1
|
Nybom H, Ruan C, Rumpunen K. The Systematics, Reproductive Biology, Biochemistry, and Breeding of Sea Buckthorn-A Review. Genes (Basel) 2023; 14:2120. [PMID: 38136942 PMCID: PMC10743242 DOI: 10.3390/genes14122120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Both the fruit flesh and seeds of sea buckthorn have multiple uses for medicinal and culinary purposes, including the valuable market for supplementary health foods. Bioactive compounds, such as essential amino acids, vitamins B, C, and E, carotenoids, polyphenols, ursolic acid, unsaturated fatty acids, and other active substances, are now being analyzed in detail for their medicinal properties. Domestication with commercial orchards and processing plants is undertaken in many countries, but there is a large need for improved plant material with high yield, tolerance to environmental stress, diseases, and pests, suitability for efficient harvesting methods, and high contents of compounds that have medicinal and/or culinary values. Applied breeding is based mainly on directed crosses between different subspecies of Hippophae rhamnoides. DNA markers have been applied to analyses of systematics and population genetics as well as for the discrimination of cultivars, but very few DNA markers have as yet been developed for use in selection and breeding. Several key genes in important metabolic pathways have, however, been identified, and four genomes have recently been sequenced.
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University of Agricultural Sciences, 29194 Kristianstad, Sweden
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China;
| | - Kimmo Rumpunen
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| |
Collapse
|
2
|
Ma QG, He NX, Huang HL, Fu XM, Zhang ZL, Shu JC, Wang QY, Chen J, Wu G, Zhu MN, Sang ZP, Cao L, Wei RR. Hippophae rhamnoides L.: A Comprehensive Review on the Botany, Traditional Uses, Phytonutrients, Health Benefits, Quality Markers, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4769-4788. [PMID: 36930583 DOI: 10.1021/acs.jafc.2c06916] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hippophae rhamnoides L. (sea buckthorn), consumed as a food and health supplement worldwide, has rich nutritional and medicinal properties. Different parts of H. rhamnoides L. were used in traditional Chinese medicines for relieving cough, aiding digestion, invigorating blood circulation, and alleviating pain since ancient times. Phytochemical studies revealed a wide variety of phytonutrients, including nutritional components (proteins, minerals, vitamins, etc.) and functional components like flavonoids (1-99), lignans (100-143), volatile oils (144-207), tannins (208-230), terpenoids (231-260), steroids (261-270), organic acids (271-297), and alkaloids (298-305). The pharmacological studies revealed that some crude extracts or compounds of H. rhamnoides L. demonstrated various health benefits, such as anti-inflammatory, antioxidant, hepatoprotective, anticardiovascular disease, anticancer, hypoglycemic, hypolipidemic, neuroprotective, antibacterial activities, and their effective doses and experimental models were summarized and analyzed in this paper. The quality markers (Q-markers) of H. rhamnoides L. were predicted and analyzed based on protobotanical phylogeny, traditional medicinal properties, expanded efficacy, pharmacokinetics and metabolism, and component testability. The applications of H. rhamnoides L. in juice, wine, oil, ferment, and yogurt were also summarized and future prospects were examined in this review. However, the mechanism and structure-activity relationship of some active compounds are not clear, and quality control and potential toxicity are worth further study in the future.
Collapse
Affiliation(s)
- Qin-Ge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Neng-Xin He
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiao-Mei Fu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhong-Li Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ji-Cheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qin-Yuan Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Guang Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Mei-Ning Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lan Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Rong-Rui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Singh S, Sharma PC. Gas chromatography-mass spectrometry (GC-MS) profiling reveals substantial metabolome diversity in seabuckthorn (Hippophae rhamnoides L.) berries originating from different geographical regions in the Indian Himalayas. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:214-225. [PMID: 34278612 DOI: 10.1002/pca.3081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Seabuckthorn (Hippophae rhamnoides L.) is a high-altitude plant with immense medicinal, nutritional, and therapeutic value. Earlier studies have documented the presence of various useful bioactive substances in this species; however, comprehensive metabolome profiling of seabuckthorn berries originating from different regions of the Indian Himalayas has not been undertaken. OBJECTIVE Metabolomic profiling of seabuckthorn berries originating from different geographical sites in the Himachal Pradesh and Jammu & Kashmir regions of the Indian Himalayas was performed by using gas chromatography-mass spectrometry. MATERIALS AND METHODS The GC-MS metabolome profiles of seabuckthorn berries collected from different sites (altitude 1,400-4,270 m; average temperature 8°C-27°C) were subjected to multivariate analysis following principal component analysis and hierarchical clustering analysis. RESULTS The GC-MS results showed substantial variability for berry metabolites, including fatty acids, alkyl ethers, and alkyl esters. Fatty acids and their esters were mainly responsible for the variation in the berry metabolome. The metabolite expression profile heat map revealed two distinct groups of seabuckthorn berries originating from Himachal Pradesh (Lahaul and Spiti) and Jammu & Kashmir (Leh, Nubra, and Kargil), the former showing higher expression of metabolites. Interestingly, a strong negative association existed between altitude and the amounts of metabolites such as amides, alkyl esters, alcohols, sugars, and sugar esters. In contrast, temperature showed a strong positive association with ketone and alkyl ether levels. CONCLUSION GC-MS profiling provides important phytochemical indicators to distinguish between seabuckthorn berries from different geographical sites. Our metabolome profiling analysis generated valuable information that will be useful in the formulation of various seabuckthorn products, benefiting farmers and industries.
Collapse
Affiliation(s)
- Sugandh Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| |
Collapse
|
4
|
Singh S, Sharma PC. 1H Nuclear Magnetic Resonance (NMR)-Based Metabolome Diversity of Seabuckthorn (H. rhamnoides L.) Berries Originating from Two Geographical Regions of Indian Himalayas. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, Karppinen K, Jaakola L, Klavins M, Häggman H. Authentication of berries and berry-based food products. Compr Rev Food Sci Food Saf 2021; 20:5197-5225. [PMID: 34337851 DOI: 10.1111/1541-4337.12811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Berries represent one of the most important and high-valued group of modern-day health-beneficial "superfoods" whose dietary consumption has been recognized to be beneficial for human health for a long time. In addition to being delicious, berries are rich in nutrients, vitamins, and several bioactive compounds, including carotenoids, flavonoids, phenolic acids, and hydrolysable tannins. However, due to their high value, berries and berry-based products are often subject to fraudulent adulteration, commonly for economical gain, but also unintentionally due to misidentification of species. Deliberate adulteration often comprises the substitution of high-value berries with lower value counterparts and mislabeling of product contents. As adulteration is deceptive toward customers and presents a risk for public health, food authentication through different methods is applied as a countermeasure. Although many authentication methods have been developed in terms of fast, sensitive, reliable, and low-cost analysis and have been applied in the authentication of a myriad of food products and species, their application on berries and berry-based products is still limited. The present review provides an overview of the development and application of analytical chemistry methods, such as isotope ratio analysis, liquid and gas chromatography, spectroscopy, as well as DNA-based methods and electronic sensors, for the authentication of berries and berry-based food products. We provide an overview of the earlier use and recent advances of these methods, as well as discuss the advances and drawbacks related to their application.
Collapse
Affiliation(s)
- Heikki M Salo
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Emmi Alakärppä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Linards Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Anne Linn Hykkerud
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Katja Karppinen
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Laura Jaakola
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maris Klavins
- The Natural Resource Research Centre, University of Latvia, Riga, Latvia
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Markkinen N, Pariyani R, Jokioja J, Kortesniemi M, Laaksonen O, Yang B. NMR-based metabolomics approach on optimization of malolactic fermentation of sea buckthorn juice with Lactiplantibacillus plantarum. Food Chem 2021; 366:130630. [PMID: 34333181 DOI: 10.1016/j.foodchem.2021.130630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
This work investigated the impact of malolactic fermentation on the metabolomic profile of sea buckthorn juice to optimize the fermentation process for flavor modification. Six strains of L. plantarum were used with varied pH of the juice, cell acclimation, and fermentation time. 1H-NOESY spectra were acquired from fresh and fermented juices with a total of 46 metabolites identified. Less sugars and quinic acid were metabolized at pH 2.7 while oxidation of ascorbic acid was reduced at pH 3.5. l-Malic acid, essential amino acids, and nucleosides were consumed early during fermentation while sugars in general were consumed later in the fermentation. If deacidification is the main target of fermentation, strains that produce less acids and ferment less sugars, shorter fermentation time, and lower starter pH should be used. Higher starter pH and longer fermentation time promote formation of antimicrobial compounds and potentially increase antioxidant stability.
Collapse
Affiliation(s)
- N Markkinen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - R Pariyani
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - J Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - M Kortesniemi
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - O Laaksonen
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
7
|
Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn ( Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021; 62:3798-3816. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
8
|
Alanne AL, Issakainen J, Pihlaja K, Jokioja J, Sinkkonen J. Metabolomic discrimination of the edible mushrooms Kuehneromyces mutabilis and Hypholoma capnoides (Strophariaceae, Agaricales) by NMR spectroscopy. ACTA ACUST UNITED AC 2019; 74:201-210. [DOI: 10.1515/znc-2018-0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/21/2019] [Indexed: 01/14/2023]
Abstract
Abstract
Two edible, cultivable mushroom species of the family Strophariaceae, Kuehneromyces mutabilis (sheathed woodtuft) and Hypholoma capnoides (conifer tuft), were studied using proton nuclear magnetic resonance metabolomic approach. The variation in the metabolites of the two species and their metabolic behaviour regarding caps and stipes and different collection sites were analysed by multivariate analysis methods. Altogether 169 cap and stipe samples of the mushrooms were investigated. The clearest difference between the species was in the sugar composition, which was more diverse in H. capnoides. When mushroom samples collected from different locations were compared, more variance was found in H. capnoides, whereas K. mutabilis appeared more homogeneous as a species. As far as the caps and stipes were concerned, in both species the amount of α-α-trehalose was clearly higher in the stipes, and the caps contained a larger proportion of the amino acids and organic acids.
Collapse
Affiliation(s)
- Aino-Liisa Alanne
- The Instrument Centre, Department of Chemistry , University of Turku , FI-20014 Turku , Finland , Phone: +358 50 966 4721, Fax: +358 29 450 5040
| | - Jouni Issakainen
- Herbarium, Biodiversity Unit , University of Turku , FI-20014 Turku , Finland
| | - Kati Pihlaja
- Herbarium, Biodiversity Unit , University of Turku , FI-20014 Turku , Finland
| | - Johanna Jokioja
- The Instrument Centre, Department of Chemistry , University of Turku , FI-20014 Turku , Finland
| | - Jari Sinkkonen
- The Instrument Centre, Department of Chemistry , University of Turku , FI-20014 Turku , Finland
| |
Collapse
|
9
|
Awin T, Buzgaia N, Abd Ghafar SZ, Mediani A, Mohd Faudzi SM, Maulidiani M, Shaari K, Abas F. Identification of nitric oxide inhibitory compounds from the rhizome of Curcuma xanthorrhiza. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Madawala SR, Brunius C, Adholeya A, Tripathi SB, Hanhineva K, Hajazimi E, Shi L, Dimberg L, Landberg R. Impact of location on composition of selected phytochemicals in wild sea buckthorn ( Hippophae rhamnoides ). J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Zheng J, Huang C, Yang B, Kallio H, Liu P, Ou S. Regulation of phytochemicals in fruits and berries by environmental variation-Sugars and organic acids. J Food Biochem 2018; 43:e12642. [PMID: 31353611 DOI: 10.1111/jfbc.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Sugars and organic acids are important phytochemicals contributing to the nutrition and sensory properties of fruits and berries. Their contents are closely correlated to the genetic background of plants as well as to the environmental conditions during growth. This review focuses on the recent researches on the metabolism of these compounds in fruits and berries in response to the variation of environmental conditions, including temperature, radiation, and water supply. A great deal of investigations indicates that the influence of environmental factors on the composition of fruits/berries depended largely on the genetic background. Moreover, the metabolic regulation in response to environmental changes also varies between different plant developmental stages. Nevertheless, some general trends, like the positive correlation between light intensity and sugar content, were observed in most investigations. In grapes (Vitis vinifera L.), the content of malic acid always decreases as light intensity increases, and as the water supply decreases. PRACTICAL APPLICATIONS: The contents of sugars and organic acids, and especially their relative ratio, are important indicators determining the taste and quality of fruits and fruit products. In this review, we summarized the investigations carried out on the regulation of these sensory contributing primary metabolites in fruits and berries in relation to the variation of environmental conditions. It was indicated that various factors, such as plant genotype, growing period, and interaction between environmental factors, might contribute to the impact of environmental changes on the composition of fruits/berries. The article not only provides comprehensive knowledges in food chemistry and plant physiology but also provide important background knowledge for berry cultivation and breeding, as well as useful guidelines for utilization of fruits and berries in food industry.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China.,Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Puganen A, Kallio HP, Schaich KM, Suomela JP, Yang B. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3426-3434. [PMID: 29529370 PMCID: PMC6203183 DOI: 10.1021/acs.jafc.8b00177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 05/17/2023]
Abstract
The potential for using extracts of press residues from black, green, red, and white currants and from sea buckthorn berries as sources of antioxidants for foods use was investigated. Press residues were extracted with ethanol in four consecutive extractions, and total Folin-Ciocalteu (F-C) reactive material and authentic phenolic compounds were determined. Radical quenching capability and mechanisms were determined from total peroxyl radical-trapping antioxidant capacity (TRAP) and oxygen radical absorbance capacity (ORAC) assays and from diphenylpicrylhydrazyl (DPPH) kinetics, respectively; specific activities were normalized to F-C reactive concentrations. Levels of total F-C reactive materials in press residue extracts were higher than in many fruits and showed significant radical quenching activity. Black currant had the highest authentic phenol content and ORAC, TRAP, and DPPH reactivity. Sea buckthorn grown in northern Finland showed extremely high total specific DPPH reactivity. These results suggest that berry press residues offer attractive value-added products that can provide antioxidants for use in stabilizing and fortifying foods.
Collapse
Affiliation(s)
- Anna Puganen
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Heikki P. Kallio
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
- The
Kevo Subarctic Research Institute, University
of Turku, FI-20014 Turku, Finland
- E-mail: . Phone: +358 2 3336870. Fax: +358 29 450 5040
| | - Karen M. Schaich
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, United States
| | - Jukka-Pekka Suomela
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
13
|
Ma X, Yang W, Laaksonen O, Nylander M, Kallio H, Yang B. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9871-9879. [PMID: 29035528 DOI: 10.1021/acs.jafc.7b04156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sensory profile, flavonols, proanthocyanidins, sugars, and organic acids were investigated in purees of six sea buckthorn (Hippophaë rhamnoides) cultivars. The sensory profiles of the purees were dominated by intense sourness followed by astringency and bitterness due to the high content of malic acid. Malic acid and isorhamnetin glycosides, especially isorhamnetin-3-O-sophoroside-7-O-rhamnoside, had close association with the astringent attributes in the different purees, whereas some of the known astringent compounds such as proanthocyanidin dimers and trimers or quercetin glycosides, had less impact. Moreover, the ratios between contents of acids and phenolic compounds were more important predictors of bitterness than the individual variables alone. Astringency and bitterness are important sensory factors for the consumer acceptance of sea buckthorn products. The current study provides new knowledge on the correlations between sensory properties and composition and supports industrial utilization of the sea buckthorn berries.
Collapse
Affiliation(s)
- Xueying Ma
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Wei Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Merja Nylander
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
- Department of Food Science and Engineering, Jinan University , 510632 Guangzhou, China
| |
Collapse
|
14
|
Liu Y, Fan G, Zhang J, Zhang Y, Li J, Xiong C, Zhang Q, Li X, Lai X. Metabolic discrimination of sea buckthorn from different Hippophaë species by 1H NMR based metabolomics. Sci Rep 2017; 7:1585. [PMID: 28484246 PMCID: PMC5431470 DOI: 10.1038/s41598-017-01722-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Sea buckthorn (Hippophaë; Elaeagnaceae) berries are widely consumed in traditional folk medicines, nutraceuticals, and as a source of food. The growing demand of sea buckthorn berries and morphological similarity of Hippophaë species leads to confusions, which might cause misidentification of plants used in natural products. Detailed information and comparison of the complete set of metabolites of different Hippophaë species are critical for their objective identification and quality control. Herein, the variation among seven species and seven subspecies of Hippophaë was studied using proton nuclear magnetic resonance (1H NMR) metabolomics combined with multivariate data analysis, and the important metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that different Hippophaë species can be clearly discriminated and the important interspecific discriminators, including organic acids, L-quebrachitol, and carbohydrates were identified. Statistical differences were found among most of the Hippophaë species and subspecies at the content levels of the aforementioned interspecific discriminators via qNMR and one-way analysis of variance (ANOVA) test. These findings demonstrated that 1H NMR-based metabolomics is an applicable and effective approach for simultaneous metabolic profiling, species differentiation and quality assessment.
Collapse
Affiliation(s)
- Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610051, China
| | - Gang Fan
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjian Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Xiong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Zhang
- National Institute for Food and Drug Control, Beijing, 100050, China
| | - Xiaodong Li
- National Institute for Food and Drug Control, Beijing, 100050, China.
| | - Xianrong Lai
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Kortesniemi M, Sinkkonen J, Yang B, Kallio H. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada. Food Chem 2017; 219:139-147. [DOI: 10.1016/j.foodchem.2016.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/31/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
|
16
|
ALMEIDA MACIACDE, SOUZA LUCIANAG, FERREIRA DANIELEA, PINTO FRANCISCOC, OLIVEIRA DÉBORARDE, SANTIAGO GILVANDETEM, MONTE FRANCISCOJ, BRAZ-FILHO RAIMUNDO, LEMOS TELMALDE. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments. AN ACAD BRAS CIENC 2017; 89:65-71. [DOI: 10.1590/0001-3765201720150757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - RAIMUNDO BRAZ-FILHO
- Universidade Federal Rural do Rio de Janeiro, Brazil; Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | | |
Collapse
|
17
|
Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chem 2016; 211:963-71. [PMID: 27283718 DOI: 10.1016/j.foodchem.2016.05.124] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022]
Abstract
This study implements NMR metabolomics and spectrophotometric studies (Folin-Ciocalteu, FRAP, ABTS) to infusions and decoctions of ten plant species in order to assess and compare the metabolic and antioxidant profiles for each botanical family. Multivariate and univariate data analyses highlighted the differences among the samples and pinpointed specific classes of compounds for each plant species as well as infusions and decoctions. The identified phenolic compounds by NMR, as well as the antioxidant profile, framed a trend of increased values in infusions compared to the decoctions. Moreover, the infusion procedure positively affected the extractability of the phenolic compounds compared to decoctions. The highest total phenolic content was found in Mentha spicata, while the lowest in Matricaria chamomilla preparations, irrespective of the preparation method. The preparation time for the decoctions was examined showing that the 15min preparations were generally found richer in phenolics and of higher antioxidant capacity.
Collapse
|
18
|
Simmler C, Kulakowski D, Lankin DC, McAlpine JB, Chen SN, Pauli GF. Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products. Adv Nutr 2016; 7:179-89. [PMID: 27180381 PMCID: PMC4717887 DOI: 10.3945/an.115.009928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the field of food and nutrition, complex natural products (NPs) are typically obtained from cells/tissues of diverse organisms such as plants, mushrooms, and animals. Among them, edible fruits, grains, and vegetables represent most of the human diet. Because of an important dietary dependence, the comprehensive metabolomic analysis of dietary NPs, performed holistically via the assessment of as many metabolites as possible, constitutes a fundamental building block for understanding the human diet. Both mass spectrometry (MS) and nuclear magnetic resonance (NMR) are important complementary analytic techniques, covering a wide range of metabolites at different concentrations. Particularly, 1-dimensional 1H-NMR offers an unbiased overview of all metabolites present in a sample without prior knowledge of its composition, thereby leading to an untargeted analysis. In the past decade, NMR-based metabolomics in plant and food analyses has evolved considerably. The scope of the present review, covering literature of the past 5 y, is to address the relevance of 1H-NMR–based metabolomics in food plant studies, including a comparison with MS-based techniques. Major applications of NMR-based metabolomics for the quality control of dietary NPs and assessment of their nutritional values are presented.
Collapse
Affiliation(s)
- Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research; and
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | | | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research; and
| | - James B McAlpine
- UIC/NIH Center for Botanical Dietary Supplements Research; and
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research; and
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research; and
- Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
19
|
Quéro A, Jousse C, Lequart-Pillon M, Gontier E, Guillot X, Courtois B, Courtois J, Pau-Roblot C. Improved stability of TMS derivatives for the robust quantification of plant polar metabolites by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 970:36-43. [PMID: 25237783 DOI: 10.1016/j.jchromb.2014.08.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
Plant metabolite profiling is commonly carried out by GC-MS of methoximated trimethylsilyl (TMS) derivatives. This technique is robust and enables a library search for spectra produced by electron ionization. However, recent articles have described problems associated with the low stability of some TMS derivatives. This limits the use of GC-MS for metabolomic studies that need large sets of qualitative and quantitative analyses. The aim of this work is to determine the experimental conditions in which the stability of TMS derivatives could be improved. This would facilitate the analysis of the large-scale experimental designs needed in the metabolomics approach. For good repeatability, the sampling conditions and the storage temperature of samples during analysis were investigated. Multiple injections of one sample from one vial led to high variations while injection of one sample from different vials improved the analysis. However, before injection, some amino acid TMS derivatives were degraded during the storage of vials in the autosampler. Only 10% of the initial quantity of glutamine 3 TMS and glutamate 3 TMS and 66% of α-alanine 2 TMS was detected 48 h after derivatization. When stored at 4 °C until injection, all TMS derivatives remained stable for 12 h; at -20 °C, they remained stable for 72 h. From the integration of all these results, a detailed analytical procedure is thus proposed. It enables a robust quantification of polar metabolites, useful for further plant metabolomics studies using GC-MS.
Collapse
Affiliation(s)
- Anthony Quéro
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, IUT d'Amiens, Dept. GB, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France
| | - Cyril Jousse
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Michelle Lequart-Pillon
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Eric Gontier
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Xavier Guillot
- Laboulet Semences S.A., 1 rue Carnot, 80270 Airaines, France
| | - Bernard Courtois
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, IUT d'Amiens, Dept. GB, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France
| | - Josiane Courtois
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, IUT d'Amiens, Dept. GB, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France
| | - Corinne Pau-Roblot
- Unité de Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex, France.
| |
Collapse
|