1
|
Aksakal O, Dane H, Gur C, Sisman T. Chronic toxicity of tetraconazole and penconazole to Daphnia magna: Insights of growth, reproduction and gene expression changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178774. [PMID: 39946901 DOI: 10.1016/j.scitotenv.2025.178774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Tetraconazole and penconazole are widely used fungicides belonging to the conazole family. Due to the increasing use of these fungicides, their concentrations in aquatic environments are increasing and imply a serious threat to aquatic organisms. However, no studies have investigated the effects of tetraconazole and penconazole on aquatic invertebrates. This study examined for the first time, changes in growth, reproduction, and survival rate as well as changes in the expression of genes related to detoxification (HR96, P-GP, CYP360A8, GST) and reproduction (CUT, CYP314, DMRT, VTG) in D. magna after exposed to different tetraconazole and penconazole concentrations for 21 days. The 48-h EC50 value was 12.35 μg/L for tetraconazole and 326.8 μg/L for penconazole. Chronic toxicity results showed that exposure to varying concentrations of tetraconazole and penconazole decreased body length, total offspring per female, molting frequency, heartbeat rate per minute, and survival rate, and increased day to the first brood in D. magna. The expression of genes related to detoxification and reproduction changed depending on the fungicide type and concentration. In general, transcription of genes related to detoxification was more affected by fungicides. The results revealed that tetraconazole and penconazole caused toxicity in D. magna by inhibiting growth and reproduction and affecting detoxification pathways similarly.
Collapse
Affiliation(s)
- Ozkan Aksakal
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey.
| | - Hatice Dane
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Turgay Sisman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Lei X, Li P, Abd El-Aty AM, Zhao J, Xu L, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Zheng L, Hammock BD, Jin M. Generation of a highly specific recombinant full-length antibody for detecting ethirimol in fruit and environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134067. [PMID: 38513441 PMCID: PMC11062638 DOI: 10.1016/j.jhazmat.2024.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
High-performance antibodies are core reagents for highly sensitive immunoassays. Herein, based on a novel hapten, a hybridoma secreting the high-affinity anti-ethirimol monoclonal antibody (mAb-14G5F6) was isolated with an IC50 value of 1.35 μg/L and cross-reactivity below 0.20% for 13 analogs. To further address the challenge of hybridoma preservation and antibody immortalization, a recombinant full-length antibody (rAb-14G5F6) was expressed using the HEK293(F) expression system based on the mAb-14G5F6 gene. The affinity, specificity, and tolerance of rAb-14G5F6, as characterized by indirect competitive enzyme-linked immunosorbent assay and noncompetitive surface plasmon resonance, exhibited high concordance with those of mAb-14G5F6. Further immunoassays based on rAb-14G5F6 were developed for irrigation water and strawberry fruit with limits of detection of 0.0066 and 0.036 mg/kg, respectively, recoveries of 80100%, and coefficients of variation below 10%. Furthermore, homology simulation and molecular docking revealed that GLU(L40), GLY(L107), GLY(H108), and ASP(H114) play important roles in forming hydrogen bonds and pi-anion ionic bonds between rAb-14G5F6 and ethirimol, resulting in the high specificity and affinity of rAb-14G5F6 for ethirimol, with a KD of 5.71 × 10-10 mol/L. Overall, a rAb specific for ethirimol was expressed successfully in this study, laying the groundwork for rAb-based immunoassays for monitoring fungicide residues in agricultural products and the environment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua, Zhejiang 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
4
|
Serra L, Estienne A, Caria G, Ramé C, Jolivet C, Froger C, Henriot A, Amalric L, Guérif F, Froment P, Dupont J. In vitro exposure to triazoles used as fungicides impairs human granulosa cells steroidogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104295. [PMID: 37852555 DOI: 10.1016/j.etap.2023.104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Triazoles are the main components of fungicides used in conventional agriculture. Some data suggests that they may be endocrine disruptors. Here, we found five triazoles, prothioconazole, metconazole, difenoconazole, tetraconazole, and cyproconazole, in soil or water from the Centre-Val de Loire region of France. We then studied their effects from 0.001 µM to 1000 µM for 48 h on the steroidogenesis and cytotoxicity of ovarian cells from patients in this region and the human granulosa line KGN. In addition, the expression of the aryl hydrocarbon receptor (AHR) nuclear receptor in KGN cells was studied. Overall, all triazoles reduced the secretion of progesterone, estradiol, or both at doses that were non-cytotoxic but higher than those found in the environment. This was mainly associated, depending on the triazole, with a decrease in the expression of CYP51, STAR, CYP11A1, CYP19A1, or HSD3B proteins, or a combination thereof, in hGCs and KGN cells and an increase in AHR in KGN cells.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Giovanni Caria
- INRAE, Laboratoire d'Analyses des Sols, 273, rue de Cambrai, 62000 Arras, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | | | - Claire Froger
- INRAE Orléans - US 1106, Unité INFOSOL, Orléans, France
| | - Abel Henriot
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Laurence Amalric
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, F-37044 Tours, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France.
| |
Collapse
|
5
|
Xu J, Sun J, Lu X, Wang Y, Zhang Y, Sun X. A highly sensitive fluorescence immunochromatography strip for thiacloprid in fruits and vegetables using recombinant antibodies. Talanta 2023; 256:124258. [PMID: 36736270 DOI: 10.1016/j.talanta.2023.124258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Thiacloprid (TCL) is a neonicotinoid insecticide. Its widespread use has led to high levels of residue in fruits and vegetables. Hence, it is important to detect TCL rapidly, accurately, and sensitively in fruits and vegetables. Recombinant antibodies (rAbs) can be synthesized rapidly with little batch-to-batch variation. In this study, recombinant single-chain variable fragment (scFv) antibody and full-length recombinant antibody against TCL were produced using three different expression systems (E. coli, yeast, and mammalian cell). The results of SDS-PAGE and non - competitive enzyme-linked immunosorbent assay (ELISA) indicated that the full-length rAb exhibited promising characteristics, and the IC50 value of indirect competitive ELISA (ic-ELISA) was 2.63 μg L-1. However, recombinant scFv antibody had little affinity for the antigen. To understand antibody recognition, the three-dimensional (3D) model of the variable fragment (Fv) was built via homologous modeling. The interaction between Fv and TCL was analyzed via molecular docking and the results of molecular docking showed that VAL-158, ALA-211, PHE-220, TRP-218, TRP-49, and ILE-100 were mainly responsible for antibody recognition. In addition, a time-resolved fluorescent microsphere-immunochromatographic test strip (TRFM-ICTS) was developed with a linear range and limit of detection of 0.01-10 ng mL-1 and 0.003 ng mL-1 within 15 min under optimal conditions. The IC50 value was 4.268 ng mL-1, and the recovery ranged between 79.4% and 118.6%, which was consistent with HPLC-MS. The TRFM-ICTS has great advantages in sensitivity and applicability.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yunyun Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
6
|
Jeong SA, Song J, Ham J, An G, Song G, Lim W. Tetraconazole interrupts mitochondrial function and intracellular calcium levels leading to apoptosis of bovine mammary epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105366. [PMID: 36963936 DOI: 10.1016/j.pestbp.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tetraconazole is a type of fungicide that eliminates pathogens in plants and fruit. To date, studies have focused on the direct exposure of plants and fruits to residual tetraconazole, but no studies have been conducted on the indirect effects of tetraconzaole. Given the importance of cows as milk-producing animals and their potential exposure to pesticides via plant consumption, we analyzed the mechanism by which tetraconazole influences milk production. Here, we confirmed that tetraconazole-induced apoptosis and inhibited cell viability and proliferation by regulating the cell cycle in bovine mammary epithelial cells (MAC-T). In addition, Ca2+ homeostasis in mitochondria was disrupted by tetraconazole, leading to the depolarization of mitochondrial membrane potential. Consistent with the proliferation-related findings, tetraconazole downregulated AKT, ERK1/2, P38, and JNK signaling pathways and proliferation-related proteins such as CCND1 and PCNA in MAC-T cells. Meanwhile, it upregulated cleaved caspase 3, BAX, and Cytochrome c under the same conditions in MAC-T cells. Furthermore, MAC-T exposed to tetraconazole causes a failure of proper autophagy functioning. In summary, the results of this study indicated that tetraconazole exposure may lead to a failure of milk production from bovine mammary epithelial cells by disrupting calcium homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Seon Ae Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Rapid and sensitive noncompetitive immunoassay for detection of aflatoxin B1 based on anti-immune complex peptide. Food Chem 2022; 393:133317. [DOI: 10.1016/j.foodchem.2022.133317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
8
|
Jiao S, Wang Y, Chang Y, Liu P, Chen Y, Liu Y, Zhu G, Guo Y. Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy. BIOSENSORS 2022; 12:716. [PMID: 36140100 PMCID: PMC9496258 DOI: 10.3390/bios12090716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Residues of neonicotinoid pesticides have potential risks to food, environmental and biological safety. In this study, the hapten toward imidacloprid was adopted to gain antibodies. After molecular modeling, the electrostatic potentials of eight commonly-used neonicotinoid pesticides were individually calculated to analyze the structural similarity. Two representative compounds (imidacloprid and acetamiprid) with moderate similarity were rationally selected for hybridoma screening. Using this strategy, four clones of broad-specific monoclonal antibodies (mAbs) against multiple neonicotinoids were obtained, and the clone 6F11 exhibited the broadest spectrum to six neonicotinoid pesticides and two metabolites, with half-maximal inhibitory concentrations (IC50) ranging from 0.20 to 5.92 ng/mL. Then, the novel antibody gene was sequenced and successfully expressed in full-length IgG form using mammalian cells. Based on the sensitive recombinant antibody, a gold lateral-flow immunosensing strip assay was developed and it was qualified for rapid detection of imidacloprid, clothianidin or imidaclothiz residues in food samples.
Collapse
Affiliation(s)
- Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yan Wang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Pengyan Liu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yang Chen
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Juengsanguanpornsuk W, Kitisripanya T, Boonsnongcheep P, Yusakul G, Srisongkram T, Sakamoto S, Putalun W. Improvement in the binding specificity of anti-isomiroestrol antibodies by expression as fragments under oxidizing conditions inside the SHuffle T7 E. coli cytoplasm. Biosci Biotechnol Biochem 2022; 86:1368-1377. [PMID: 35876636 DOI: 10.1093/bbb/zbac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022]
Abstract
Sensitive and specific analysis of isomiroestrol (Iso) is required for the quality control of Pueraria candollei, an herb used to treat menopausal disorders. The anti-isomiroestrol monoclonal antibody (Iso-mAb) exhibits cross-reactivity with miroestrol and deoxymiroestrol, which impacts the analytical results. Here, the active and soluble forms of the single-chain variable fragment (Iso-scFv) and fragment antigen-binding (Iso-Fab) against Iso were expressed using Escherichia coli SHuffle® T7 to alter the binding specificity. The Iso-scFv format exhibited a higher binding activity than the Iso-Fab format. The reactivity of Iso-scFv towards Iso was comparable to that of the parental Iso-mAb. Remarkably, the binding specificity of the scFv structure was improved and cross-reactivity against analogs was reduced from 13.3-21.0% to less than 1%. The structure of recombinant antibodies affects the binding characteristics. Therefore, the immunoassays should improve specificity; these findings can be useful in agricultural processes and for quality monitoring of P. candollei-related materials.
Collapse
Affiliation(s)
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tarapong Srisongkram
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Chang Y, Chen Y, Jiao S, Lu X, Fang Y, Liu Y, Zhao Y, Zhan X, Zhu G, Guo Y. A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay. BIOSENSORS 2022; 12:bios12040233. [PMID: 35448293 PMCID: PMC9032790 DOI: 10.3390/bios12040233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 01/12/2023]
Abstract
The toxicity of clothianidin to non-target organisms has gradually attracted world-wide attention. It is essential to develop reliable methods for the on-site detection of clothianidin residue. In this study, analogue-based heterologous ic-ELISAs were designed to rapidly screen desirable hybridomas, which could be used for the construction of recombinant antibodies (RAbs) against clothianidin. Based on the antibody variable region genes, two full-length IgG RAbs (1F7-RAb and 5C3-RAb) were produced by the mammalian cell expression system. The performance of the two RAbs was characterized and compared by heterologous ic-ELISAs and non-competitive surface plasmon resonance (SPR) assays. Using heterologous ic-ELISAs, the 1F7-RAb exhibited highly specific and sensitive recognition to clothianidin with an IC50 of 4.62 μg/L, whereas the 5C3-RAb could bind to both clothianidin and dinotefuran. The results of the non-competitive SPR assay further verified that the 1F7-RAb had a higher specificity and affinity to clothianidin than the 5C3-RAb. Finally, a gold immunochromatographic assay based on the novel antibody, 1F7-RAb, was developed for rapid detection of clothianidin with high sensitivity (visual detection limit of 2.5 μg/L), specificity, and good reproducibility, which can be used as an effective supervision tool for clothianidin residue in agricultural and environmental samples.
Collapse
Affiliation(s)
- Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yang Chen
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Xinying Lu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yihua Fang
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yihua Liu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (Y.L.); (Y.G.)
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China;
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (S.J.); (X.L.); (Y.F.); (Y.Z.); (G.Z.)
- Correspondence: (Y.L.); (Y.G.)
| |
Collapse
|
12
|
Yu X, Zhang X, Xu J, Guo P, Li X, Wang H, Xu Z, Lei H, Shen X. Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126305. [PMID: 34118539 DOI: 10.1016/j.jhazmat.2021.126305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 05/24/2023]
Abstract
Current immunoassays for herbicide detection are usually based on polyclonal or monoclonal antibodies (MAbs) raised in animals. The mammalian expression system allows the procurement of specific and highly sensitive antibodies, avoiding animal immunization. In this study, S-metolachlor-specific IgG vectors bearing either Thosea asigna virus 2A or internal ribosome entry site (S-T2A or S-IRES) and single-chain variable fragment (scFv) vectors were designed and expressed. The recombinant antibodies (RAbs) were characterized by indirect competitive enzyme-linked immunosorbent assays (icELISA). The results showed that full-length RAbs exhibited significantly better performance than scFv, and both bicistronic vectors expressed antibodies of correct size, while RAb S-T2A elicited a higher yield than RAb S-IRES. Further analyses showed that RAb S-T2A and RAb S-IRES exhibited comparable reactivities and specificities to the parental MAb, with IC50 values of 3.44, 3.89 and 3.37 ng/mL, respectively. Finally, MAb- and RAb-based icELISAs were established for the determination of S-metolachlor in environmental waters. The recoveries were in the range of 73.0-128.1%, and the coefficients of variation were mostly below 10%. This article describes the production of RAbs for S-metolachlor from mammalian cells for the first time and paves the way to develop RAb-based immunoassays for monitoring herbicide residues in the environment.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- Guangzhou Editgene Co., Ltd., Guangzhou 510642, China; College of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jingjing Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pengyan Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Macar O. Multiple toxic effects of tetraconazole in Allium cepa L. meristematic cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10092-10099. [PMID: 33169279 DOI: 10.1007/s11356-020-11584-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The application of pesticides to get more agricultural products is increasing day by day. The use of a huge amount of pesticides raises public concerns about safety. Tetraconazole is a widely used and successful fungicide. Possible toxic, cytotoxic, and genotoxic effects of different doses of tetraconazole (1.00 mg/L, 5.00 mg/L, and 10.00 mg/L) were evaluated on the meristematic cells of Allium cepa L. root tips by means of physiological, cytogenetic, biochemical, and anatomical parameters. EC50 value for tetraconazole in terms of growth inhibition was calculated as 6.7 mg/L. Increasing doses of tetraconazole resulted in reduced germination ratio, root length, and weight gain. Total activities of superoxide dismutase (SOD) and catalase (CAT) enzymes as well as malondialdehyde (MDA) content were increased as a result of oxidative stress. As an evidence of genotoxicity, mitotic index (MI) level decreased, while scores for micronucleus (MN) and chromosomal aberrations (CAs) rose. In addition, various meristematic cell damages were detected in root tips of tetraconazole applied bulbs. As a result, the multiple toxic, cytotoxic, and genotoxic effects of tetraconazole fungicide were demonstrated through a wide range of parameters on A. cepa, which was found to be a versatile tool for testing hazardous pesticides.
Collapse
Affiliation(s)
- Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| |
Collapse
|
14
|
Li Y, Nie J, Chang W, Xu G, Farooq S, Liu M, Zhang J. Enantioselective behavior analysis of chiral fungicide tetraconazole in apples with UPLC-MS/MS. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
16
|
Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat. Anal Bioanal Chem 2018; 410:6923-6934. [DOI: 10.1007/s00216-018-1296-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
|
17
|
Liu N, Pan X, Zhang S, Ji M, Zhang Z. Enantioselective behaviour of tetraconazole during strawberry wine-making process. Chirality 2018. [DOI: 10.1002/chir.22845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Na Liu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture; Shenyang Agricultural University; Shenyang PR China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences; State Key Laboratory for Biology of Plant Diseases and Insect Pests; Beijing PR China
| | - Shuang Zhang
- College of Plant Protection; Shenyang Agricultural University; Shenyang PR China
| | - Mingshan Ji
- College of Plant Protection; Shenyang Agricultural University; Shenyang PR China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture; Shenyang Agricultural University; Shenyang PR China
| |
Collapse
|
18
|
Efficient expression of single chain variable fragment antibody against paclitaxel using the Bombyx mori nucleopolyhedrovirus bacmid DNA system and its characterizations. J Nat Med 2016; 70:592-601. [PMID: 26940321 DOI: 10.1007/s11418-016-0981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
A single chain variable fragment (scFv), the smallest unit of functional recombinant antibody, is an attractive format of recombinant antibodies for various applications due to its small fragment and possibility of genetic engineering. Hybridoma clone 3A3 secreting anti-paclitaxel monoclonal antibody was used to construct genes encoding its variable domains of heavy (VH) and light (VL) chains. The VH and VL domains were linked to be the PT-scFv3A3 using flexible peptide linker in a format of VH-(GGGGS)5-VL. The PT-scFv3A3 was primarily expressed using the pET28a(+) vector in the Escherichia coli system, and was then further expressed by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Interestingly, the reactivity of PT-scFv3A3 expressed in the hemolymph of B. mori using the BmNPV bacmid DNA system was much higher than that expressed in the E. coli system. Using indirect competitive enzyme-linked immunosorbent assay (icELISA), the PT-scFv3A3 (B. mori) reacted not only with immobilized paclitaxel, but also with free paclitaxel in a concentration-dependent manner, with the linear range of free paclitaxel between 0.156 and 5.00 µg/ml. The PT-scFv3A3 (B. mori) exhibited less cross-reactivity (%) than its parental MAb clone 3A3 against paclitaxel-related compounds, including docetaxel (31.1 %), 7-xylosyltaxol (22.1 %), baccatin III (<0.68 %), 10-deacetylbaccatin III (<0.68 %), 1-hydroxybaccatin I (<0.68 %), and 1-acetoxy-5-deacetylbaccatin I (<0.68 %). With the exception of cephalomannine, the cross-reactivity was slightly increased to 8.50 %. The BmNPV bacmid DNA system was a highly efficient expression system of active PT-scFv3A3, which is applicable for PT-scFv3A3-based immunoassay of paclitaxel. In addition, the PT-scFv3A3 can be applied to evaluate its neutralizing property of paclitaxel or docetaxel toxicity.
Collapse
|