1
|
Chen X, Deng Z, Zhang C, Zheng S, Pan Y, Wang H, Li H. WITHDRAWN: Is antioxidant activity of flavonoids mainly through the hydrogen-atom transfer mechanism? Food Res Int 2024; 196:108081. [PMID: 39614461 DOI: 10.1016/j.foodres.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Chengyue Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China
| | - Yao Pan
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China.
| |
Collapse
|
2
|
Valentin BC, Philippe ON, Melman M, Henry MM, Salvius BA, Baptiste LSJ. Ethnomedical knowledge of plants used in alternative medicine to treat hemorrhoidal diseases in Lubumbashi, Haut-Katanga province, Southern Democratic Republic of Congo. BMC Complement Med Ther 2024; 24:365. [PMID: 39394139 PMCID: PMC11468376 DOI: 10.1186/s12906-024-04646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A variety of medicinal plants are used in traditional medicine in Lubumbashi for the management of hemorrhoidal diseases. However, no investigation has been conducted to gather the knowledge required for this type of management in the region. The present study was conducted to inventory the plants used in Lubumbashi to treat hemorrhoidal diseases and to relate their ethnomedical characteristics. METHODS This study was conducted between March 2022 and February 2023 by interviews using semi-structured questionnaire with households (n = 1520), herbalists (n = 25), and traditional healers: THs (n = 59). RESULTS The 1,604 respondents (sex ratio M/F = 0.9; mean age: 56 ± 3 years; experience: 12 ± 3 years) provided information on 100 taxa, 84 of which are used against internal hemorrhoids, Phyllanthus amarus being the most cited (Citation Index, CI: 0.76). Most of them are trees (38%) or shrubs (32%), belonging to 90 genera and 45 families dominated by the Fabaceae (10%) and Asteraceae (9%). They are indicated in 76 other pathologies, dominated by gastrointestinal disorders (GID), wounds and sexually transmitted infections (CI > 0.57). From these 100 taxa, 117 anti-hemorrhoidal formulations were derived, 11 of which combined more than one plant. In all these recipes, the leaf is the most commonly used part (> 60%) and the liniment (> 45%) is the most popular form of application. For the first time, this study reports 14 taxa as plants used in the treatment of hemorrhoids. Among these taxa, Ficus stuhlmannii, Ficus laurifolia, and Ocimum centraliafricanum are listed as medicinal plants for the first time. Khaya nyasica, and Syzygium cordatum, each with 11 uses, have the highest traditional medicinal value. CONCLUSION The findings of this study indicate that a significant number of medicinal plants are used in traditional medicine in Lubumbashi for the treatment of hemorrhoidal diseases. Some of these plants are endemic to the biodiversity area, while others are shared with other cultures and regions. A series of pharmacological studies is currently underway with the objective of validating the anti-hemorrhoidal properties of these plants and in order to identify phytochemical compounds responsible of this activity.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo.
| | - Okusa Ndjolo Philippe
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Muhona Melman
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Manya Mboni Henry
- Department of Pharmacology Laboratory of Therapeutic Chemistry and Analysis of Natural Substances Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology- Laboratory of Pharmacognosy - Faculty of Pharmaceutical Sciences - , University of Lubumbashi (UNILU), 27, Av Kato, Commune Kampemba, Lubumbashi - DR, Congo
| | - Lumbu Simbi Jean Baptiste
- University of Lubumbashi (UNILU, Commune of Lubumbashi, N°1 Maternity Avenue, Lubumbashi - DR, Congo
| |
Collapse
|
3
|
Kowalczyk T, Muskała M, Merecz-Sadowska A, Sikora J, Picot L, Sitarek P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:1143. [PMID: 39334802 PMCID: PMC11428540 DOI: 10.3390/antiox13091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, a class of flavonoid compounds responsible for the vibrant colors of many fruits and vegetables, have received considerable attention in recent years due to their potential health benefits. This review, focusing on evidence from both in vitro and in vivo studies, provides a comprehensive overview of the current state of knowledge regarding the health-promoting properties of anthocyanins. The chemical structure and diversity of anthocyanins, their bioavailability, and their mechanisms of action at the cellular and molecular level are examined. Research on the antioxidant, anti-inflammatory, anticancer, and neuroprotective effects of anthocyanins is critically reviewed. Special emphasis is placed on the role of anthocyanins in the prevention and treatment of chronic diseases such as cardiovascular diseases, diabetes, and neurodegenerative diseases. This review also discusses the challenges of translating in vitro findings to in vivo and highlights the importance of considering dose, bioavailability, and metabolism when assessing the therapeutic potential of anthocyanins. This review concludes with the identification of gaps in current research and suggestions for future directions for anthocyanin studies, including the need for more long-term clinical trials and investigations into potential synergistic effects with other phytochemicals. This comprehensive analysis highlights the promising role of anthocyanins in promoting human health and provides valuable insights for researchers, health professionals, and the nutraceutical industry. This study provides new insights, as it comprehensively investigates the dual anti-inflammatory and anticancer effects of anthocyanins in both in vitro and in vivo models. By uncovering the biological properties of anthocyanins from a variety of natural sources, this research not only expands our knowledge of the action of these compounds at the cellular level, but also enhances their clinical relevance through in vivo validation. Furthermore, the innovative use of anthocyanins may lead to important advances in their therapeutic application in the future.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
5
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
6
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
7
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
8
|
Kumkum R, Aston-Mourney K, McNeill BA, Hernández D, Rivera LR. Bioavailability of Anthocyanins: Whole Foods versus Extracts. Nutrients 2024; 16:1403. [PMID: 38794640 PMCID: PMC11123854 DOI: 10.3390/nu16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanins have gained significant popularity in recent years for their diverse health benefits, yet their limited bioavailability poses a challenge. To address this concern, technologies have emerged to enhance anthocyanin concentration, often isolating these compounds from other food constituents. However, the extent to which isolated anthocyanins confer health benefits compared to their whole-food counterparts remains unclear. This review explores the current literature on anthocyanin bioavailability and metabolism in the body, with a focus on comparing bioavailability when consumed as extracts versus whole foods rich in anthocyanins, drawing from in vitro, in vivo, and human clinical studies. While direct comparisons between anthocyanin bioavailability in whole foods versus isolates are scarce, prevailing evidence favours whole-food consumption over anthocyanin extracts. Further clinical investigations, preferably with direct comparisons, are needed to validate these findings and elucidate the nuanced interplay between anthocyanins and food matrices, informing future research directions and practical recommendations.
Collapse
Affiliation(s)
| | | | | | | | - Leni R. Rivera
- Institute for Innovation in Physical and Mental Health and Clinical Translation (IMPACT), Deakin University, Geelong 3220, Australia; (R.K.); (K.A.-M.); (B.A.M.); (D.H.)
| |
Collapse
|
9
|
Alvarado DA, Ibarra-Sánchez LA, Mysonhimer AR, Khan TA, Cao R, Miller MJ, Holscher HD. Honey Varietals Differentially Impact Bifidobacterium animalis ssp. lactis Survivability in Yogurt through Simulated In Vitro Digestion. J Nutr 2024; 154:866-874. [PMID: 38219862 PMCID: PMC10942848 DOI: 10.1016/j.tjnut.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Bifidobacterium animalis ssp. lactis DN-173 010/CNCM I-2494 (B. animalis) is a probiotic strain commonly added to yogurt. Yogurt and honey are a popular culinary pairing. Honey improves bifidobacteria survival in vitro. However, probiotic survival in yogurt with honey during in vitro digestion has not been investigated. OBJECTIVES The study aimed to evaluate the effects of different honey varietals and concentrations on B. animalis survivability in yogurt through in vitro digestion. METHODS Yogurt with honey or control-treated samples underwent in vitro simulated oral, gastric, and intestinal digestion. B. animalis cells were enumerated on de Man Rogosa and Sharpe (MRS) medium followed by an overlay with a modified selective MRS medium; all underwent anaerobic incubation. B. animalis were enumerated predigestion and after oral, gastric, and intestinal digestion. There were 2 study phases: Phase 1 tested 4 honey varietals at 20% wt/wt per 170 g yogurt, and Phase 2 tested 7 dosages of clover honey (20, 14, 10, 9, 8, 6, and 4% wt/wt) per 170 g yogurt. RESULTS Similar B. animalis counts were observed between all treatments after oral and gastric digestion (<1 Log colony forming units (CFU)/g probiotic reduction). Higher B. animalis survivability was observed in yogurt with clover honey after exposure to simulated intestinal fluids (∼3.5 Log CFU/g reduction; P < 0.05) compared to all control treatments (∼5.5 Log CFU/g reduction; P < 0.05). Yogurt with 10-20% wt/wt clover honey increased B. animalis survivability after simulated in vitro digestion (≤ ∼4.7 Log CFU/g survival; P < 0.05). CONCLUSIONS Yogurt with added honey improves probiotic survivability during in vitro digestion. The effective dose of clover honey in yogurt was 10-20% wt/wt per serving (1-2 tablespoons per 170 g yogurt) for increased probiotic survivability during in vitro digestion.
Collapse
Affiliation(s)
- David A Alvarado
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | | | - Annemarie R Mysonhimer
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Tauseef A Khan
- Division of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Rong Cao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.
| |
Collapse
|
10
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
11
|
Li X, Jia J, Li T, Zhao Z, Liu H, Song N, Pei J. Metabolomics analysis of Ligustri Lucidi Fructus at different harvest times during the whole growing period based on ultra-high-performance liquid chromatography with mass spectrometry. J Sep Sci 2023; 46:e2300196. [PMID: 37806751 DOI: 10.1002/jssc.202300196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
After medicinal market research, it was found that the harvest time of Ligustri Lucidi Fructus (LLF) was chaotic in practice. In order to determine the optimal harvest period of LLF to ensure its pharmacological activity, metabolomics analysis of LLF at different harvest times based on ultra-high-performance liquid chromatography-triple quadrupole-(linear ion trap)-tandem mass spectrometry was established. In this study, 166 differential metabolites (DMs) in 448 metabolites at different harvest times were screened out based on variable importance in projection value, and among them, 94 DMs with regular trends of change in relative content (59 increased and 35 decreased with the growth period) were chosen to further research. The result of the multivariate statistical analysis showed that November was the optimal harvest period of LLF. Additionally, 10-hydroxyligustroside, oleoside 11-methyl ester, and salidroside were screened out to be used as the evaluation indicators of immature LLF, while specnuezhenide, nuezhenoside G13, and neonuezhenide were the evaluation indicators of mature LLF. This study provides fundamental insight for metabolite identification and proposes the best harvest period of LLF to avoid confusion in the medicinal market.
Collapse
Affiliation(s)
- Xiaoan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
- Ankang Inspection and Testing Center for Food and Drug, Ankang, P. R. China
| | - Jianzhong Jia
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Zefeng Zhao
- Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Haijing Liu
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Na Song
- Xi'an Central Hospital, Xi'an, P. R. China
| | - Jin Pei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
| |
Collapse
|
12
|
Morote L, Lobato-Gómez M, Ahrazem O, Argandoña J, Olmedilla-Alonso B, López-Jiménez AJ, Diretto G, Cuciniello R, Bergamo P, Frusciante S, Niza E, Rubio-Moraga Á, Crispi S, Granell A, Gómez-Gómez L. Crocins-rich tomato extracts showed enhanced protective effects in vitro. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
13
|
Li CX, Wang FR, Zhang B, Deng ZY, Li HY. Stability and antioxidant activity of phenolic compounds during in vitro digestion. J Food Sci 2023; 88:696-716. [PMID: 36617678 DOI: 10.1111/1750-3841.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023]
Abstract
The impact of phenolic compounds on the human body depended on the type, content, bioavailability, and antioxidant activity. After digestion, different phenolic compounds had different changes of bioavailability and antioxidant activity, which needed to be considered in the application. In this experiment, the structural stability and antioxidant activity of 27 phenolic compounds (phenolic acids, flavonols, flavonoids, and flavanones) were investigated during the in vitro simulated digestion. This experiment eliminated the influence of food matrix, provide a basis for regularity for the changes of phenolic substances in different materials. Results showed that the bioaccessibility of phenolic compounds with different structures varied, and there was a conformational relationship between the structure and stability. After oral digestion, most of the phenolic compounds underwent degradation and the cellular antioxidant activity (CAA) values decreased to a large extent (p < 0.05). After gastric digestion, the content (p > 0.05) and CAA values (p < 0.05) of most phenolic compounds increased. However, after intestinal digestion, the phenolic compounds were degraded to a greater extent, and different structures of phenolic compounds had different changes in CAA values (p < 0.05). In general, the CAA values of most phenolic compounds after in vitro digestion were lower than the initial value. The 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ehylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) values of phenolic acids and flavonols decreased after in vitro simulated digestion (p < 0.05), while the values of DPPH, ABTS, and FRAP of most flavonoids (p < 0.05) increased. The increased oxygen radical absorption capacity (ORAC) values were found in most phenolic acids, flavonols, and flavonoids (p < 0.05), and most flavanones showed unremarkable changes in ORAC values (p > 0.05). In general, the changing trend of chemical-based antioxidant activity was consistent with the content of phenolic compounds.
Collapse
Affiliation(s)
- Chun Xiao Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Fu Rong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Ze Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Yan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Chen Y, Kim P, Kong L, Wang X, Tan W, Liu X, Chen Y, Yang J, Chen B, Song Y, An Z, Min Phyon J, Zhang Y, Ding B, Kawabata S, Li Y, Wang Y. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5559-5580. [PMID: 35552695 DOI: 10.1093/jxb/erac209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Unlike modern tomato (Solanum lycopersicum) cultivars, cv. LA1996 harbors the dominant Aft allele, which is associated with anthocyanin synthesis in tomato fruit peel. However, the control of Aft anthocyanin biosynthesis remains unclear. Here, we used ethyl methanesulfonate-induced and CRISPR/Cas9-mediated mutation of LA1996 to show, respectively, that two class IIIf basic helix-loop-helix (bHLH) transcription factors, SlJAF13 and SlAN1, are involved in the control of anthocyanin synthesis. These transcription factors are key components of the MYB-bHLH-WD40 (MBW) complex, which positively regulates anthocyanin synthesis. Molecular and genetic analyses showed that SlJAF13 functions as an upstream activation factor of SlAN1 by binding directly to the G-Box motif of its promoter region. On the other hand, SlJAZ2, a JA signaling repressor, interferes with formation of the MBW complex to suppress anthocyanin synthesis by directly binding these two bHLH components. Unexpectedly, the transcript level of SlJAZ2 was in turn repressed in a SlJAF13-dependent manner. Mechanistically, SlJAF13 interacts with SlMYC2, inhibiting SlMYC2 activation of SlJAZ2 transcription, thus constituting a negative feedback loop governing anthocyanin accumulation. Taken together, our findings support a sophisticated regulatory network, in which SlJAF13 acts as an upstream dual-function regulator that fine tunes anthocyanin biosynthesis in tomato.
Collapse
Affiliation(s)
- Yunzhu Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wei Tan
- Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuansen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jianfei Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zeyu An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jong Min Phyon
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bing Ding
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Xiao L, Sun Y, Tsao R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8551-8568. [PMID: 35793510 DOI: 10.1021/acs.jafc.2c02326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food bioactive components, particularly phytochemicals with antioxidant capacity, have been extensively studied over the past two decades. However, as new analytical and molecular biological tools advance, antioxidants related research has undergone significant paradigm shifts. This review is a high-level overview of the evolution of phytochemical antioxidants research. Early research used chemical models to assess the antioxidant capacity of different phytochemicals, which provided important information about the health potential, but the results were overused and misinterpreted despite the lack of biological relevance (Antioxidants v1.0). This led to findings in the anti-inflammatory properties and modulatory effects of cell signaling of phytochemicals (Antioxidants v2.0). Recent advances in the role of diet in modulating gut microbiota have suggested a new phase of food bioactives research along the phytochemicals-gut microbiota-intestinal metabolites-low-grade inflammation-metabolic syndrome axis (Antioxidants v3.0). Polyphenols and carotenoids were discussed in-depth, and future research directions were also provided.
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
16
|
Morais MG, Saldanha AA, Azevedo LS, Mendes IC, Rodrigues JPC, Amado PA, Farias KDS, Zanuncio VSS, Cassemiro NS, Silva DBD, Soares AC, Lima LARDS. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae) and putative identification of bioactive compounds by GC–MS and LC-DAD-MS. Food Res Int 2022; 156:111145. [DOI: 10.1016/j.foodres.2022.111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
17
|
Wang C, Wu H, Liu Z, Barrow C, Dunshea F, Suleria HAR. Bioaccessibility and movement of phenolic compounds from tomato ( Solanum lycopersicum) during in vitro gastrointestinal digestion and colonic fermentation. Food Funct 2022; 13:4954-4966. [PMID: 35441650 DOI: 10.1039/d2fo00223j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tomatoes (Solanum lycopersicum) are highly involved in diets consumed worldwide, and are rich in bioactive compounds including phenolics, carotenoids and vitamins. In this study, four different varieties of fresh tomato pulp (Oxheart, Green Zebra, Kumato and Roma) were used to estimate the bioaccessibility of target phenolic compounds during in vitro gastrointestinal digestion and colonic fermentation, and to determine their antioxidant capacity. The production of short chain fatty acids (SCFAs) was also estimated during colonic fermentation. Among these, Roma displayed relatively higher total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay) values after gastrointestinal digestion of 0.31 mg gallic acid equivalents (GAE) per g and 0.12 mg Trolox equivalents (TE) per g. Kumato exhibited the highest total flavonoid content (TFC) of 2.47 mg quercetin equivalents (QE) per g after 8 hours of colonic fermentation. Oxheart and Roma showed similar ferric reducing antioxidant power (FRAP) values of around 4.30 mg QE per g after 4 hours of faecal reaction. Catechin was the most bioaccessible phenolic compound in all fresh tomatoes, and could be completely decomposed after intestinal digestion, whereas the release of some bonded phenolic compounds required the action of gut microflora. Kumato and Green Zebra showed higher production of individual and total SCFAs for 16 hours of fermentation, which would provide more gut health benefits.
Collapse
Affiliation(s)
- Chuqi Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Hanjing Wu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Ziyao Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia.
| | - Colin Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| | - Frank Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia. .,Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia. .,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| |
Collapse
|
18
|
Does Plant Breeding for Antioxidant-Rich Foods Have an Impact on Human Health? Antioxidants (Basel) 2022; 11:antiox11040794. [PMID: 35453479 PMCID: PMC9024522 DOI: 10.3390/antiox11040794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Given the general beneficial effects of antioxidants-rich foods on human health and disease prevention, there is a continuous interest in plant secondary metabolites conferring attractive colors to fruits and grains and responsible, together with others, for nutraceutical properties. Cereals and Solanaceae are important components of the human diet, thus, they are the main targets for functional food development by exploitation of genetic resources and metabolic engineering. In this review, we focus on the impact of antioxidants-rich cereal and Solanaceae derived foods on human health by analyzing natural biodiversity and biotechnological strategies aiming at increasing the antioxidant level of grains and fruits, the impact of agronomic practices and food processing on antioxidant properties combined with a focus on the current state of pre-clinical and clinical studies. Despite the strong evidence in in vitro and animal studies supporting the beneficial effects of antioxidants-rich diets in preventing diseases, clinical studies are still not sufficient to prove the impact of antioxidant rich cereal and Solanaceae derived foods on human
Collapse
|
19
|
Chen X, Deng Z, Zheng L, Zhang B, Luo T, Li H. Interaction between Flavonoids and Carotenoids on Ameliorating Oxidative Stress and Cellular Uptake in Different Cells. Foods 2021; 10:foods10123096. [PMID: 34945647 PMCID: PMC8701200 DOI: 10.3390/foods10123096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids (quercetin, luteolin) and carotenoids (lycopene, lutein) were combined at different molecular ratios in a total concentration of 8 μM to investigate their antioxidant interactions. Cellular uptake of carotenoids, the expression of carotenoid transporters, the ROS scavenging ability, and antioxidant enzymes activities were compared in HUVEC, Caco-2, and L-02 cells. Combinations with flavonoids in the majority showed stronger antioxidant activity. Lycopene combined with quercetin at ratio 1:5 showed stronger ROS scavenging activities, increased 18, 12, and 12 Cellular antioxidant activity (CAA) units in HUVEC, Caco-2, and L-02 cells, respectively, and promoted SOD and CAT activities than individual component. The cell uptake of carotenoids was enhanced by flavonoids in antioxidant synergistic groups, while dampened by flavonoids in antagonistic groups in HUVEC cells. The synergistic group (lycopene:quercetin = 1:5) increased lycopene uptake by 271%, while antagonistic group (lutein:quercetin = 5:1) decreased lutein uptake by 17%. Flavonoids modulated the effects of carotenoids on the expression of active transporters scavenger receptor class B type I (SR-BI) or Niemann-Pick C1-like 1 (NPC1L1). The synergistic group (lycopene:quercetin = 1:5) increased the expression of SR-BI compared to individual lycopene treatment in HUVEC and Caco-2 cells. Thus, a diet rich in both flavonoids and lycopene possesses a great antioxidant activity, especially if a higher amount of flavonoids is included.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang 330047, China; (X.C.); (Z.D.); (L.Z.); (B.Z.); (T.L.)
- Correspondence: ; Tel.: +86-791-88314447-8226; Fax: +86-791-88304402
| |
Collapse
|
20
|
Jokioja J, Yang B, Linderborg KM. Acylated anthocyanins: A review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Compr Rev Food Sci Food Saf 2021; 20:5570-5615. [PMID: 34611984 DOI: 10.1111/1541-4337.12836] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022]
Abstract
Anthocyanins, the natural red and purple colorants of berries, fruits, vegetables, and tubers, improve carbohydrate metabolism and decrease the risk factors of metabolic disorders, but their industrial use is limited by their chemical instability. Acylation of the glycosyl moieties of anthocyanins, however, changes the chemical properties of anthocyanins and provides enhanced stability. Thus, acylated anthocyanins are more usable as natural colorants and bioactive components of innovative functional foods. Acylated anthocyanins are common in pigmented vegetables and tubers, the consumption of which has the potential to increase the intake of health-promoting anthocyanins as part of the daily diet. For the first time, this review presents the current findings on bioavailability, absorption, metabolism, and health effects of acylated anthocyanins with comparison to more extensively investigated nonacylated anthocyanins. The structural differences between nonacylated and acylated anthocyanins lead to enhanced color stability, altered absorption, bioavailability, in vivo stability, and colonic degradation. The impact of phenolic metabolites and their potential health effects regardless of the low bioavailability of the parent anthocyanins as such is discussed. Here, purple-fleshed potatoes are presented as a globally available, eco-friendly model food rich in acylated anthocyanins, which further highlights the industrial possibilities and nutritional relevance of acylated anthocyanins. This work supports the academic community and industry in food research and development by reviewing the current literature and highlighting gaps of knowledge.
Collapse
Affiliation(s)
- Johanna Jokioja
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
21
|
John CM, Arockiasamy S. Enhanced Inhibition of Adipogenesis by Chrysin via Modification in Redox Balance, Lipogenesis, and Transcription Factors in 3T3-L1 Adipocytes in Comparison with Hesperidin. J Am Coll Nutr 2021; 41:758-770. [PMID: 34459715 DOI: 10.1080/07315724.2021.1961641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The present study was conducted to elucidate the in-vitro anti-oxidant and anti-adipogenic effect of the flavone, chrysin in comparison with the citrus bioflavonoid, hesperidin during adipogenic differentiation in 3T3-L1 mouse preadipocytes. METHODS The effect of chrysin and hesperidin on adipogenic differentiation was evaluated using Oil red-O staining, triglyceride estimation, free glycerol release, and ROS accumulation. The expression of adipogenesis-related genes was evaluated in real time-polymerase chain reaction. RESULTS 50 µmol chrysin or hesperidin did not affect the cell viability of 3T3-L1 preadipocytes and adipocytes, but significantly reduced preadipocyte clonal population, accumulation of intracellular lipid and ROS and consequently increased lipolysis and antioxidant enzyme defence. It also decreased the expression of major adipogenic transcription factors, CCAAT/enhancer-binding protein-β, peroxisome proliferator activated receptor-γ, sterol regulatory element binding protein 1c, fatty acid synthase and hormone sensitive lipase. CONCLUSION(S) Herein we have indicated, for the first time, the effective anti-adipogenic mechanism of chrysin by down-regulating adipogenesis, lipogenesis and ROS and up-regulating lipolysis and antioxidant enzyme in differentiated 3T3-L1 adipocytes. As a nutritional bioflavonoid, chrysin with its more effective inhibition on adipogenesis than hesperidin has the potential to be developed as an anti-adipogenic nutraceutical agent.
Collapse
Affiliation(s)
- Cordelia Mano John
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
23
|
Zieliński H, Wiczkowski W, Honke J, Piskuła MK. In Vitro Expanded Bioaccessibility of Quercetin-3-Rutinoside and Quercetin Aglycone from Buckwheat Biscuits Formulated from Flours Fermented by Lactic Acid Bacteria. Antioxidants (Basel) 2021; 10:antiox10040571. [PMID: 33917795 PMCID: PMC8068175 DOI: 10.3390/antiox10040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
The expanded bioaccessibility of rutin (Ru) and quercetin (Q) from buckwheat biscuits (BBs) formulated from liquid-state fermented flours by selected lactic acid bacteria (LAB) were determined after gastrointestinal digestion. Fermentation of buckwheat flours caused a LAB-dependent variation in Ru and Q content. BBs baked at 220 °C for 30 min showed lower content of Ru and Q, and no correlation was found between the content of these compounds in fermented flours and BBs. The expanded bioaccessibility of Ru from BBs was low when its content in the soluble and insoluble fractions remaining after digestion in vitro was taken into account. Contrary results were found for Q bioaccessibility which had an index greater than 1, indicating the high Q bioaccessibility from BBs. Since very low Q content was noted in the insoluble fraction remaining after BBs digestion, the high Q bioaccessibility was determined to be due to its concentration in the soluble fraction.
Collapse
|
24
|
Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021; 7:e06216. [PMID: 33659743 PMCID: PMC7890213 DOI: 10.1016/j.heliyon.2021.e06216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) play a crucial role in cellular redox and metabolic system. Activation of Nrf2 may be an effective therapeutic approach for neuroinflammatory disorders, through activation of antioxidant defences system, lower the inflammation, line up the mitochondrial function, and balancing of protein homeostasis. Various recent studies revealed that many of active substance obtained from plants have been found to activate the Nrf2 and to exert neuroprotective effects in various experimental models, raising the possibility that activation of Nrf2 may be an effective therapeutic approaches for neuroinflammatory disorders. The objective of this review was to evaluate the neuroprotective property of natural substance against neuroinflammatory disorders by reviewing the studies done till today. The outcomes of various in vitro and in vivo examinations have shown that natural compounds producing neuroprotective effects in neuronal system via activation of Nrf2. Herein, we also reviewed the studies to understand the role of Nrf2 for curing CNS disorders. Here we can conclude, herbal/natural moieties having potency to fight and prevent from neuroinflammatory disorders due to their abilities to activate Nrf2 pathway.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Devarapati Nagalakshmi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - K K Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
25
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
26
|
Kim BR, Han AR, Lee IS. Microbial Transformation of Flavonoids in Cultures of Mucor hiemalis. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20977743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are plant secondary metabolites that are well known for their health-promoting properties as nutraceuticals in diets. Bioavailability and biological activities of flavonoids vary among the individual subclasses with different patterns of substitution, inclusive of glycosylation, to their basic structures. Many flavonoids exist as glycosides in plants. This study investigated the possibility of glycosylation of flavonoids through biotransformation using filamentous fungi as whole-cell biocatalysts. Microbial transformations of ten flavonoids (four flavones, four flavonols, a flavanone, and an aurone) were performed in cultures of Mucor hiemalis KCTC 26779. As a result, a flavonoid glycoside was obtained which has not been described previously. The chemical structure of this product was elucidated as 6,2′-dimethoxyflavonol-3- O-β-d-glucopyranoside by analyzing 1-dimensional and 2-dimensional-nuclear magnetic resonance spectral and high-resolution electrospray ionization mass spectral data. This compound could be useful for further biological and bioavailability studies, as well as expanding the library of flavonoid derivatives.
Collapse
Affiliation(s)
- Bo-Ram Kim
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Ah-Reum Han
- Radiation Breeding Research Center, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Gonzali S, Perata P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health. Antioxidants (Basel) 2020; 9:E1017. [PMID: 33092051 PMCID: PMC7590037 DOI: 10.3390/antiox9101017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Anthocyanins are plant secondary metabolites belonging to the class of polyphenols, whose beneficial roles in the prevention and treatment of several important human diseases have been demonstrated in many epidemiological studies. Their intake through diet strictly depends on the eating habits, as anthocyanins are contained in red and purple fruit and vegetables as well as in some processed foods and beverages, such as red wine. Genetic engineering and breeding programs have been recently carried out to increase the content of anthocyanins in candidate plant species which cannot offer satisfactory levels of these precious compounds. Tomato (Solanum lycopersicum) is a vegetable commodity where these strategies have resulted in success, leading to the production of new anthocyanin-rich fruit varieties, some of which are already marketed. These varieties produce purple fruits with a high nutraceutical value, combining the health benefits of the anthocyanins to the other classical tomato phytochemicals, particularly carotenoids. The antioxidant capacity in tomato purple fruits is higher than in non-anthocyanin tomatoes and their healthy role has already been demonstrated in both in vitro and in vivo studies. Recent evidence has indicated a particular capacity of tomato fruit anthocyanins to act as scavengers of harmful reactive chemical species and inhibitors of proliferating cancer cells, as well as anti-inflammatory molecules.
Collapse
Affiliation(s)
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| |
Collapse
|
28
|
Abdallah Y, Liu M, Ogunyemi SO, Ahmed T, Fouad H, Abdelazez A, Yan C, Yang Y, Chen J, Li B. Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020; 25:E4795. [PMID: 33086640 PMCID: PMC7587532 DOI: 10.3390/molecules25204795] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300-550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.
Collapse
Affiliation(s)
- Yasmine Abdallah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
- Department of Plant pathology, Minia University, Elminya 61519, Egypt
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| | - Hatem Fouad
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310027, China;
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12619, Egypt
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agriculture Research Centre, Dokki, Giza 12618, Egypt;
| | - Chenqi Yan
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jianping Chen
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (M.L.); (S.O.O.); (T.A.)
| |
Collapse
|
29
|
Peanparkdee M, Patrawart J, Iwamoto S. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Food Chem 2020; 329:127157. [PMID: 32504918 DOI: 10.1016/j.foodchem.2020.127157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022]
Abstract
The processing and digestive stability of ethanolic extracts from four Thai rice bran varieties, namely Khao Dawk Mali 105, Hom Nil, Kiaw Ngu, and Leum Pua, were assessed by applying different thermal and pH conditions, as well as in vitro gastrointestinal digestion models. High-performance liquid chromatography, Folin-Ciocalteu analysis, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays were used to determine the chemical composition, total phenolic content (TPC), and antioxidant activity. Thermal treatment at 100 °C for 15 min induced the degradation of phenolic components and TPC, whereas the antioxidant activities measured by DPPH and FRAP assays remained stable after the heat treatment. Higher phenolic content and antioxidant activity values were observed in the extracts incubated at acidic pH levels of 3 and 5. After simulated digestion, all extracts exhibited the decrease of phenolic compounds and anthocyanin contents, as well as antioxidant activities.
Collapse
Affiliation(s)
- Methavee Peanparkdee
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Juthatip Patrawart
- Co-operative Academic Institute (CAI), Faculty of Economics, Kasetsart University, Bangkok 10900, Thailand
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
30
|
Lang GH, Lindemann IDS, Goebel JT, Ferreira CD, Acunha TDS, de Oliveira M. Fluidized-bed drying of black rice grains: Impact on cooking properties, in vitro starch digestibility, and bioaccessibility of phenolic compounds. J Food Sci 2020; 85:1717-1724. [PMID: 32406950 DOI: 10.1111/1750-3841.15145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/22/2023]
Abstract
This study evaluated the influence of different fluidized-bed drying temperatures (20, 60, and 100 °C) on the cooking properties, in vitro starch digestibility, and phenolic bioaccessibility of black rice. The results indicated that the formation of fissures in the grains dried at or above 60 °C reduced the physical integrity of the grains after cooking, increasing the starch digestion and the rehydration ratio, and reduced the cooking time, the hardness and adhesiveness. Due to the higher digestibility of grains dried at higher temperatures, an increase in the bioaccessibility of ferulic acid, which was previously associated with the polysaccharides, was observed. Caffeic acid was the only phenolic compound whose levels decreased when the drying temperature increased. At high temperatures and in the gastric phase, cyanidin chalcones were formed due to the deglycosylation of cyanidin-3-O-glucoside. PRACTICAL APPLICATION: The results of this study provide information to the food industry about the effects of different fluidized-bed drying temperatures on the rice structure after cooking and that, consequently, affect the availability of bioactive compounds after digestion and the glycemic index of black rice.
Collapse
Affiliation(s)
- Gustavo Heinrich Lang
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Igor da Silva Lindemann
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Jorge Tiago Goebel
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Cristiano Dietrich Ferreira
- Instituto Tecnológico em Alimentos para a Saúde, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022000, Brazil
| | - Tanize Dos Santos Acunha
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Maurício de Oliveira
- Department of Food Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.,Plant Science Department, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
31
|
Peanparkdee M, Iwamoto S. Encapsulation for Improvingin VitroGastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Methavee Peanparkdee
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Satoshi Iwamoto
- Division of Science of Biological Resources, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
32
|
Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants (Basel) 2020; 9:antiox9020097. [PMID: 31979214 PMCID: PMC7070715 DOI: 10.3390/antiox9020097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
The current trend for substituting synthetic compounds with natural ones in the design and production of functional and healthy foods has increased the research interest about natural colorants. Although coloring agents from plant origin are already used in the food and beverage industry, the market and consumer demands for novel and diverse food products are increasing and new plant sources are explored. Fresh vegetables are considered a good source of such compounds, especially when considering the great color diversity that exists among the various species or even the cultivars within the same species. In the present review we aim to present the most common species of colored vegetables, focusing on leafy and fruit vegetables, as well as on vegetables where other plant parts are commercially used, with special attention to blue color. The compounds that are responsible for the uncommon colors will be also presented and their beneficial health effects and antioxidant properties will be unraveled.
Collapse
|
33
|
Chen H, Xiao R, Zhou X. Study on the extraction, purification, partial chemical characterization and anti-alcohol liver injury activity of Mori Fructus polysaccharides. NEW J CHEM 2020. [DOI: 10.1039/d0nj00795a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mori Fructus (MF) is a fruit rich in many nutrients.
Collapse
Affiliation(s)
- Huaguo Chen
- Key laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University
- Guiyang
- P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine
- Guiyang
| | - Ruixi Xiao
- Key laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University
- Guiyang
- P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine
- Guiyang
| | - Xin Zhou
- Key laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University
- Guiyang
- P. R. China
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine
- Guiyang
| |
Collapse
|
34
|
Zielińska D. The Bioaccessible Reducing Capacity of Buckwheat-Enhanced Wheat Breads Estimated by Electrochemical Method. Antioxidants (Basel) 2019. [DOI: 10.5772/intechopen.84716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Zheng L, Chen L, Li J, Liang L, Fan Y, Qiu L, Deng Z. Two Kaempferol Glycosides Separated from Camellia Oleifera Meal by High-Speed Countercurrent Chromatography and Their Possible Application for Antioxidation. J Food Sci 2019; 84:2805-2811. [PMID: 31441960 DOI: 10.1111/1750-3841.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
Recently, kaempferol and its glycosides have attracted considerable attention owing to their potentially health-benefitting properties including protection against chronic diseases. Here, a microwave-assisted extraction (MAE) method was developed for the extraction of total flavonoid glycosides (FG) from Camellia oleifera meal, a major agrifood waste largely generated as a byproduct from the Camellia oil processing industry. Compared with traditional extraction methods, MAE enables more efficient extraction of FG. High-speed countercurrent chromatography was then applied to separate FG from MAE extract, and two major compounds were successfully separated with purities above 90.0% as determined by HPLC. These two compounds were further identified by UV, FT-IR, ESI-MS, 1 H-NMR, and 13 C-NMR as kaempferol 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl]-7-O-β-D-glucopyranoside and kaempferol 3-O-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl]-7-O-α-L-rhamnopyranoside, which were for the first time separated from C. oleifera meal. The results of antioxidant activity assay demonstrated that both compounds had excellent scavenging activity for DPPH radical, and exhibited protective effects against H2 O2 -induced oxidative damage of vascular endothelial cells. The findings of this work suggest the possibility of employing C. oleifera meal as an attractive source of health-promoting compounds, and at the same time facilitate its high-value reuse and reduction of environmental burden.
Collapse
Affiliation(s)
- Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Li Chen
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Li Liang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, Jiangsu, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Leyun Qiu
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang Univ., Nanchang, 330047, Jiangxi, China.,Inst. for Advanced Study, Univ. of Nanchang, Nanchang, 330031, Jiangxi, China
| |
Collapse
|
36
|
Zieliński H, Honke J, Bączek N, Majkowska A, Wronkowska M. Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Ceyhun Sezgin A, Sanlier N. A new generation plant for the conventional cuisine: Quinoa (Chenopodium quinoa Willd.). Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Ahmadi L, Hao X, Tsao R. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4427-4435. [PMID: 29435999 DOI: 10.1002/jsfa.8965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The effect of light transmission (direct and diffuse) on the phenolic compounds of five tomato cultivars was investigated under controlled conditions in greenhouses covered with different covering materials. RESULTS The type of covering material and type of diffusion of light simultaneously affected the reducing power of cultivars. Two-way analysis of variance showed statistically significant differences in total phenolic content for the different cultivars (P < 0.05) but not for the covering materials. Analysis by ultrahigh-performance liquid chromatography with diode array detection and liquid chromatography/tandem mass spectrometry showed the presence of major phenolic acid compounds such as chlorogenic acid, hydroxycinnamic acid/rutin, caffeic acid, ferulic acid and coumaric acid as well as flavonoid compounds such as myricetin, quercetin and naringenin. Most of the identified compounds showed a significant difference in different treatments due to both cultivar and covering material (P < 0.05). Statistical analysis showed that the type of covering material used influenced the total carotenoid and lycopene content (P < 0.05); however, the amount of lutein was not influenced by the type of covering material (P > 0.05). CONCLUSION This study showed that the use of solar energy transmission could positively affect the reducing power of cultivars and alter the biosynthesis of certain phytochemicals that are health-beneficial. Further study could lead to applications for producing greenhouse vegetables with greater health attributes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Latifeh Ahmadi
- School of Food and Nutritional Sciences, Brescia University College at the University of Western Ontario, London, Ontario, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Toktaş B, Bildik F, Özçelik B. Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3066-3075. [PMID: 29194639 DOI: 10.1002/jsfa.8806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Shalgam is a traditional lactic acid fermented beverage highly popular in southern Turkey. The main raw material, black carrot, contains a significant amount of anthocyanins. In this study, changes in polyphenols, including anthocyanins, related total antioxidant capacity (TAC), and in vitro bioaccessibility during shalgam fermentation and main raw material were evaluated. RESULTS Compared with the last 12 days of the fermentation, a higher increase in total phenolic content (TPC), anthocyanins content (AC), and TAC was observed in the first 12 days of the fermentation during shalgam production. Although black carrot exhibited the highest total flavonoid content (TFC), TPC, AC, and TAC values before bioaccessibility tests, the recovery of shalgam beverage was found to be mostly identical with black carrot results in terms of flavonoids, phenolics, and anthocyanins and antioxidant capacity after in vitro digestion. In vitro digestion significantly reduced the recovery of initial samples in terms of TFC, TPC, AC, and TAC analysis. The amount of beneficial compound in the early fermentation stage was significantly lower than with end product. Sixteen different phenolics were detected from shalgam beverage samples in high-performance liquid chromatography analysis. After performing bioaccessibility tests, only five phenolics were detected. As anthocyanins, only cyanidin content was identified. CONCLUSION The degradation of phenolics and anthocyanins was observed after bioaccessibility tests. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Betül Toktaş
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR, Istanbul, Turkey
| | - Fatih Bildik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR, Istanbul, Turkey
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR, Istanbul, Turkey
- BIOACTIVE Research and Innovation Food Manufacture Industrial Trade Ltd., Teknokent, Sarıyer, Istanbul, Turkey
| |
Collapse
|
40
|
Thuengtung S, Niwat C, Tamura M, Ogawa Y. In vitro examination of starch digestibility and changes in antioxidant activities of selected cooked pigmented rice. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, Chen Y, Sun Y, Zhang L, Tsao R. Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 2017; 249:66-76. [PMID: 29407933 DOI: 10.1016/j.foodchem.2017.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
A rapid method for producing 9Z- and 13'Z-isomers from all-E-lutein was developed using I-TiO2 as catalyst. In a simulated in vitro gastrointestinal digestion model, both trans-cis isomerization of all-E-lutein and cis-trans isomerization of Z-luteins occurred during the intestinal phase. The bioaccessibility of all isomers was between 14 and 23%, and it was higher for Z-luteins. In a Caco-2 cell monolayer model, all isomers were relatively stable during cellular uptake and transport across the membrane as no significant isomerization and degradation was detected, but all-E-lutein exhibited significantly higher cellular uptake and transport efficiencies. These results suggest that Z-luteins found in human plasma may likely be formed before intestinal absorption. 13'Z-Lutein also exhibited highest antioxidant activity in FRAP, DPPH and ORAC-L assays, but no significant difference in cell-based antioxidant assay compared with other isomers. Future studies on the different antioxidant activities of cis isomers of lutein in vivo will provide further explanation.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Maike Fischer
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Chris Kirby
- Charlottetown Research & Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6, Canada
| | - Ronghua Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yong Sun
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada; State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| |
Collapse
|
42
|
Tommonaro G, Speranza G, De Prisco R, Iodice C, Crudele E, Abbamondi GR, Nicolaus B. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5241-5246. [PMID: 28474355 DOI: 10.1002/jsfa.8408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. RESULTS After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. CONCLUSION The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giuseppina Tommonaro
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Study of Milan, Milano, Italy
| | - Rocco De Prisco
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Carmine Iodice
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Egle Crudele
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | | | - Barbara Nicolaus
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| |
Collapse
|
43
|
Yang C, Zhang H, Liu R, Zhu H, Zhang L, Tsao R. Bioaccessibility, Cellular Uptake, and Transport of Astaxanthin Isomers and their Antioxidative Effects in Human Intestinal Epithelial Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10223-10232. [PMID: 29083169 DOI: 10.1021/acs.jafc.7b04254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The bioaccessibility, bioavailability, and antioxidative activities of three astaxanthin geometric isomers were investigated using an in vitro digestion model and human intestinal Caco-2 cells. This study demonstrated that the trans-cis isomerization of all-E-astaxanthin and the cis-trans isomerization of Z-astaxanthins could happen both during in vitro gastrointestinal digestion and cellular uptake processes. 13Z-Astaxanthin showed higher bioaccessibility than 9Z- and all-E-astaxanthins during in vitro digestion, and 9Z-astaxanthin exhibited higher transport efficiency than all-E- and 13Z-astaxanthins. These might explain why 13Z- and 9Z-astaxanthins are found at higher concentrations in human plasma than all-E-astaxanthin in reported studies. All three astaxanthin isomers were effective in maintaining cellular redox homeostasis as seen in the antioxidant enzyme (CAT, SOD) activities ; 9Z- and 13Z- astaxanthins exhibited a higher protective effect than all-E-astaxanthin against oxidative stress as demonstrated by the lower cellular uptake of Z-astaxanthins and lower secretion and gene expression of the pro-inflammatory cytokine IL-8 in Caco-2 cells treated with H2O2. We conclude, for the first time, that Z-astaxanthin isomers may play a more important role in preventing oxidative stress induced intestinal diseases.
Collapse
Affiliation(s)
- Cheng Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Ronghua Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Honghui Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | | | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada , 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
44
|
Chen PX, Zhang H, Marcone MF, Pauls KP, Liu R, Tang Y, Zhang B, Renaud JB, Tsao R. Anti-inflammatory effects of phenolic-rich cranberry bean ( Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
45
|
Huang W, Mao S, Zhang L, Lu B, Zheng L, Zhou F, Zhao Y, Li M. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4760-4769. [PMID: 28369959 DOI: 10.1002/jsfa.8345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. RESULTS Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R2 = 0.794-0.924, P < 0.01) and antiproliferative (R2 = 0.408-0.623, P < 0.05) potential. Moreover, gallic acid may be responsible for the antioxidant potential of seven flowers rich in edible flowers. CONCLUSION The antioxidant and antiproliferative potential of 10 edible flowers revealed a clear decrease after digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weisu Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou, China
| | - Shuqin Mao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| | - Liuquan Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products of CAAs, Quality Standard Research Center of Ministry of agriculture of Agro-Products, Beijing, China
| | - Fei Zhou
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| | - Yajing Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| | - Maiquan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Zhang B, Deng Z, Tang Y, Chen PX, Liu R, Dan Ramdath D, Liu Q, Hernandez M, Tsao R. Reprint of “Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil ( Lens culinaris )”. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Lycopene rich extract from red guava ( Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 2017; 99:959-968. [DOI: 10.1016/j.foodres.2017.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
|
48
|
Zhang H, Hassan YI, Renaud J, Liu R, Yang C, Sun Y, Tsao R. Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Mol Nutr Food Res 2017; 61. [PMID: 28691370 DOI: 10.1002/mnfr.201600928] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 01/21/2023]
Abstract
SCOPE Immune-inflammatory signaling and metabolic effects are the main pillars for bioactivity of anthocyanins derived from highly pigmented root vegetables. This study aims to assess the bioaccessibility and bioavailability of purple carrot and potato derived anthocyanins and the molecular mechanisms of their ability to ameliorate cellular inflammation in a mono- and co-culture cell models. METHODS AND RESULTS An in vitro gastrointestinal model was used and demonstrated bioaccessibility of 44.62 and 71.8% for anthocyanins of purple carrot and potato, respectively. These accessible anthocyanins significantly inhibited cellular inflammation in Caco-2 cells. Intact cyanidinglycoside or petunidinglycoside (respectively from carrots and potatoes) were transported across a transmembrane cell model and detected by LC-MS/MS. Computational docking and glucose uptake analyses suggested uptake of anthocyanins was mediated by hexose transporters. Subsequent experiment using an inflamed Caco-2 BBe1/THP-1 co-culture cell model showed these transported anthocyanins inhibited IL-8 and TNF-α secretion,and expression of pro-inflammatory cytokines by blocking NF-κB, and MAPK mediated inflammatory cellular signaling cascades, but with varying degrees due to structural features. CONCLUSION Anthocyanins from purple carrots and potatoes possess a promising anti-inflammatory effect in model gut system. They can be absorbed and act differently but are in general beneficial for inflammation-mediated diseases.
Collapse
Affiliation(s)
- Hua Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yousef I Hassan
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ronghua Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Cheng Yang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yong Sun
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
49
|
Aril-dela Cruz J, Bungihan M, Cruz T, Sagum R. Canarium ovatum Engl. (Pili) exocarp crude extract as functional food colorant incorporated in yogurt developed product. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.2(1).173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Solanum paranense Extracts and Solanine Present Anti-Inflammatory Activity in an Acute Skin Inflammation Model in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28626486 PMCID: PMC5463101 DOI: 10.1155/2017/4295680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to evaluate the anti-inflammatory activity of the S. paranense crude extract, S. paranense alkaloid fraction, and solanine alkaloid. These samples reduce the croton oil-induced ear edema in a dose-dependent manner and a maximum inhibition of 81%, 98%, and 80% in the doses of 1.0, 0.73, and 0.37 mg/ear, respectively. Moreover, the samples inhibit the MPO activity with an inhibition maximum of 51%, 40%, and 46% in the doses of 1.0, 0.73, and 0.37 mg/ear, respectively. Similar results were found for dexamethasone 0.10 mg/ear (positive control), which showed inhibitions of ear edema and MPO activity of 100% and 65%, respectively. These results found probably are related to the presence of solanine which is present in significant quantity in the alkaloid fraction and others as rutin and rosmarinic, chlorogenic, and gallic acids. These results support the use of S. paranense for the treatment of inflammatory skin disorders.
Collapse
|