pressing energy. Dwell time obviously promoted oil output within 600 s. Drying temperature had a negative effect due to structural change. Oil yield was almost zero at temperatures below 120 °C. The oil yield and pressing energy relation curve was obtained by polynomial fitting; optimal seed kernel oil pressing conditions were strain 95%, 0.1 mm/s, 20 °C, dwell time 600 s. The research provides in-depth theoretical guidance for Xanthoceras sorbifolium Bunge oil production.
Collapse
|
13
|
Chen X, Lei Z, Cao J, Zhang W, Wu R, Cao F, Guo Q, Wang J. Traditional uses, phytochemistry, pharmacology and current uses of underutilized Xanthoceras sorbifolium bunge: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114747. [PMID: 34656667 DOI: 10.1016/j.jep.2021.114747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Plant Xanthoceras sorbifolium Bunge (X. sorbifolia) has a long history of medicinal use as a traditional Chinese herbal medicine to deal with sterilizing, killing sperm, stabilizing capillary, hemostasis, lowering cholesterol, rheumatism, and pediatric enuresis. Additionally, X. sorbifolia is an oil crop for the production of edible oil due to the health-promotion effect. In recent years, X. sorbifolia has attracted worldwide attention as an important economic crop with low investment and high-income potential. AIM OF THE REVIEW This review aims to provide a comprehensive appraisal of X. sorbifolia, including the traditional uses, nutrients, phytochemical data, biological activities, and current applications. The natural compounds of X. sorbifolia and potential utilization in pharmacology are highlighted. The aim of this review is to inspire the research enthusiasm to X. sorbifolia and promote the comprehensive utilization of X. sorbifolia. MATERIALS AND METHODS The research information of X. sorbifolia was collected via Elsevier, American Chemical Society (ACS), PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu scholar, and Google scholar. Additionally, some information was collected from Ph.D. and Master's dissertations, as well as local books. RESULTS The identification of approximately 195 major phytochemical compounds from different parts of X. sorbifolia is presented in this review, including triterpenoids, flavonoids, phenolic acids, coumarins, lignans, meroterpenoids, monoterpene, alkaloids, and sterol. Among them, triterpenoids, flavonoids, and phenolic acids are the major compounds. Extracts from X. sorbifolia exhibited a wide range of biological activities, such as antioxidant, antibacterial, anti-tumor, anti-neuroinflammatory, anti-adipogenesis, anti-obesity, anti-HIV, gastroprotective, immunoregulatory, and anti-inflammatory activities. CONCLUSIONS Modern pharmacological studies have been well supported and clarified the traditional medicinal uses of X. sorbifolia, which brought a promising prospect for the pharmaceutical value of this plant. However, the related mechanisms between the structure and pharmacological effects were seldom reported. Also, at present, effective and in-depth research on X. sorbifolia is still relatively lacking. Moreover, there is little research on toxicological experiments. Further clinical trials should also be performed to accelerate the drug research and development.
Collapse
Affiliation(s)
- Xianqiang Chen
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zilun Lei
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jun Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen Zhang
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong Wu
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuliang Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Qirong Guo
- Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
14
|
Ma F, Wei Z, Zhang M, Shuai X, Du L. Optimization of Aqueous Enzymatic Microwave Assisted Extraction of Macadamia Oil And Evaluation of Its Chemical Composition, Physicochemical Properties, and Antioxidant Activities. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei‐Yue Ma
- Key Laboratory of Tropical Fruit Biology Ministry of Agriculture and Rural Affairs Zhanjiang 524091 China
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Science (CATAS) Zhanjiang 524091 China
| | - Zuo‐Fu Wei
- College of Life Sciences Shanxi Normal University Linfen 041000 China
| | - Ming Zhang
- Key Laboratory of Tropical Fruit Biology Ministry of Agriculture and Rural Affairs Zhanjiang 524091 China
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Science (CATAS) Zhanjiang 524091 China
| | - Xi‐Xiang Shuai
- Key Laboratory of Tropical Fruit Biology Ministry of Agriculture and Rural Affairs Zhanjiang 524091 China
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Science (CATAS) Zhanjiang 524091 China
| | - Li‐Qing Du
- Key Laboratory of Tropical Fruit Biology Ministry of Agriculture and Rural Affairs Zhanjiang 524091 China
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Science (CATAS) Zhanjiang 524091 China
| |
Collapse
|
15
|
Zang E, Qiu B, Chen N, Li C, Liu Q, Zhang M, Liu Y, Li M. Xanthoceras sorbifolium Bunge: A Review on Botany, Phytochemistry, Pharmacology, and Applications. Front Pharmacol 2021; 12:708549. [PMID: 34526898 PMCID: PMC8435727 DOI: 10.3389/fphar.2021.708549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Xanthoceras sorbifolium Bunge (Sapindaceae) is a native Chinese plant with promising applications as a biofuel feedstock and a source of novel drugs. Historical records and documents from different periods have mentioned the use of X. sorbifolium and its botanical constituents in treating diseases, highlighting its central role in Chinese and Mongolian traditional medicinal therapies. Phytochemical research has focused on the husks, leaves, trunks, and branches of this herb. A total of 278 chemical compounds have been isolated and divided into 8 categories: triterpenoids, flavonoids, phenylpropanoids, steroids, phenols, fatty acids, alkaloids, and quinones. Modern pharmacological studies on X. sorbifolium have demonstrated positive effects on learning and memory, as well as anti-inflammatory, anti-tumor, and anti-oxidative properties. This review provides a comprehensive analysis of the available research on X. sorbifolium, focusing on the relationship between chemical constituents, traditional uses, and pharmacological effects. We also assess the potential for therapeutic and other applications of this plant in support of further research and development of X. sorbifolium.
Collapse
Affiliation(s)
- Erhuan Zang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bin Qiu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China
| | - Namuhan Chen
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
| | - Caifeng Li
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
| | - Qian Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Min Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yuchao Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China
| |
Collapse
|
16
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
17
|
Aqueous Extraction of Seed Oil from Mamey Sapote (Pouteria sapota) after Viscozyme L Treatment. Catalysts 2021. [DOI: 10.3390/catal11060748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, aqueous enzymatic extraction (AEE) was evaluated during the process of obtaining oil from mamey sapote seed (OMSS). Viscozyme L enzyme complex was used at pH 4 and 50 °C during the optimization of the extraction process by central composite design and response surface methodology. Optimal conditions were: 3.5% (w/w) of enzyme (regarding the seed weight), 5.5 h of incubation time, 235 rpm of agitation rate, and 1:3.5 of solid-to-liquid ratio. These conditions enabled us to obtain an OMSS yield of 66%. No statistically significant differences were found in the fatty acid profile and physicochemical properties, such as the acid and iodine values and the percentage of free fatty acids, between the oil obtained by AEE or by the conventional solvent extraction (SE). However, the oxidative stability of the oil obtained by AEE (11 h) was higher than that obtained by SE (9.33 h), therefore, AEE, in addition to being an environmentally friendly method, produces a superior quality oil in terms of oxidative stability. Finally, the high oil content in mamey sapote seed, and the high percentage of oleic acid (around 50% of the total fatty acid) found in this oil, make it a useful edible vegetable oil.
Collapse
|
18
|
Yuan WQ, Hu JZ, Yin LQ, Lv ZL. Comparative Analysis of Essential Bioactive Components of Oils Originating from Three Chinese Loess Plateau Wild Crops. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Qiong Yuan
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing 100083 China
| | - Jian Zhong Hu
- Plant Development Center for Soil and Water Conservation The Water Resources Ministry Beijing 100038 China
| | - Li Qiang Yin
- Plant Development Center for Soil and Water Conservation The Water Resources Ministry Beijing 100038 China
| | - Zhao Lin Lv
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing 100083 China
- Department of Beijing Key Laboratory of Forest Food Process and Safety Beijing Forestry University Beijing 100083 China
| |
Collapse
|
19
|
Diversity of seed and seed oil physicochemical traits of Xanthoceras sorbifolium Bunge. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Chen W, Jia Z, Huang G, Hong Y. Global optimization for simultaneous extraction of oil and polysaccharides from
Schizochytrium limacinum
by enzyme‐assisted three‐phase partitioning. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenwei Chen
- College of Life Sciences China Jiliang University Hangzhou China
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province Hangzhou China
| | - Zhenbao Jia
- College of Life Sciences China Jiliang University Hangzhou China
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province Hangzhou China
| | - Guangrong Huang
- College of Life Sciences China Jiliang University Hangzhou China
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province Hangzhou China
| | - Yao Hong
- Zhejiang Marine Development Research Institute Zhoushan China
| |
Collapse
|
21
|
Kaseke T, Opara UL, Fawole OA. Effect of Microwave Pretreatment of Seeds on the Quality and Antioxidant Capacity of Pomegranate Seed Oil. Foods 2020; 9:E1287. [PMID: 32937735 PMCID: PMC7555658 DOI: 10.3390/foods9091287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Microwave pretreatment of oilseeds is a novel technique used to enhance oil nutraceutical properties. In this study, the effect of microwave pretreatment of seeds was investigated on pomegranate seed oil quality attributes including oil yield, yellowness index, refractive index, peroxide value, ρ-anisidine value, total oxidation value, conjugated dienes, total phenolic content, total carotenoids content, phytosterol composition, fatty acid composition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, and ferric reducing antioxidant power (FRAP). The seeds of three different pomegranate cultivars ('Acco', 'Herskawitz', and 'Wonderful') were microwave heated at 261 W for 102 s. Pomegranate seeds microwave pretreatment enhanced oil yield, yellowness index, total carotenoids content, total phenolic content, FRAP and DPPH radical scavenging capacity, despite an increase in conjugated dienes, and peroxide value. Palmitic acid, oleic acid, linoleic acid, saturated, and monosaturated fatty acids were increased after pomegranate seeds microwave pretreatment, whilst the levels of punicic acid and β-sitosterol were reduced. Nevertheless, the refractive index, the ratio of unsaturated to saturated fatty acid of the extracted oil were not significantly (p > 0.05) affected by pomegranate seeds microwave pretreatment. Principal component analysis and agglomerative hierarchical clustering established that 'Acco' and 'Wonderful' oil extracts from microwave pretreated PS exhibited better oil yield, whilst 'Herskawitz' oil extracts showed higher total carotenoids content, total phenolic content, and antioxidant capacity.
Collapse
Affiliation(s)
- Tafadzwa Kaseke
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- Postharvest Technology Research Laboratory, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa;
- Postharvest Technology Research Laboratory, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
22
|
Hu B, Li Y, Song J, Li H, Zhou Q, Li C, Zhang Z, Liu Y, Liu A, Zhang Q, Liu S, Luo Q. Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method - design, optimization and quality evaluation. J Chromatogr A 2020; 1627:461380. [PMID: 32823093 DOI: 10.1016/j.chroma.2020.461380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 10/24/2022]
Abstract
Microwave-ultrasonic assisted aqueous enzymatic extraction (MUAAEE) was applied to extract tiger nut oil (TNO). The conditions of MUAAEE were optimized by Plackett-Burman design followed Box-Behnken design. An oil recovery of 85.23% was achieved under optimum conditions of a 2% concentration of mixed enzyme including cellulase, pectinase and hemicellulase (1/1/1, w/w/w), particle size <600 μm, microwave power 300 W, ultrasonic power 460 W, radiation temperature 40 °C, time 30 min, enzymolysis temperature 45 °C, pH 4.9, liquid-to-solid ratio 10 mL/g and time 180 min. Oil by MUAAEE revealed the similar fatty acid compositions, triglyceride compositions, thermal behaviour and flavour compared with oil by Soxhlet extraction (SE), while the oil quality of MUAAEE is superior to that of SE. Scanning electron microscopy revealed that structural disruption of tiger nut caused by MUAAEE facilitated the oil extraction. Results suggest that MUAAEE could be an efficient and environment-friendly method for extraction of TNO.
Collapse
Affiliation(s)
- Bin Hu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yi Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jiaxing Song
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Haochen Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qian Zhou
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Cheng Li
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Zhiqing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yuntao Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Aiping Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Shuxiang Liu
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qingying Luo
- College of Food, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
23
|
Liu HM, Yao YG, Ma YX, Wang XD. Ultrasound-assisted desolventizing of fragrant oil from red pepper seed by subcritical propane extraction. ULTRASONICS SONOCHEMISTRY 2020; 63:104943. [PMID: 31945556 DOI: 10.1016/j.ultsonch.2019.104943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In the present study, ultrasound was used to remove the residual solvent from the fragrant oil of red pepper seed obtained by subcritical propane extraction. The physical and chemical characteristics, particularly the volatile flavor compounds present of the oil before and after ultrasound-assisted desolventizing were comprehensively analyzed to determine the effect of the desolventizing process on product quality. The results showed that the maximum loss of residual solvent was achieved at a temperature of 90 °C maintained for 70 min with ultrasound applied during the entire process. After this treatment only a small amount of solvent (2.3% based on the total residual solvent originally present) remained in the oil. Although it was hypothesized that ultrasound treatment could result in the loss of volatile components, the analytical results showed no obvious reduction in the components associated with the typical aroma of the oil. After ultrasonic treatment, the oil also had good oxidation stability and quality. Additionally, after ultrasonic desolventizing, the oil samples were more suitable for cooking because they could more effectively minimize oxidation. Thus, these results demonstrate that this new ultrasonic technique is an effective and efficient method for removing the solvent remaining in fragrant oil after subcritical propane extraction.
Collapse
Affiliation(s)
- Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yong-Gang Yao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Xiang Ma
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Gu LB, Zhang GJ, Du L, Du J, Qi K, Zhu XL, Zhang XY, Jiang ZH. Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Huang Y, Yin Z, Guo J, Wang F, Zhang J. Oil Extraction and Evaluation from Yellow Horn Using a Microwave-Assisted Aqueous Saline Process. Molecules 2019; 24:molecules24142598. [PMID: 31319490 PMCID: PMC6680577 DOI: 10.3390/molecules24142598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
This study investigates an aqueous salt process (ASP) combined with microwave-assisted extraction (MAE) for the seed oil extraction from yellow horn (Xanthoceras sorbifolium Bunge). The NaCl concentration in the oil extraction process affected the oil extraction yield. Box–Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The optimal operating parameters were: 24 g/L NaCl, 300 W microwave power, 4:1 water to material ratio, an 80 min extraction time, and 45 °C extraction temperature. The chemical composition of the extracted seed oil was analyzed using gas chromatography–mass spectrometry (GC-MS). This extraction technique for yellow horn seed oil provided high throughput and high-quality oil. The present research offers a kind of green extraction method for edible oil in the food industry.
Collapse
Affiliation(s)
- Yulong Huang
- Gansu Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| | - Zhenxiong Yin
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jie Guo
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Fengxia Wang
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
26
|
Rezvankhah A, Emam-Djomeh Z, Safari M, Askari G, Salami M. Microwave-assisted extraction of hempseed oil: studying and comparing of fatty acid composition, antioxidant activity, physiochemical and thermal properties with Soxhlet extraction. Journal of Food Science and Technology 2019; 56:4198-4210. [PMID: 31477991 DOI: 10.1007/s13197-019-03890-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
This work aimed to investigate the effects of the microwave-assisted extraction (MAE) on the hempseed (Cannabis sativa L.) oil yield, oxidation stability, and antioxidant activity. Power (300, 450, and 600 W) and time (5, 10, and 15 min) were independent variables while oil extraction yield, peroxide value (PV), p-anisidine value (AV), TOTOX value (TV), and DPPH scavenging activity were considered as dependent ones. Optimization was conducted by response surface methodology where the optimum point was 450 W and 7.19 min. In this point, the extraction yield obtained 33.91% w/w and the oil showed acceptable oxidation quality (PV of 2.5 meq/kg, AV of 0.67, and TV of 5.67) and antioxidant activity with the IC50 value of 30.82 mg/mL. The Soxhlet extraction (SE) method was carried out to be compared with MAE. It showed relatively higher oil extraction yield (37.93% w/w) but lower oil oxidation stability with PV of 6.4 meq/kg, AV of 3.69, TV of 16.49, and higher amount of IC50 32.47 mg/mL which showed lower antioxidant activity. Any significant difference between fatty acid compositions was not observed with the dominant amounts of linoleic acid and α-linolenic acid. Also, the tocopherol contents and thermal properties were studied by HPLC and DSC, respectively. MAE showed higher total tocopherol content (929.67 mg/kg) than SE (832.61 mg/kg) and γ-tocopherol was dominant. Moreover, DSC analysis showed that both profiles (crystallization and melting transitions) are likely influenced mostly by the triglyceride compositions and crystals structure.
Collapse
Affiliation(s)
- Amir Rezvankhah
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, 31587-11167 Iran
| | - Zahra Emam-Djomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, 31587-11167 Iran
| | - Mohammad Safari
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, 31587-11167 Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, 31587-11167 Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, PO Box 4111, Karaj, 31587-11167 Iran
| |
Collapse
|
27
|
Amygdalin Contents of Oil and Meal from Wild Almond: Effect of Different Heat Pretreatment and Extraction Methods. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
WENWEI C, GUANGRONG H, ZHENBAO J, YAO H. Optimization of aqueous enzymatic extraction of oil from shrimp processing by-products using response surface methodology. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.41717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Hong YAO
- Zhejiang Marine Development Research Institute, China
| |
Collapse
|
29
|
Wen L, Zhang Z, Sun DW, Sivagnanam SP, Tiwari BK. Combination of emerging technologies for the extraction of bioactive compounds. Crit Rev Food Sci Nutr 2019; 60:1826-1841. [DOI: 10.1080/10408398.2019.1602823] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Le Wen
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Belfield, Dublin, Ireland
| | - Zhihang Zhang
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Belfield, Dublin, Ireland
| | | | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
30
|
Dielectric Pretreatment of Rapeseed 1: Influence on the Drying Characteristics of the Seeds and Physico-chemical Properties of Cold-Pressed Oil. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2091-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, Devkota HP, Orhan IE, Patra JK, Das G, Anandharamakrishnan C, Gomez-Gomez L, Nabavi SF, Nabavi SM, Atanasov AG. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Wang D, Yu B, Chen C, Duan J, Di D, Xiong X, Yang Y, Gao H. New natural barrigenol-like triterpenoid isolated from the husks of Xanthoceras sorbifolia Bunge. Nat Prod Res 2017; 32:997-1003. [DOI: 10.1080/14786419.2017.1375916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Bin Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Chuming Chen
- Dalian American international school grade 11, Dalian, People’s Republic of China
| | - Jie Duan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Donghua Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Xin Xiong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| |
Collapse
|
33
|
Ekezie FGC, Sun DW, Cheng JH. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Hu B, Li C, Zhang Z, Zhao Q, Zhu Y, Su Z, Chen Y. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chem 2017; 231:348-355. [DOI: 10.1016/j.foodchem.2017.03.152] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
35
|
Yang N, Jin Y, Li D, Zhou Y, Jin Z, Xu X. Development of a series-parallel reaction system for rapid aqueous extraction of seed oil from yellow horn at mild condition. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Wang D, Su D, Yu B, Chen C, Cheng L, Li X, Xi R, Gao H, Wang X. Novel anti-tumour barringenol-like triterpenoids from the husks of Xanthoceras sorbifolia Bunge and their three dimensional quantitative structure activity relationships analysis. Fitoterapia 2017; 116:51-60. [DOI: 10.1016/j.fitote.2016.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/29/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
|
37
|
Li XJ, Li ZG, Wang X, Han JY, Zhang B, Fu YJ, Zhao CJ. Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect. Food Chem 2016; 212:403-10. [DOI: 10.1016/j.foodchem.2016.05.185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/29/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
|
38
|
Chen F, Zhang Q, Gu H, Yang L. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. J Chromatogr A 2016; 1471:68-79. [DOI: 10.1016/j.chroma.2016.10.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 01/26/2023]
|
39
|
Liu JJ, Gasmalla MAA, Li P, Yang R. Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Wang D, Su D, Li XZ, Liu D, Xi RG, Gao HY, Wang XB. Barrigenol triterpenes from the husks of Xanthoceras sorbifolia Bunge and their antitumor activities. RSC Adv 2016. [DOI: 10.1039/c6ra02706g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
New barrigenol derivatives from the husks Xanthoceras sorbifolia Bunge and their anti-tumor activities.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Dan Su
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Xian-Zhe Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Dan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Rong-Gang Xi
- Department of Pharmacy
- 210th Hospital of People's Liberation Army
- Dalian
- People's Republic of China
| | - Hui-Yuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Xiao-Bo Wang
- Department of Pharmacy
- 210th Hospital of People's Liberation Army
- Dalian
- People's Republic of China
| |
Collapse
|
41
|
Zhang WG. Aqueous Extraction and Nutraceuticals Content of Oil Using Industrial Enzymes from Microwave Puffing-pretreated Camellia oleifera Seed Powder. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wei-Guo Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University
| |
Collapse
|
42
|
Fang X, Fei X, Sun H, Jin Y. Aqueous enzymatic extraction and demulsification of camellia seed oil (Camellia oleiferaAbel.) and the oil's physicochemical properties. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuezhi Fang
- College of Life Science; Zhejiang University; Hangzhou P. R. China
- Research Institute of Subtropical Forestry; CAF; Fuyang P. R. China
| | - Xueqian Fei
- Research Institute of Subtropical Forestry; CAF; Fuyang P. R. China
| | - Hong Sun
- Research Institute of Subtropical Forestry; CAF; Fuyang P. R. China
| | - Yongfeng Jin
- College of Life Science; Zhejiang University; Hangzhou P. R. China
| |
Collapse
|
43
|
Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. Int J Biol Macromol 2015; 76:161-8. [DOI: 10.1016/j.ijbiomac.2015.01.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 01/11/2015] [Accepted: 01/14/2015] [Indexed: 11/16/2022]
|
44
|
Yu L, Yang W, Sun J, Zhang C, Bi J, Yang Q. Preparation, characterisation and physicochemical properties of the phosphate modified peanut protein obtained from Arachin Conarachin L. Food Chem 2015; 170:169-79. [DOI: 10.1016/j.foodchem.2014.08.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
45
|
Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: A review. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Chen H, Zhou X, Zhang J. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. Carbohydr Polym 2014; 111:567-75. [DOI: 10.1016/j.carbpol.2014.05.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022]
|
47
|
Feng XF, Jing N, Li ZG, Wei D, Lee MR. Ultrasound-Microwave Hybrid-Assisted Extraction Coupled to Headspace Solid-Phase Microextraction for Fast Analysis of Essential Oil in Dry Traditional Chinese Medicine by GC–MS. Chromatographia 2014. [DOI: 10.1007/s10337-014-2642-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
|