1
|
Amr K, Rasheed DM, Khachila M, Farag MA. Production, extraction, and authentication of natural and non-natural vanillin. A comprehensive review and economic future biotechnology perspectives. Food Chem 2025; 466:142249. [PMID: 39612858 DOI: 10.1016/j.foodchem.2024.142249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Vanillin is a chief flavoring agent owing to its immense popularity in food, beverage, and pharmaceutical industries. This study holistically dissects vanillin quality control approaches that include conventional, hyphenated, and sensory analyses. Markers to differentiate between authentic, synthetic, and adulterated vanilla are highlighted using hyphenated techniques. Carbon isotope ratio range appears of potential to identify vanillin originating from biosynthetic (C3 plant), synthetic (petroleum) sources, or vanilla pods. Novel extraction methods typically provide greater selectivity, higher purity, shorter extraction times, and ecofriendly attributes compared to conventional methods. Best methods include supercritical fluids (SCF) or natural deep eutectic solvents (NADES) that promoted higher yield of vanillin. The review also highlights the promising avenue of biotransformation, the safest technique for the production of vanilla flavor components, tackling current challenges and emphasizing its potential to meet the market needs for authenticated and high-quality yields of vanillin.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt
| | - Dalia M Rasheed
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, 6(th) of October City, Giza, Egypt.
| | - Mariam Khachila
- Undergraduate Program, College of Pharmacy, Cairo University, Cairo, Egypt, Kasr El Aini St, P.B, 11562, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt, Kasr El Aini St, P.B, 11562, Egypt.
| |
Collapse
|
2
|
Govindaraj M, Sriram B, Wang SF, Muthukumaran MK, Kogularasu S, Chang-Chien GP, Arockia Selvi J.. Surfactant-Assisted Synthesis of Metallic-Ag/Nickel Oxide on Graphitic Carbon Nitride Composite: An Electrochemical Investigation of Synthetic Vanillin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11287-11299. [PMID: 39914860 PMCID: PMC11843540 DOI: 10.1021/acsami.4c19099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In this study, we developed a sensor based on surfactant-assisted synthesis of metallic silver-enriched nickel oxide confined on graphitic carbon nitride (Ag/NiO/g-CN)-modified electrode to construct a sensitive and selective voltammetric sensor for detecting vanillin in confectionaries samples. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses confirmed the crystal structure and respective functional groups of the synthesized Ag/NiO/g-CN composite. The valence states of silver, nickel, oxygen, carbon, and nitrogen were analyzed using X-ray photoelectron spectroscopy (XPS), while energy-dispersive X-ray analysis (EDX) and morphological investigations revealed the elemental distribution and nano-structured particles, respectively. The electrocatalyst-modified electrode properties and electrochemical sensing performances were evaluated using different voltammetric and spectroscopic techniques. The Ag/NiO/g-CN composite, exhibiting a large active surface area, excellent conductivity, and synergistic interaction, proved to be a suitable electrode material for electrochemical sensor applications. The sensor demonstrated a detection limit of 0.9 nM and a broad linear range of 0.004-366.8 μM. Electrochemical investigations further highlighted the sensor's excellent reproducibility, repeatability, fast response, and functional stability. The constructed sensor also exhibited outstanding selectivity against potential interferents and demonstrated its practical applicability by successfully detecting vanillin in spiked food samples.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Magesh Kumar Muthukumaran
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Sakthivel Kogularasu
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Institute
of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Arockia Selvi J.
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|
3
|
Lin B, Zhang X, Zhong Y, Chen Y, Chen X, Chen X. Preparation of vanillin nanoparticle/polyvinyl alcohol/chitosan film and its application in preservation of large yellow croaker. Int J Biol Macromol 2025; 287:138440. [PMID: 39645123 DOI: 10.1016/j.ijbiomac.2024.138440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The novel polyvinyl alcohol/chitosan films incorporated with vanillin/zein/κ-carrageenan nanoparticles (VZCNPs) were developed. The polyvinyl alcohol/chitosan/vanillin nanoparticles (PVA/CS/NPs) films had exhibited enhanced tensile strength, hydrophobicity, antioxidant activities and antimicrobial efficacy, all of which varied with the different concentrations of VZCNPs. Notably, the PVA/CS/NPs-10 film exhibited exceptional performance, with a reduced Moisture Content of 15.68 ± 0.46 %, an increased water contact angle of 65.75°, and improved ABTS scavenging rate of 77.39 ± 0.54 %, demonstrating outstanding antioxidant activity and antimicrobial properties. The PVA/CS/NPs films were further applied to the packaging of large yellow croaker (Pseudosciaena crocea) to evaluate their preservation capability at 4 °C. The results indicated that the PVA/CS/NPs films effectively inhibited microbial growth and lipid oxidation, thereby delaying the spoilage of large yellow croaker. High-throughput sequencing study showed that the films effectively inhibited spoilage bacteria, including Comamonas, Pseudomonas, and, Burkholderia and affected the distribution of bacterial populations during storage. This study provides new insights into prolonging the shelf life of fresh-frozen large yellow croaker and developing advanced preservation methods for the future development of the aquatic product.
Collapse
Affiliation(s)
- Bing Lin
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaojun Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
| | - Yaqian Zhong
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yu Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaxia Chen
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xuechang Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
4
|
Gu F, Xu F, Wu G, Zhu H, Ji C, Wang Y, Zhao Q, Zhang Z. Annual Accumulation of CymMV May Lead to Loss in Production of Asymptomatic Vanilla Propagated by Cuttings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1505. [PMID: 38891313 PMCID: PMC11174479 DOI: 10.3390/plants13111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Vanilla (Vanilla planifolia Andrews) is a valuable orchid spice cultivated for its highly priced beans. Vanilla has been planted in Hainan province of China via cutting propagation for about 40 years. The yield has been decreasing annually for the past ten years due to pod numbers declining significantly even though it seems to grow normally without disease symptoms, while the reason is still unknown. In this study, we found that Cymbidium mosaic virus (CymMV), one of the most devastating viruses causing losses in the vanilla industry, massively presented within the pods and leaves of vanilla plants, so the virus infecting the vanilla seems to be a highly probable hypothesis of the main contributions to low yield via decreasing the number of pods. This represents the first speculation of CymMV possibly affecting the yield of vanilla in China, indicating the important role of virus elimination in restoring high yield in vanilla. This research can also serve as a warning to important economic crops that rely on cuttings for propagation, demonstrating that regular virus elimination is very important for these economically propagated crops through cuttings.
Collapse
Affiliation(s)
- Fenglin Gu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Guiping Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Hongying Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Changmian Ji
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
| | - Yu Wang
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
| | - Qingyun Zhao
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Zhiyuan Zhang
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
5
|
Pavlić B, Kaplan M, Zeković Z, Canli O, Jovičić N, Bursać Kovačević D, Bebek Markovinović A, Putnik P, Bera O. Kinetics of Microwave-Assisted Extraction Process Applied on Recovery of Peppermint Polyphenols: Experiments and Modeling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1391. [PMID: 36987079 PMCID: PMC10053306 DOI: 10.3390/plants12061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The aim of this work was to investigate the microwave-assisted extraction (MAE) kinetics of polyphenolic compounds from organic peppermint leaves. The phytochemicals of peppermint (Mentha piperita L.) are increasingly used in food technology due to their numerous biological activities. The processing of various plant materials by MAE and the production of high-quality extracts is becoming increasingly important. Therefore, the influence of microwave irradiation power (90, 180, 360, 600, and 800 W) on total extraction yield (Y), total polyphenols yield (TP), and flavonoid yield (TF) were investigated. Common empirical models (first-order, Peleg's hyperbolic, Elovich's logarithmic, and power-law model) were applied to the extraction process. The first-order kinetics model provided the best agreement with the experimental results in terms of statistical parameters (SSer, R2, and AARD). Therefore, the influences of irradiation power on the adjustable model parameters (k and Ceq) were investigated. It was found that irradiation power exerted a significant influence on k, while its influence on the asymptotic value of the response was negligible. The highest experimentally determined k (2.28 min-1) was obtained at an irradiation power of 600 W, while the optimal irradiation power determined by the maximum fitting curve determination predicted the highest k (2.36 min-1) at 665 W.
Collapse
Affiliation(s)
- Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Muammer Kaplan
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, P.O. Box 21, Gebze 41470, Kocaeli, Turkey
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Oltan Canli
- TUBITAK Marmara Research Centre, Environment and Cleaner Production Institute, P.O. Box 21, Gebze 41470, Kocaeli, Turkey
| | - Nebojša Jovičić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Oskar Bera
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (B.P.)
| |
Collapse
|
6
|
Antonio-Gutiérrez O, Pacheco-Reyes I, Lagunez-Rivera L, Solano R, Cañizares-Macías MDP, Vilarem G. Effect of Microwave and Ultrasound during the Killing Stage of the Curing Process of Vanilla ( Vanilla planifolia, Andrews) Pods. Foods 2023; 12:foods12030469. [PMID: 36765998 PMCID: PMC9914085 DOI: 10.3390/foods12030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The curing process (CP) of Vanilla planifolia pods, which is a long and tedious process, is necessary to obtain the natural vanilla extract. This research evaluated the application of microwave (M) and ultrasound (U) during the "killing" stage of the CP and its effect on vanillin content and β-glucosidase activity. The pods were immersed in a container with water or with moistened samples for the M treatments. In U treatments, the pods were immersed in an ultrasonic bath. After this stage, the samples were subjected to an additional U treatment. The results show that the application of these technologies significantly improves vanillin yield (p < 0.05) and the curing time is reduced to 20 days. U treatments subjected to additional sonication at 38 °C obtain more than double the yield of vanillin regarding control. The effect of M and U on cell structure damage increases with additional sonication, but at 15 min, β-glucosidase inactivation decreases the final yield. Disposition of samples in M also affects the final vanillin content. There is no significant correlation between β-glucosidase and vanillin in the different treatments. The application of M and U with the appropriate parameters reduces the CP time without affecting the compounds of interest.
Collapse
Affiliation(s)
- Oscar Antonio-Gutiérrez
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Oaxaca 71230, Mexico
| | - Isidro Pacheco-Reyes
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Oaxaca 71230, Mexico
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Oaxaca 71230, Mexico
- Correspondence: ; Tel.: +52-9515170400 (ext. 82771)
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, Oaxaca 71230, Mexico
| | - María del Pilar Cañizares-Macías
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Gerard Vilarem
- Laboratoire de Chimie Agro-Industrielle, Université de Toulouse, INP-ENSIACET, 31030 Toulouse, France
| |
Collapse
|
7
|
Elik A, Altunay N. Optimization of vortex-assisted switchable hydrophilicity solvent liquid phase microextraction for the selective extraction of vanillin in different matrices prior to spectrophotometric analysis. Food Chem 2023; 399:133929. [DOI: 10.1016/j.foodchem.2022.133929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
|
8
|
Elaguech MA, Bahri M, Djebbi K, Zhou D, Shi B, Liang L, Komarova N, Kuznetsov A, Tlili C, Wang D. Nanopore-based aptasensor for label-free and sensitive vanillin determination in food samples. Food Chem 2022; 389:133051. [PMID: 35490517 DOI: 10.1016/j.foodchem.2022.133051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Dielectric breakdown technique was utlised to fabricate 5-6 nm nanopores for vanillin detection in various food samples. A highly selective aptamer (Van_74) with high binding affinity towards vanillin was used as capture probe. Under optimal conditions, aptamer/vanillin complex translocation induced deeper events than the bare aptamer. As a result, the proposed nanopore aptasensor exhibits a linear range from 0.5 to 5 nM (R2 = 0.972) and a low detection limit of 500 pM, which is significantly better than conventional platforms. Furthermore, our aptasensor showed excellent immunity against different interferons and was used to detect vanillin in different food samples. The food sample measurements were confirmed with an additional UV-Vis assay, the results of the two techniques were statistically evaluated and showed no statistically significant difference. Hence, this work represents a proof-of-concept involving the design and testing of aptamer/nanopore sensors for small molecules detection, which plays a critical role in food safety.
Collapse
Affiliation(s)
- Mohamed Amin Elaguech
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Mohamed Bahri
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Khouloud Djebbi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Biao Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | | | - Alexander Kuznetsov
- SMC Technological Centre, Moscow 124498, Russia; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China.
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
9
|
Su H, Li P, Wang Y, Wu H, Ma X, Liu Y, Ma Y, Liu S, Xia C. Combination of Soxhlet extraction and catalytic hydrodebromination for remediation of tetrabromobisphenol A contaminated soil. CHEMOSPHERE 2022; 300:134545. [PMID: 35427671 DOI: 10.1016/j.chemosphere.2022.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
As a widely used brominated flame retardants (BFRs), tetrabromobisphenol A (TBBPA) has been detected in various environmental matrices and is known to cause negative effects on both the environment and human health. In this study, a combined method was developed for the abatement of TBBPA contaminated soil based on successive steps of solvent extraction (SE) and catalytic hydrodebromination (HDB) over Pd/C. The results showed that TBBPA could be efficiently extracted from the TBBPA contaminated soil with polar solvents. Subsequently, TBBPA could be completely hydrodebrominated over Pd/C in ethanol, via multistep ultimately yielding bisphenol A. Moreover, NaOH, NH3H2O, and Et3N were more favorable to promote the HDB of 4-TBBPA over Pd/C, and 100% bromide atom removal ratio of TBBPA was achieved within 40 min when [NaOH]0/[organic-Br]0 was more than 1.10 in ethanol. However, the catalytic activity of Pd/C decreased with the repeated use in ethanol. To study the mechanism for this phenomenon, fresh and used catalysts were analyzed by characterization techniques including scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectrometer (EDS). It was found that the deactivation of Pd/C catalyst caused by the gradual accumulation of NaBr could be recovered by washing with water. On the basis of these studies, an effective and practical system for the combined method of SE and catalytic HDB over Pd/C was developed to dispose BFRs contaminated soils.
Collapse
Affiliation(s)
- Heng Su
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, 264025, China; School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Peng Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Yanfei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Haiyang Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China; Fujian Provincial Colleges and University Engineering Research Center of Solid Waste Resource Utilization, Longyan University, Longyan, 364012, China
| | - Ying Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Yunbo Ma
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, 264025, China; School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China
| | - Sujing Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China.
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, 264025, China; School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, China.
| |
Collapse
|
10
|
Wei L, Wei S, Hu D, Feng L, Liu Y, Liu H, Liao W. Comprehensive Flavor Analysis of Volatile Components During the Vase Period of Cut Lily ( Lilium spp. 'Manissa') Flowers by HS-SPME/GC-MS Combined With E-Nose Technology. FRONTIERS IN PLANT SCIENCE 2022; 13:822956. [PMID: 35783924 PMCID: PMC9247614 DOI: 10.3389/fpls.2022.822956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Volatile compounds could affect the flavor and ornamental quality of cut flowers, but the flavor change occurring during the vase period of the cut flower is unclear. To clarify the dynamic changes during the vase period of cut lily (Lilium spp. 'Manissa') flowers, comprehensive flavor profiles were characterized by the electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). The response value of sensor W2W was significantly higher than other sensors, and its response value reached the highest on day 4. A total of 59 volatiles were detected in cut lilies by HS-SPME/GC-MS, mainly including aldehydes, alcohols, and esters. There were 19 volatiles with odor activity values (OAVs) greater than 1. Floral and fruity aromas were stronger, followed by a pungent scent. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) could effectively discriminate lily samples derived from different vase times on the basis of E-nose and HS-SPME-GC-MS. In summary, our study investigates the flavor change profile and the diversity of volatile compounds during the vase period of cut lilies, and lilies on day 4 after harvest exhibited excellent aroma and flavor taking into consideration of the flavor intensity and diversity. This provided theoretical guidance for the assessment of scent volatiles and flavor quality during the vase period of cut lily flowers and will be helpful for the application of cut lilies during the postharvest process.
Collapse
|
11
|
Hasni MH, Sulaiman S, Jimat DN, Amid A. Kinetics of microwave-assisted extraction of virgin coconut oil from solid coconut waste. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2047662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mohd Haffizi Hasni
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| | - Sarina Sulaiman
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| | - Dzun Noraini Jimat
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| | - Azura Amid
- International Institute for Halal Research and Training, International Islamic University Malaysia, Gombak, Selangor, Malaysia
| |
Collapse
|
12
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|
13
|
Raimundini Aranha AC, de Matos Jorge LM, Nardino DA, Casagrande Sipoli C, Suzuki RM, Dusman Tonin LT, Oliveira Defendi R. Modelling of bioactive components extraction from corn seeds. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Rao MV, Sengar AS, C K S, Rawson A. Ultrasonication - A green technology extraction technique for spices: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhou W, Yu X, Liu Y, Sun W, Chen Z. Porous layer open-tubular column with styrene and itaconic acid-copolymerized polymer as stationary phase for capillary electrochromatography-mass spectrometry. Electrophoresis 2021; 42:2664-2671. [PMID: 34499755 DOI: 10.1002/elps.202100148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Enhancing the specific surface area of stationary phase is important in chromatographic science, especially in open-tubular column in which the coating only exists on the inner surface. In this work, a porous layer open-tubular (PLOT) column with stationary phase of styrene and itaconic acid-copolymerized polymer was developed. Thermal-initiated polymerization method with strategies like controlling the ratio of reaction reagents to solvents and reaction time, confinement by the narrow inner diameter of capillary were used for preparing the stationary phase with uniform structure and relatively thick layer. Due to the high separation efficiency and capacity, the PLOT column was used for capillary electrochromatography (CEC) separation of multiple groups of analytes like alkylbenzenes, phenyl amines, phenols, vanillins, and sulfonamides with theoretical plates (N) up to 1,54,845 N/m. In addition, due to high permeability of the CEC column and large electroosmotic flow mobility generated by abundant carboxyl groups in the coating material, the PLOT-CEC column was successfully coupled with mass spectrometry (MS) through a sheath flow interface. The developed PLOT-CEC-MS method was used for the analysis of antiseptics like parabens and herbicides like pyridines.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinhong Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yikun Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Wenqi Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministryof Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Wang W, Yan Z, Yao H, Li P, Peng W, Su W, Wang Y. Extraction and purification of pedunculoside from the dried barks of Ilex rotunda using crystallization combined with polyamide column chromatography. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1788595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Weiyue Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zenghao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, PR China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Peng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonggang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Study of Extraction Kinetics of Total Polyphenols from Curry Leaves. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/9988684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Solid-liquid batch extraction of total polyphenol content from curry leaves (Murraya koenigii L.) was studied in this paper. The effect of different solvent concentrations and temperatures on total polyphenol content was investigated by performing batch experiments. The experimental studies showed that the kinetics of solid-liquid batch extraction was influenced by different solvent concentrations and temperatures. In solid-liquid batch extraction, more recovery of total polyphenols was obtained for 50% (v/v) aqueous methanol and at 333 K temperature. The total polyphenol obtained at optimum conditions was 79.34 mgGAE/L. Mathematical modelling is an important engineering tool used to study the kinetics of extraction as well as in the design of the extraction process to reduce time, energy, and chemical reagents. Peleg and Power law, the two mathematical models, were used to study the kinetics of the batch extraction process. The Peleg model showed the best fit to explain the kinetics of process with R2 > 0.99. Further conventional extraction methods are compared with the novel extraction method.
Collapse
|
18
|
Extraction of Vanillin Following Bioconversion of Rice Straw and Its Optimization by Response Surface Methodology. Molecules 2020; 25:molecules25246031. [PMID: 33352794 PMCID: PMC7767248 DOI: 10.3390/molecules25246031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Value-added chemicals, including phenolic compounds, can be generated through lignocellulosic biomass conversion via either biological or chemical pretreatment. Currently vanillin is one of the most valuable of these products that has been shown to be extractable on an industrial scale. This study demonstrates the potential of using rice straw inoculated with Serpula lacrymans, which produced a mixture of high value bio-based compounds including vanillin. Key extraction conditions were identified to be the volume of solvent used and extraction time, which were optimized using response surface methodology (RSM). The vanillin compounds extracted from rice straw solid state fermentation (SSF) was confirmed through LC-ESI MS/MS in selective ion mode. The optimum concentration and yield differed depending on the solvent, which was predicted using 60 mL ethyl acetate for 160 min were 0.408% and 3.957 μg g−1 respectively. In comparison, when ethanol was used, the highest concentration and yields of vanillin were 0.165% and 2.596 μg g−1. These were achieved using 40 mL of solvent, and extraction time increased to 248 min. The results confirm that fungal conversion of rice straw to vanillin could consequently offer a cost-effect alternative to other modes of production.
Collapse
|
19
|
Peng J, Wei L, Liu Y, Zhuge W, Huang Q, Huang W, Xiang G, Zhang C. Novel porous iron phthalocyanine based metal-organic framework electrochemical sensor for sensitive vanillin detection. RSC Adv 2020; 10:36828-36835. [PMID: 35517930 PMCID: PMC9057021 DOI: 10.1039/d0ra06783k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Vanillin is widely used as a flavor enhancer and is known to have numerous other interesting properties, including antidepressant, anticancer, anti-inflammatory, and antioxidant effects. However, as excess vanillin consumption can affect liver and kidney function, simple and rapid detection methods for vanillin are required. Herein, a novel electrochemical sensor for the sensitive determination of vanillin was fabricated using an iron phthalocyanine (FePc)-based metal-organic framework (MOF). Scanning electron microscopy and transmission electron microscopy showed that the FePc MOF has a hollow porous structure and a large surface area, which impart this material with high adsorption performance. A glassy carbon electrode modified with the FePc MOF exhibited good electrocatalytic performance for the detection of vanillin. In particular, this vanillin sensor had a wide linear range of 0.22-29.14 μM with a low detection limit of 0.05 μM (S/N = 3). Moreover, the proposed sensor was successfully applied to the determination of vanillin in real samples such as vanillin tablets and human serum.
Collapse
Affiliation(s)
- Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Liying Wei
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
- School of Pharmacy, Henan University of Traditional Chinese Medicine Zhengzhou 450046 China
| | - Yuxia Liu
- College of Physics and Electronic Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China
| | - Wenfeng Zhuge
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Qing Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Gang Xiang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| | - Cuizhong Zhang
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities Chongzuo 532200 China +86 771 7870799 +86 771 7870653
| |
Collapse
|
20
|
Xu F, Chen Y, Cai Y, Gu F, An K. Distinct Roles for Bacterial and Fungal Communities During the Curing of Vanilla. Front Microbiol 2020; 11:552388. [PMID: 33101228 PMCID: PMC7554518 DOI: 10.3389/fmicb.2020.552388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Vanilla produces aroma after curing. There were a few reports about the possible involvement of microorganisms during the curing process. Bacterial and fungal community was analyzed to explore the distinct roles. Alpha diversity analysis indicated that the abundance and diversity of microorganisms did not increase regularly as the curing progressed. Weighted and unweighted principal coordinates analysis (PCoA) showed that the fungal community of blanching beans was significantly different from those of the vanilla beans of other stages, respectively. Bacillus and Aspergillus were the dominant genus during the curing process. Correlation analysis indicated that the bacterial and fungal structure was positively related to the vanillin formation, respectively. The study was conducive to reveal the formation of flavor components and the biosynthesis of vanillin. Furthermore, it proposed the possible curing methods of regulating the bacterial and fungal community to increase vanillin formation.
Collapse
Affiliation(s)
- Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.,National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China.,Hainan Provincial Engineering Research Center of Tropical Spice and Beverage Crops, Wanning, China
| | - Yonggan Chen
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China
| | - Yingying Cai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Fenglin Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.,National Center of Important Tropical Crops Engineering and Technology Research, Wanning, China.,Hainan Provincial Engineering Research Center of Tropical Spice and Beverage Crops, Wanning, China
| | - Kejing An
- Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
21
|
Rakshit M, Srivastav PP, Bhunia K. Kinetic modeling of ultrasonic‐assisted extraction of punicalagin from pomegranate peel. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhulekha Rakshit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Prem P. Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - Kanishka Bhunia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| |
Collapse
|
22
|
High-intensity ultrasound-assisted extraction of Garcinia madruno biflavonoids: Mechanism, kinetics, and productivity. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Cabezas R, Prieto V, Plaza A, Merlet G, Quijada-Maldonado E, Torres A, Yáñez-S M, Romero J. Extraction of Vanillin from Aqueous Matrices by Membrane-Based Supercritical Fluid Extraction: Effect of Operational Conditions on Its Performance. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- René Cabezas
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Valentina Prieto
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Andrea Plaza
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Talca R0912001, Chile
| | - Gastón Merlet
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Alejandra Torres
- Center for Food Packaging Innovation (LABEN), Center for Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Mauricio Yáñez-S
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Universidad de Santiago de Chile, Santiago 71783-5, Chile
| |
Collapse
|
24
|
Natolino A, Da Porto C. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Tian YQ, Zhao HT, Zhang XL, Zhang WT, Liu XC, Gao SH. Comparison of different extraction techniques and optimization of the microwave-assisted extraction of saponins from Aralia elata (Miq.) Seem fruits and rachises. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus Amboinicus Leaves: Kinetic Modeling and Optimization. Processes (Basel) 2020. [DOI: 10.3390/pr8030322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thymol shows potential medical values and it can be extracted from plants and herbs. In this study, ultrasonic-assisted extraction (UAE) was used to extract thymol from Plectranthus amboinicus leaves. From the extraction kinetics analysis of UAE on thymol, it was found that the highest concentration was collected at temperature of 25 °C with 5.51% of thymol concentration yield. An equilibrium-dependent solid–liquid extraction (EDSLE) model was found to be the best fitted model for thymol extraction using UAE. The parameters for optimization were the temperature of extraction (40 to 60 °C), extraction time (20 to 40 min), and the solid to solvent ratio (1:30 to 1:40 g/mL). The optimal UAE conditions were found at a temperature of 55 °C, 23 min of extraction, and a solid–solvent ratio of 1:35 g/mL. The changes in the structural surface of P. amboinicus after undergoing the UAE process were investigated using scanning electron microscopy (SEM). The possible mechanism of UAE was explained using the SEM images. These findings suggest that UAE is capable of breaking the structural surface of the leaves to extract compounds inside the leaves to the body of the solvent.
Collapse
|
27
|
Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24213926. [PMID: 31683500 PMCID: PMC6864453 DOI: 10.3390/molecules24213926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
β-sitosterol β-d-glucoside (BSSG) was extracted from “piña” of the Agave angustifolia Haw plant by microwave-assisted extraction (MAE) with a KOH solution such as a catalyst and a conventional maceration method to determine the best technique in terms of yield, extraction time, and recovery. The quantification and characterization of BSSG were done by high-performance thin layer chromatography (HPTLC), Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLC-ESI-MS). With an extraction time of 5 s by MAE, a higher amount of BSSG (124.76 mg of β-sitosterol β-d-glucoside/g dry weight of the extract) than those for MAE extraction times of 10 and 15 s (106.19 and 103.97 mg/g dry weight respectively) was shown. The quantification of BSSG in the extract obtained by 48 h of conventional maceration was about 4–5 times less (26.67 mg/g dry weight of the extract) than the yields reached by the MAE treatments. MAE achieved the highest amount of BSSG, in the shortest extraction time while preserving the integrity of the compound’s structure.
Collapse
|
28
|
Zheng L, Chen L, Li J, Liang L, Fan Y, Qiu L, Deng Z. Two Kaempferol Glycosides Separated from Camellia Oleifera Meal by High-Speed Countercurrent Chromatography and Their Possible Application for Antioxidation. J Food Sci 2019; 84:2805-2811. [PMID: 31441960 DOI: 10.1111/1750-3841.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
Recently, kaempferol and its glycosides have attracted considerable attention owing to their potentially health-benefitting properties including protection against chronic diseases. Here, a microwave-assisted extraction (MAE) method was developed for the extraction of total flavonoid glycosides (FG) from Camellia oleifera meal, a major agrifood waste largely generated as a byproduct from the Camellia oil processing industry. Compared with traditional extraction methods, MAE enables more efficient extraction of FG. High-speed countercurrent chromatography was then applied to separate FG from MAE extract, and two major compounds were successfully separated with purities above 90.0% as determined by HPLC. These two compounds were further identified by UV, FT-IR, ESI-MS, 1 H-NMR, and 13 C-NMR as kaempferol 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]-7-O-β-D-glucopyranoside and kaempferol 3-O-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl]-7-O-α-L-rhamnopyranoside, which were for the first time separated from C. oleifera meal. The results of antioxidant activity assay demonstrated that both compounds had excellent scavenging activity for DPPH radical, and exhibited protective effects against H2 O2 -induced oxidative damage of vascular endothelial cells. The findings of this work suggest the possibility of employing C. oleifera meal as an attractive source of health-promoting compounds, and at the same time facilitate its high-value reuse and reduction of environmental burden.
Collapse
Affiliation(s)
- Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Li Chen
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Li Liang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, Jiangsu, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Leyun Qiu
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China.,Inst. for Advanced Study, Univ. of Nanchang, Nanchang, 330031, Jiangxi, China
| |
Collapse
|
29
|
Metabolite Transformation and Enzyme Activities of Hainan Vanilla Beans During Curing to Improve Flavor Formation. Molecules 2019; 24:molecules24152781. [PMID: 31370187 PMCID: PMC6696495 DOI: 10.3390/molecules24152781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022] Open
Abstract
This paper compares the differences in metabolites of vanilla beans at five different curing stages. Key vanilla flavors, vanillin precursors and main enzymes during the curing process of Hainan vanilla beans were also analyzed. Hundreds of metabolites were detected based on metabolic analyses of a widely targeted metabolome technique, compared with blanched vanilla beans (BVB), sweating vanilla beans (SVB) and drying vanilla beans (DVB), the total peak intensity of cured vanilla beans (CVB) is on the rise. The score plots of principal component analysis indicated that the metabolites were generally similar at the same curing stages, but for the different curing stages, they varied substantially. During processing, vanillin content increased while glucovanillin content decreased, and vanillic acid was present in sweating beans, but its content was reduced in drying beans. Both p-hydroxybenzaldehyde and p-hydroxybenzoic acid showed the maximum contents in cured beans. Ferulic acid was mainly produced in drying beans and reduced in cured beans. p-coumaric acid increased during the curing process. Vanillyl alcohol in drying beans (0.22%) may be formed by the hydrolysis of glucoside, whose conversion into vanillin may explain its decrease during the curing stage. β-Glucosidase enzymatic activity was not detected in blanched and sweating beans, but was observed after drying. Peroxidase activity decreased during curing by 94% in cured beans. Polyphenol oxidase activity was low in earlier stages, whereas cellulase activity in processed beans was higher than in green beans, except for cured beans. This study contributes to revealing the formation of flavor components and the biosynthesis pathway of vanillin.
Collapse
|
30
|
Hasan M, Panda BP. Chemometric analysis of selective polyphenolic groups in Asparagus racemosus (Shatavar) root extracts by traditional and supercritical fluid (CO2) based extractions. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1594896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mojeer Hasan
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
31
|
Soualeh N, Stiévenard A, Baudelaire E, Soulimani R, Bouayed J. Improvement of cytoprotective and antioxidant activity of Rosa canina L. and Salix alba L. by controlled differential sieving process against H 2O 2-induced oxidative stress in mouse primary splenocytes. INT J VITAM NUTR RES 2019; 87:191-200. [PMID: 30816796 DOI: 10.1024/0300-9831/a000506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, cytoprotective and antioxidant activities of Rosa canina (RC) and Salix alba (SA), medicinal plants, were studied on mouse primary splenocytes by comparing Controlled Differential Sieving process (CDSp), which is a novel green solvent-free process, versus a conventional technique, employing hydroethanolic extraction (HEE). Thus, preventive antioxidant activity of three plant powders of homogeneous particle sizes, 50-100 µm, 100-180 µm and 180-315 µm, dissolved directly in the cellular buffer, were compared to those of hydroethanolic (HE) extract, at 2 concentrations (250 and 500 µg/mL) in H2O2-treated spleen cells. Overall, compared to HE extract, the superfine powders, i. e., fractions < 180 µm, at the lowest concentration, resulted in greater reactive oxygen species (ROS) elimination, increased glutathione peroxidase (GPx) activity and lower malondialdehyde (MDA) production. Better antioxidant and preventive effects in pre-treated cells were found with the superfine powders for SA (i. e., 50-100 µm and 100-180 µm, both p < 0.001), and with the intermediate powder for RC (i. e., 100-180 µm, p < 0.05) versus HE extract. The activity levels of catalase (CAT) and superoxide dismutase (SOD) in pretreated splenocytes exposed to H2O2, albeit reduced, were near to those in unexposed cells, suggesting that pretreatment with the fine powders has relatively restored the normal levels of antioxidant-related enzymes. These findings supported that CDSp improved the biological activities of plants, avoiding the use of organic solvents and thus it could be a good alternative to conventional extraction techniques.
Collapse
Affiliation(s)
- Nidhal Soualeh
- 1 Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Metz, France
| | - Aliçia Stiévenard
- 1 Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Metz, France
| | | | - Rachid Soulimani
- 1 Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Metz, France
| | - Jaouad Bouayed
- 1 Université de Lorraine, Neurotoxicologie Alimentaire et Bioactivité, Metz, France
| |
Collapse
|
32
|
Pettinato M, Casazza AA, Perego P. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Pettinato M, Casazza AA, Ferrari PF, Palombo D, Perego P. Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Qian Y, Ye J, Yang S, Lin Z, Cao W, Xie J. Evaluation of the spoilage potential ofShewanella putrefaciens,Aeromonas hydrophila, andAeromonas sobriaisolated from spoiled Pacific white shrimp (Litopenaeus vannamei) during cold storage. J Food Saf 2018. [DOI: 10.1111/jfs.12550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yun‐Fang Qian
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing‐Xin Ye
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
| | - Sheng‐Ping Yang
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Zu‐Quan Lin
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Wei Cao
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
35
|
Ratiu IA, Al-Suod H, Ligor M, Ligor T, Railean-Plugaru V, Buszewski B. Complex investigation of extraction techniques applied for cyclitols and sugars isolation from different species of Solidago genus. Electrophoresis 2018; 39:1966-1974. [PMID: 29543989 DOI: 10.1002/elps.201700419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/28/2023]
Abstract
Cyclitols are phytochemicals naturally occurring in plant material, which attracted an increasing interest due to multiple medicinal attributes, among which the most important are the antidiabetic, antioxidant, and anticancer properties. Due to their valuable properties, sugars are used in the food industry as sweeteners, preservatives, texture modifiers, fermentation substrates, and flavoring and coloring agents. In this study, we report for the first time the quantitative analysis of sugars and cyclitols isolated from Solidago virgaurea L., which was used for the selection of the optimal solvent and extraction technique that can provide the best possible yield. Moreover, the quantities of sugars and cyclitols extracted from two other species, Solidago canadensis and Solidago gigantea, were investigated using the best extraction method and the most appropriate solvent. Comparative analysis of natural plant extracts obtained using five different techniques-maceration, Soxhlet extraction, pressurized liquid extraction, ultrasound-assisted extraction, and supercritical fluid extraction-was performed in order to decide the most suitable, efficient, and economically convenient extraction method. Three different solvents were used. Analysis of samples has been performed by solid-phase extraction for purification and pre-concentration, followed by derivation and GC-MS analysis. Highest efficiency for the total amount of obtained compounds has been reached by PLE, when water was used as a solvent. d-pinitol amount was almost similar for every solvent and for all the extraction techniques involved.
Collapse
Affiliation(s)
- Ileana-Andreea Ratiu
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
| | - Hossam Al-Suod
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
36
|
Celebioglu A, Kayaci-Senirmak F, İpek S, Durgun E, Uyar T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 2018; 7:3141-53. [PMID: 27353870 DOI: 10.1039/c6fo00569a] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced antioxidant property, etc.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Semran İpek
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey and Department of Engineering Physics, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
37
|
Al Jitan S, Alkhoori SA, Yousef LF. Phenolic Acids From Plants: Extraction and Application to Human Health. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00013-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Vinatoru M, Mason T, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.09.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Gu F, Chen Y, Hong Y, Fang Y, Tan L. Comparative metabolomics in vanilla pod and vanilla bean revealing the biosynthesis of vanillin during the curing process of vanilla. AMB Express 2017; 7:116. [PMID: 28587440 PMCID: PMC5459784 DOI: 10.1186/s13568-017-0413-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 11/20/2022] Open
Abstract
High-performance liquid chromatography–mass spectrometry (LC–MS) was used for comprehensive metabolomic fingerprinting of vanilla fruits prepared from the curing process. In this study, the metabolic changes of vanilla pods and vanilla beans were characterized using MS-based metabolomics to elucidate the biosynthesis of vanillin. The vanilla pods were significantly different from vanilla beans. Seven pathways of vanillin biosynthesis were constructed, namely, glucovanillin, glucose, cresol, capsaicin, vanillyl alcohol, tyrosine, and phenylalanine pathways. Investigations demonstrated that glucose, cresol, capsaicin, and vanillyl alcohol pathway were detected in a wide range of distribution in microbial metabolism. Thus, microorganisms might have participated in vanillin biosynthesis during vanilla curing. Furthermore, the ion strength of glucovanillin was stable, which indicated that glucovanillin only participated in the vanillin biosynthesis during the curing of vanilla.
Collapse
|
40
|
Lin C, Xia G, Liu S. Modeling and comparison of extraction kinetics of 8 catechins, gallic acid and caffeine from representative white teas. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Krishnan RY, Rajan KS. Influence of microwave irradiation on kinetics and thermodynamics of extraction of flavonoids from Phyllanthus emblica. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170343s20150628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Patil DM, Akamanchi KG. Ultrasound-assisted rapid extraction and kinetic modelling of influential factors: Extraction of camptothecin from Nothapodytes nimmoniana plant. ULTRASONICS SONOCHEMISTRY 2017; 37:582-591. [PMID: 28427671 DOI: 10.1016/j.ultsonch.2017.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 05/06/2023]
Abstract
Ultrasound-assisted extraction (UAE) of commercially important natural product camptothecin (CPT) from Nothapodytes nimmoniana plant has been investigated. The influences of process factors such as electric acoustic intensity, solid to liquid ratio, duty cycle, temperature and particle size on the maximum extraction yield and kinetic mechanisms of the entire extraction process have been investigated. The kinetics results showed that increasing the intensity, duty cycle, solid to liquid ratio and decreasing the particle size lead to substantial increase in extraction yields compared to classical stirring extraction. Different kinetic models were applied to fit the experimental data. The second order rate model appears to be the best. The extraction rate constant, initial extraction rate and the equilibrium concentration for all experimental conditions have been calculated. SEM analysis of spent plant material clearly showed hollow openings on cell structure, which could be directly correlated to explosive disruption by the action of ultrasound waves. Overall 1.7-fold increase in extraction yields of CPT (0.32% w/w) and decrease in time from 6h to 18min was observed over the stirring method.
Collapse
Affiliation(s)
- Dhiraj M Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Krishnacharya G Akamanchi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
43
|
Mlyuka E, Zhang S, Wang L, Zheng Z, Chen J. Characteristics of Subcritical Water Extraction and Kinetics of Pentacyclic Triterpenoids from Dry Loquat (Eriobotrya japonica) Leaves. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2016. [DOI: 10.1515/ijfe-2016-0054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
In this study, pentacyclic triterpenoids (PTTs) were extracted from loquat leaves by subcritical water extraction (SWE) technique in a dynamic mode. The results revealed that PTTs yield increased up to 5.38±0.12 mg/g with the increasing temperature at 180 °C for corosolic acid (CA) and up to 7.20±0.11 mg/g at 200 °C for ursolic acid (UA) within experimental times. The optimum flow rates to obtain concentrated CA and UA extracts were found to be 33.33 and 41.67 mL/min, respectively. Furthermore, extraction temperatures strongly influenced the extraction rate as demonstrated by the rate constant of each temperature tested. Moreover, the kinetic rate constant decreased as the function of temperature indicating the yield of both CA and UA were significantly influenced by subcritical temperatures and extraction times.
Collapse
|
44
|
Rezaei A, Nasirpour A, Tavanai H, Fathi M. A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Rezaei
- Department of Food Science and Technology, College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - A. Nasirpour
- Department of Food Science and Technology, College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | - H. Tavanai
- Department of Textile Engineering; Isfahan University of Technology; Isfahan Iran
- Nanotechnology and Advanced Materials Institute; Isfahan University of Technology; Isfahan Iran
| | - M. Fathi
- Department of Food Science and Technology, College of Agriculture; Isfahan University of Technology; Isfahan Iran
| |
Collapse
|
45
|
Park SH, Min SG, Jo YJ, Chun JY. Effect of High Pressure Homogenization on the Physicochemical Properties of Natural Plant-based Model Emulsion Applicable for Dairy Products. Korean J Food Sci Anim Resour 2016; 35:630-7. [PMID: 26761891 PMCID: PMC4670892 DOI: 10.5851/kosfa.2015.35.5.630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 11/06/2022] Open
Abstract
In the dairy industry, natural plant-based powders are widely used to develop flavor and functionality. However, most of these ingredients are water-insoluble; therefore, emulsification is essential. In this study, the efficacy of high pressure homogenization (HPH) on natural plant (chocolate or vanilla)-based model emulsions was investigated. The particle size, electrical conductivity, Brix, pH, and color were analyzed after HPH. HPH significantly decreased the particle size of chocolate-based emulsions as a function of elevated pressures (20-100 MPa). HPH decreased the mean particle size of chocolate-based emulsions from 29.01 μm to 5.12 μm, and that of vanilla-based emulsions from 4.18 μm to 2.44 μm. Electrical conductivity increased as a function of the elevated pressures after HPH, for both chocolate- and vanilla-based model emulsions. HPH at 100 MPa increased the electrical conductivity of chocolate-based model emulsions from 0.570 S/m to 0.680 S/m, and that of vanilla-based model emulsions from 0.573 S/m to 0.601 S/m. Increased electrical conductivity would be attributed to colloidal phase modification and dispersion of oil globules. Brix of both chocolate- and vanilla-based model emulsions gradually increased as a function of the HPH pressure. Thus, HPH increased the solubility of plant-based powders by decreasing the particle size. This study demonstrated the potential use of HPH for enhancing the emulsification process and stability of the natural plant powders for applications with dairy products.
Collapse
Affiliation(s)
- Sung Hee Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sang-Gi Min
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea
| | - Yeon-Ji Jo
- Department of Bioindustrial Technologies, Konkuk University, Seoul 05029, Korea
| | - Ji-Yeon Chun
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
46
|
Pressure-enhanced solid–liquid extraction of rutin from Chinese scholar-tree flower: Kinetic modeling of influential factors. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Yao Y, Pan S, Fan G, Dong L, Ren J, Zhu Y. Evaluation of volatile profile of Sichuan dongcai, a traditional salted vegetable, by SPME–GC–MS and E-nose. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Gu F, Chen Y, Fang Y, Wu G, Tan L. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics. Molecules 2015; 20:18422-36. [PMID: 26473810 PMCID: PMC6331939 DOI: 10.3390/molecules201018422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022] Open
Abstract
Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58% ± 0.05% and 3.48% ± 0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09% ± 0.14% and 3.21% ± 0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.
Collapse
Affiliation(s)
- Fenglin Gu
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Yonggan Chen
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
- College of Bioscience and Technology, Qiongzhou University, Sanya 572022, Hainan, China.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yiming Fang
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Guiping Wu
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, CATAS, Wanning 571533, Hainan, China.
| |
Collapse
|
49
|
Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews. Appl Environ Microbiol 2015; 81:4947-54. [PMID: 25979899 DOI: 10.1128/aem.00458-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation.
Collapse
|
50
|
Ning F, Peng H, Dong L, Zhang Z, Li J, Chen L, Xiong H. Preparation and characterization of superparamagnetic molecularly imprinted polymers for selective adsorption and separation of vanillin in food samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11138-45. [PMID: 25352428 DOI: 10.1021/jf504144g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Novel water-compatible superparamagnetic molecularly imprinted polymers (M-MIPs) were prepared by coating superparamagnetic Fe3O4 nanoparticles with MIPs in a methanol-water reaction system. The M-MIPs were used for the selective adsorption and separation of vanillin from aqueous solution. The M-MIPs were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM). Results indicated that a core-shell structure of M-MIPs was obtained by coating a layer of silica and MIPs on the surface of the Fe3O4 nanoparticles. The obtained M-MIPs possess a loose and porous structure and can be rapidly separated from the solution using a magnet. The adsorption experiments showed that the binding capacity of the M-MIPs was significantly higher than that of the superparamagnetic non-molecularly imprinted polymers (M-NIPs). Meanwhile, the adsorption of M-MIPs reached equilibrium within 100 min, and the apparent maximum adsorption quantity (Qmax) and dissociation constant (Kd) were 64.12 μmol g(-1) and 58.82 μmol L(-1), respectively. The Scatchard analysis showed that homogeneous binding sites were formed on the M-MIP surface. The recoveries of 83.39-95.58% were achieved when M-MIPs were used for the pre-concentration and selective separation of vanillin in spiked food samples. These results provided the possibility for the separation and enrichment of vanillin from complicated food matrices by M-MIPs.
Collapse
Affiliation(s)
- Fangjian Ning
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|