1
|
Zhang D, Ma Y, Wang S, Xiao P, Nawaz S, Wang F, Liu H. Ionic Covalent Organic Networks Confined in Molecularly Imprinted Polymers for Optosensing of Histamine in Fish Products. J Fluoresc 2025:10.1007/s10895-025-04205-1. [PMID: 39992322 DOI: 10.1007/s10895-025-04205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Histamine is a naturally occurring alkaloid that is an important indicator of meat spoilage, and excessive levels in food can lead to food poisoning or trigger allergic reactions. Therefore, accurate detection of histamine in meat is crucial for evaluating freshness and ensuring meat quality. In this study, a fluorescence probe based on ionic covalent organic networks confined with molecularly imprinted polymers (iCON@MIPs) was developed for detecting histamine in aquatic products. The probe was utilized iCOFs as the light-emitting element to improve the selectivity of the system for histamine by ion attraction reaction, and its anti-interference ability enhanced through molecular imprinting technology. The maximum emission wavelength of iCON@MIPs was at 570 nm, giving it a bright yellow emission and endowing it with the ability for on-site detection. The detection limit of iCON@MIPs for histamine was 0.516 µg L- 1, with a good recovery rate of 87.29-102.26% in fish samples. The fluorescence probe developed in this study provides an effective and rapid detection method for harmful substances in food, agriculture, environment and even medicine.
Collapse
Affiliation(s)
- Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Ping Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- College of Food Science and Bioengineering, Tianjin Engineering and Technology Research Center of Agricultural Products Processing, Tianjin Agricultural University, Tianjin, 300392, China
| | - Shiza Nawaz
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| |
Collapse
|
2
|
Aladhadh M, Nasser Binjawhar D, Abd El-Kader Ebrahim HNED, Radhi KS, Almatrafi M, Fayad E, Al-Saman MA, Elsanhoty RM. Investigation of Biogenic Amine Levels and Microbiological Activity as Quality Markers in Some Dairy and Fish Products in Food Markets in the Kingdom of Saudi Arabia. ACS OMEGA 2024; 9:19193-19202. [PMID: 38708229 PMCID: PMC11064202 DOI: 10.1021/acsomega.3c10347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
This study aimed to verify the presence of biogenic amines (BAs) and evaluate the microbiological activity of some food samples collected from retail stores in the Kingdom of Saudi Arabia. A total of thirty-five dairy and fish products were collected and analyzed for BAs, including putrescine (PUT), cadaverine (CAD), spermidine (SPE), histamine (HIS), spermine (SPR), and tyramine (TYR), as well as for total colony count (TCC), lactic acid bacteria (LAB), Enterobacteriaceae, yeast and mold (Y and M), coliforms, and aerobic sporulation count (ASF). The thin layer chromatography (TLC) method was used in the analytical methodology to identify the BAs. The results showed the presence of BAs in all dairy products, but their concentration did not exceed the maximum permissible limit, which in contrast was established by the Food and Drug Administration (FDA) at 10 mg/100 g. The amounts of BAs in fish products varied significantly. All fish product samples contained levels of BAs below the permissible limit. Results of an independent study also indicated potential toxicity at levels of BAs (>10 mg/100 g) in Egyptian herring. Enterobacteriaceae and the coli group were present in higher concentrations in the Egyptian herring samples, whereas other samples (particularly frozen shrimp) showed increased TCC levels with a higher concentration of histamine-producing bacteria. From a consumer safety perspective, this study also indicated that food samples generally contained acceptable levels of BAs. In conclusion, there is a need to improve and standardize food quality and hygiene practices during production and storage to ensure human safety and prevent HIS formation.
Collapse
Affiliation(s)
- Mohammed Aladhadh
- Department
of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi
Arabia
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Sciences, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Khadija S. Radhi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manal Almatrafi
- Department
of Science and Nutrition, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Eman Fayad
- Department
of Biotechnology, Colleague of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud A. Al-Saman
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| | - Rafaat M. Elsanhoty
- Department
of Industrial Biotechnology, Genetic Engineering and Biotechnology
Research Institute, University of Sadat
City (USC), Sadat
City 32897, Egypt
| |
Collapse
|
3
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
4
|
Zhang B, Zhang J, Lang Y, Wang Z, Cai D, Yu X, Lin X. A sea urchin-shaped nanozyme mediated dual-mode immunoassay nanoplatform for sensitive point-of-care testing histamine in food samples. Food Chem 2024; 433:137281. [PMID: 37659293 DOI: 10.1016/j.foodchem.2023.137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Rapid detection of histamine remains a challenge due to the complexity of food matrices. Based on the high peroxidase-like activity of sea urchin-shaped Pt@Au NPs (SU-Pt@Au NPs), a novel dual-mode nanoplatform is developed for the sensitive detection of histamine utilizing an indirect competitive enzyme-linked immunosorbent assay. According to the colorimetric-based UV-vis nanoplatform, histamine is sensitively detected with a liner range from 0.5 to 100 ng/mL and a limit of detection (LOD) as low as 0.3 ng/mL. Then, a smartphone-loaded color picker APP can intelligently detect histamine in point-of-care testing (POCT) based on the R/B ratio of the color channels, with a detection range of 0.5 to 1000 ng/mL and a LOD as low as 0.15 ng/mL, significantly expanding the detection range. Such an easy-to-use and sensitive detection system is employed to quantify histamine in Pacific saury, crab, and pork samples, indicating outstanding application potential in protein-rich meat food safety.
Collapse
Affiliation(s)
- Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jingyi Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yihan Lang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zicheng Wang
- Tianjin Sprite Biological Technology, Tianjin 300021, China
| | - Danfeng Cai
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China.
| |
Collapse
|
5
|
Saha Turna N, Chung R, McIntyre L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024; 10:e24501. [PMID: 38304783 PMCID: PMC10830535 DOI: 10.1016/j.heliyon.2024.e24501] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Biogenic amines (BAs) are low-molecular decarboxylation products of amino acids formed during microbial fermentation. Several fermented foods may contain BAs such as histamine, tyramine, and/or phenylethylamine, at levels above documented toxic doses. Dietary exposure to foods containing high levels of BAs is associated with many adverse health effects, such as migraines, elevated blood pressure, and tachycardia. BA-mediated toxicity may occur at levels a hundred times below regulatory and suggested toxic doses, depending on an individual's sensitivity and factors such as alcohol consumption and certain medications. Although BAs occur in a wide variety of fermented foods, food safety and public health professionals are not well informed about the potential health risks and control strategies in these foods. In this review, we highlight the health risks and symptoms linked to BA exposures, the BA levels found in different fermented foods, regulatory and suggested toxic doses, and risk mitigation strategies to inform food industry and public health professionals' practice.
Collapse
Affiliation(s)
- Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Rena Chung
- Public Health Ontario (PHO), 480 University Avenue, Suite 300, Toronto, ON, M5G 1V2, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
6
|
Effects of selected Bacillus strains on the biogenic amines, bioactive ingredients and antioxidant capacity of shuidouchi. Int J Food Microbiol 2023; 388:110084. [PMID: 36657185 DOI: 10.1016/j.ijfoodmicro.2022.110084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
The control of biogenic amines (BAs) is crucial to guarantee the safety of fermented soybean products. In this study, the BAs composition of eleven shuidouchi samples was analyzed, and the BAs degradation strains were selected from shuidouchi samples with a low BAs content. Then the influences of screened BAs degradation strains on BAs, total phenolics (TP), total flavonoids (TF), isoflavones and the antioxidant ability of fermented shuidouchi were evaluated. Results showed that the total BAs content of all shuidouchi samples was within the safe range, while the GZXQ, GZQY and GZMX samples had higher levels of tyramine. Meanwhile, 109 strains were isolated from the YNLJ, GZLG, GZMZ, GZDY, and YNHY sample. Bacillus tropicus A11, Bacillus siamensis D11, Bacillus subtilis T2, and B. subtilis U2 with higher BAs degradation capacity and lower BAs production ability were selected to ferment shuidouchi. These four Bacillus strains could effectively control the BAs concentration of fermented shuidouchi, especially B. tropicus A11 and B. siamensis D11. Furthermore, compared to naturally fermented shuidouchi, higher levels of antioxidant ability, TP, TF, daidzein, glyciein, and genistein were found in the shuidouchi fermented with selected strains. These findings demonstrated that these screened strains could be applied as potential candidates for the production of high quality shuidouchi.
Collapse
|
7
|
Gut Microbiota Alterations in Trace Amine-Associated Receptor 9 (TAAR9) Knockout Rats. Biomolecules 2022; 12:biom12121823. [PMID: 36551251 PMCID: PMC9775382 DOI: 10.3390/biom12121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Trace amine-associated receptors (TAAR1-TAAR9) are a family of G-protein-coupled monoaminergic receptors which might have great pharmacological potential. It has now been well established that TAAR1 plays an important role in the central nervous system. Interestingly, deletion of TAAR9 in rats leads to alterations in the periphery. Previously, we found that knockout of TAAR9 in rats (TAAR9-KO rats) decreased low-density lipoprotein cholesterol levels in the blood. TAAR9 was also identified in intestinal tissues, and it is known that it responds to polyamines. To elucidate the role of TAAR9 in the intestinal epithelium, we analyzed TAAR9-co-expressed gene clusters in public data for cecum samples. As identified by gene ontology enrichment analysis, in the intestine, TAAR9 is co-expressed with genes involved in intestinal mucosa homeostasis and function, including cell organization, differentiation, and death. Additionally, TAAR9 was co-expressed with genes implicated in dopamine signaling, which may suggest a role for this receptor in the regulation of peripheral dopaminergic transmission. To further investigate how TAAR9 might be involved in colonic mucosal homeostasis, we analyzed the fecal microbiome composition in TAAR9-KO rats and their wild-type littermates. We identified a significant difference in the number of observed taxa between the microbiome of TAAR9-KO and wild-type rats. In TAAR9-KO rats, the gut microbial community became more variable compared with the wild-type rats. Furthermore, it was found that the family Saccharimonadaceae, which is one of the top 10 most abundant families in TAAR9-KO rat feces, is almost completely absent in wild-type animal fecal samples. Taken together, these data indicate a role of TAAR9 in intestinal function.
Collapse
|
8
|
Esposito L, Mastrocola D, Martuscelli M. Approaching to biogenic amines as quality markers in packaged chicken meat. Front Nutr 2022; 9:966790. [PMID: 36118774 PMCID: PMC9479628 DOI: 10.3389/fnut.2022.966790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Following the chicken meat quality decay remains a tricky procedure. On one hand, food companies need of fast and affordable methods to keep constant higher sensory and safety standards, on the other hand, food scientists and operators find difficult conjugating these exigencies by means of univocal parameters. Food quality definition itself is, in fact, a multi-layered and composite concept in which many features play a part. Thus, here we propose an index that relies on biogenic amines (BAs) evolution. These compounds may indirectly inform about microbial contamination and wrong management, production, and storage conditions of meat and meat products. In this study, three cuts of chicken meat (breast filets, drumsticks, and legs) packed under modified atmosphere, under vacuum, and in air-packaging, stored at +4°C (until to 15 days), were analyzed. Some BAs were combined in an index (BAI) and their evolution was followed. The Thiobarbituric Acid Reactive Species assay (TBARS) was also used as a common reference method. Generally, BAI may better identify the beginning of quality impairment than lipid oxidation spreading. ANOVA statistical analysis has highlighted that the storage time is anyway the most detrimental factor for chicken decay when it is stored in refrigerated rooms (p > 0.01). Despite TBARS still remains a powerful tool for chicken goods, its exclusive use may not be enough to explain quality loss. On the contrary, BAI implementation in fresh meat can give a more complete information combining food safety exigencies with sensory attributes.
Collapse
|
9
|
Majchrzak W, Motyl I, Śmigielski K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules 2022; 27:molecules27154845. [PMID: 35956792 PMCID: PMC9369470 DOI: 10.3390/molecules27154845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The cosmetics industry is currently looking for innovative ingredients with higher bioactivity and bioavailability for the masses of natural and organic cosmetics. Bioferments are innovative ingredients extracted from natural raw materials by carrying out a fermentation process with appropriate strains of microorganisms. The review was conducted using the SciFinder database with the keywords “fermented plant”, “cosmetics”, and “fermentation”. Mainly bioferments are made from plant-based raw materials. The review covers a wide range of fermented raw materials, from waste materials (whey with beet pulp) to plant oils (F-Shiunko, F-Artemisia, F-Glycyrrhiza). The spectrum of applications for bioferments is broad and includes properties such as skin whitening, antioxidant properties (blackberry, soybean, goji berry), anti-aging (red ginseng, black ginseng, Citrus unshiu peel), hydrating, and anti-allergic (aloe vera, skimmed milk). Fermentation increases the biochemical and physiological activity of the substrate by converting high-molecular compounds into low-molecular structures, making fermented raw materials more compatible compared to unfermented raw materials.
Collapse
Affiliation(s)
- Weronika Majchrzak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Interdisciplinary Doctoral School, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland
- Correspondence: ; Tel.: +48-42-631-34-92
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wólczańska Street, 90-924 Lodz, Poland; (I.M.); (K.Ś.)
| |
Collapse
|
10
|
Moniente M, Botello-Morte L, García-Gonzalo D, Pagán R, Ontañón I. Analytical strategies for the determination of biogenic amines in dairy products. Compr Rev Food Sci Food Saf 2022; 21:3612-3646. [PMID: 35726745 DOI: 10.1111/1541-4337.12980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/08/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Biogenic amines (BA) are mainly produced by the decarboxylation of amino acids by enzymes from microorganisms that emerge during food fermentation or due to incorrectly applied preservation processes. The presence of these compounds in food can lead to a series of negative effects on human health. To prevent the ingestion of high amounts of BA, their concentration in certain foods needs to be controlled. Although maximum legal levels have not yet been established for dairy products, potential adverse effects have given rise to a substantial number of analytical and microbiological studies: they report concentrations ranging from a few mg/kg to several g/kg. This article provides an overview of the analytical methods for the determination of biogenic amines in dairy products, with particular focus on the most recent and/or most promising advances in this field. We not only provide a summary of analytical techniques but also list the required sample pretreatments. Since high performance liquid chromatography with derivatization is the most widely used method, we describe it in greater detail, including a comparison of derivatizing agents. Further alternative techniques for the determination of BA are likewise described. The use of biosensors for BA in dairy products is emerging, and current results are promising; this paper thus also features a section on the subject. This review can serve as a helpful guideline for choosing the best option to determine BA in dairy products, especially for beginners in the field.
Collapse
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Botello-Morte
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica, Facultad de Ciencias, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
11
|
Profiling the occurrence of biogenic amines in wine from Chinese market and during fermentation using an improved chromatography method. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Meng J, Yang Q, Wan W, Zhu Q, Zeng X. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu). Food Chem 2022; 369:130885. [PMID: 34461516 DOI: 10.1016/j.foodchem.2021.130885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
The formation of biogenic amines (BAs) is an important potential danger in traditional fermented fish (Suan yu), and Enterobacteriaceae play an important role in the formation of BAs. The amine production abilities of 97 strains of Enterobacteriaceae screened from traditional fermented Suan yu were analyzed by reversed-phased high-performance liquid chromatography (HPLC). The genotypic diversity of amino acid decarboxylase on 23 strains of high-yield BAs was verified by PCR. Enterobacteriaceae with the highest production of amines was determined by analysis of the effects of physicochemical factors (pH, NaCl, temperature, and aerobic/anaerobic) on BA production and principal component analysis (PCA). The adaptability of the strains was examined using surimi simulation fermentation system, and the correlations among the indicators were analyzed using Cytoscape. Results showed that 97 strains of Enterobacteriaceae had strong amine-producing ability. Furthermore, 23 strains producing high yields of putrescine, cadaverine, and histamine were identified. All of the strains carried Idc, odc, speA, speB, and adiA, and five strains carried hdc. pH mainly affected the BA production of amine-producing bacteria. Three strains (Enterobacter asburiae 26C3, Klebsiella pneumoniae 47C2, and Morganella morganii 45C3) had the best amine-producing ability and used as the inoculated group. In this group, the values of BA (228.70-290.05 mg/kg) and the total volatile base nitrogen (TVB-N, 173.87-221.87 mg/100 g) exceeded the limit. Moreover, myofibrillar protein degradation was significant as indicated by the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and decreased FAA content. Cytoscape software and principal component analysis (PCA) indicated that Enterobacteriaceae and pH were related to BA formation in Suan yu. These results provide a theoretical basis for controlling the BA of fermented fish products.
Collapse
Affiliation(s)
- Ju Meng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Qin Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Weiyang Wan
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China.
| |
Collapse
|
13
|
Comparative evaluation of the effects of natural and artificial inoculation on soybean paste fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
|
16
|
Xie T, Yuan X, Wen D, Shi H. Growth and thermal inactivation of
Listeria monocytogenes
and
Escherichia coli
O157:H7 in four kinds of traditionally non‐fermented soya bean products. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tianhui Xie
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Xue Yuan
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Dingyuan Wen
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Hui Shi
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| |
Collapse
|
17
|
Vasconcelos H, de Almeida JMM, Matias A, Saraiva C, Jorge PA, Coelho LC. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Fong FLY, El-Nezami H, Sze ETP. Biogenic amines – Precursors of carcinogens in traditional Chinese fermented food. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Determination and mitigation of chemical risks in sufu by NaCl and ethanol addition during fermentation. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Health-Promoting Effects of Dietary Polyamines. Med Sci (Basel) 2021; 9:medsci9010008. [PMID: 33562765 PMCID: PMC7930991 DOI: 10.3390/medsci9010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this paper is to summarize the latest information on the various aspects of polyamines and their health benefits. In recent years, attempts to treat cancer by reducing elevated polyamines levels in cancer cells have been made, with some advancing to clinical trials. However, it has been reported since 2009 that polyamines extend the healthy life span of animals by inducing autophagy, protecting the kidneys and liver, improving cognitive function, and inhibiting the progression of heart diseases. As such, there is conflicting information regarding the relationship between polyamines and health. However, attempts to treat cancer by decreasing intracellular polyamines levels are a coping strategy to suppress the proliferation-promoting effects of polyamines, and a consensus is being reached that polyamine intake does not induce cancer in healthy individuals. To provide further scientific evidence for the health-promoting effects of polyamines, large-scale clinical studies involving multiple groups are expected in the future. It is also important to promote basic research on polyamine intake in animals, including elucidation of the polyamine balance between food, intestinal bacteria, and biosynthesis.
Collapse
|
21
|
|
22
|
Muthukumar J, Selvasekaran P, Lokanadham M, Chidambaram R. Food and food products associated with food allergy and food intolerance – An overview. Food Res Int 2020; 138:109780. [DOI: 10.1016/j.foodres.2020.109780] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
23
|
Liu B, Cao Z, Qin L, Li J, Lian R, Wang C. Investigation of the synthesis of biogenic amines and quality during high-salt liquid-state soy sauce fermentation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Effects of different strains and fermentation method on nattokinase activity, biogenic amines, and sensory characteristics of natto. Journal of Food Science and Technology 2020; 57:4414-4423. [PMID: 33087955 DOI: 10.1007/s13197-020-04478-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Nattokinase activity (NK), biogenic amine content and sensory properties of natto are of great significance to consumers, which are affected by strains and fermentation methods. In this study, changes in the pH, biogenic amine and free amino nitrogen (FAN) contents, NK and protease activities, and sensory characteristics of natto prepared using Bacillus subtilis GUTU09 combined with different strains (Lactobacillus, Bifidobacterium and Mucor) and fermentation methods were investigated. The combination of two strains showed the best fermentation performance among all samples. The NK and protease activity and FAN content in double-strain fermentation increased by 10.33 FU/g, 88.78 U/g, and 2.34 g/kg, respectively, compared with those in single-strain fermentation. Sensory evaluation demonstrated that mixed fermentation primarily affected the sensory acceptance. This method also reduced the contents of various biogenic amines in natto compared with single-strain fermentation. Tyramine, cadaverine, spermine, and spermidine were significantly reduced, whereas histamine was slightly increased. The total biogenic amines decreased from 390.76 mg/kg to a minimum of 16.16 mg/kg. Some Mucor strains also reduced the contents of various biogenic amines. In the dual-bacteria fermentation of Mucor and GUTU09, co-fermentation has advantages over stage-fermentation, with higher NK and protease activity and higher sensory scores. Correlation analysis showed that the formation and accumulation of some biogenic amines in natto prepared using different microbial combinations were related to NK activity and pH. All these results showed that the quality of natto was improved by mixed fermentation and suitable fermentation methods, which laid a foundation for its potential industrial application.
Collapse
|
25
|
Accumulation of Agmatine, Spermidine, and Spermine in Sprouts and Microgreens of Alfalfa, Fenugreek, Lentil, and Daikon Radish. Foods 2020; 9:foods9050547. [PMID: 32369919 PMCID: PMC7278799 DOI: 10.3390/foods9050547] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Sprouts and microgreens are a rich source of various bioactive compounds. Seeds of lentil, fenugreek, alfalfa, and daikon radish seeds were germinated and the contents of the polyamines agmatine (AGM), putrescine (PUT), cadaverine (CAD), spermidine (SPD), and spermine (SPM) in ungerminated seeds, sprouts, and microgreens were determined. In general, sprouting led to the accumulation of the total polyamine content. The highest levels of AGM (5392 mg/kg) were found in alfalfa microgreens, PUT (1079 mg/kg) and CAD (3563 mg/kg) in fenugreek sprouts, SPD (579 mg/kg) in lentil microgreens, and SPM (922 mg/kg) in fenugreek microgreens. A large increase in CAD content was observed in all three legume sprouts. Conversely, the nutritionally beneficial polyamines AGM, SPD, and SPM were accumulated in microgreens, while their contents of CAD were significantly lower. In contrast, daikon radish sprouts exhibited a nutritionally better profile of polyamines than the microgreens. Freezing and thawing of legume sprouts resulted in significant degradation of CAD, PUT, and AGM by endogenous diamine oxidases. The enzymatic potential of fenugreek sprouts can be used to degrade exogenous PUT, CAD, and tyramine at pH values above 5.
Collapse
|
26
|
Hao Y, Sun B. Analysis of bacterial diversity and biogenic amines content during fermentation of farmhouse sauce from Northeast China. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106861] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Yang B, Tan Y, Kan J. Regulation of quality and biogenic amine production during sufu fermentation by pure Mucor strains. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Fan X, Lv X, Meng L, Ai M, Li C, Teng F, Feng Z. Effect of microwave sterilization on maturation time and quality of low-salt sufu. Food Sci Nutr 2020; 8:584-593. [PMID: 31993182 PMCID: PMC6977479 DOI: 10.1002/fsn3.1346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to reduce the microorganism number and salt content in pehtze by microwave sterilization. The maturation time and quality of low-salt sufu were evaluated. The microorganism inactivation rate, moisture content and water activity of the pehtze, which was used for the growth of the starter culture, showed that 4,250 W for 30 s was suitable for the preparation of low-salt sufu. With regard to the physicochemical properties of sufu, 120-day sufu samples obtained by traditional high-salt (14%) fermentation and 75-day sufu samples obtained by low-salt (4%) fermentation met the standard requirements. With regard to the sensory characteristics of sufu, the taste and after taste scores of 75-day low-salt sufu samples were significantly higher than those of 120-day high-salt sufu samples (p < .05).The overall acceptance score of low-salt sufu samples also was higher than that of high-salt sufu samples. The contents of free amino acids and the profiles of typical flavor compounds partly explained the sensory quality and shorter ripening time of sufu manufactured. The total biogenic amine contents were reduced by 46%.
Collapse
Affiliation(s)
- Xuejing Fan
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xuepeng Lv
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Li Meng
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Mingzhi Ai
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chunqiu Li
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Fei Teng
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Zhen Feng
- Key Laboratory of Dairy ScienceMinistry of EducationCollege of Food ScienceNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
29
|
Sagara T, Bhandari DR, Spengler B, Vollmann J. Spermidine and other functional phytochemicals in soybean seeds: Spatial distribution as visualized by mass spectrometry imaging. Food Sci Nutr 2020; 8:675-682. [PMID: 31993191 PMCID: PMC6977421 DOI: 10.1002/fsn3.1356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Soybean seeds contain phytochemicals such as polyamines and isoflavones, which have been identified as functional components mediating health benefits in association with the consumption of soy foods. While a clear picture of the spatial distribution of these components within the seed is lacking, such information would be important to enhance or reduce their concentration in respective foods through processing. Thus, the objective of the present study was to visualize the most relevant components with respect to their distribution in soybean seeds. Mature soybean seeds were subject to atmospheric-pressure scanning-microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) combined with a Fourier-transform orbital trapping mass spectrometer to generate high-resolution chemical images of phytochemical distribution. Based on seed cross sections, differential distributions of functional components were found between soybean cotyledon and germ (shoot, hypocotyl, root) regions. Spermidine and spermine were present in higher concentrations in the germ rather than in cotyledons with highest concentrations in root and shoot meristem tissues. Differential concentrations of spermidine and other components between the germ and cotyledon regions were confirmed by seed fractioning. In contrast to polyamines spermidine and spermine, the different types of daidzein, glycitein, and genistein isoflavones were all visualized in root parenchyma tissue exclusively. Overall, mass spectrometry imaging of soybean seeds revealed clear insights into the differential distribution of functional phytochemicals. Based on their distribution and depending on specific needs, spermidine and isoflavones can either be enriched or reduced during food processing by separating cotyledon and germ fractions.
Collapse
Affiliation(s)
- Tatsuya Sagara
- Department of Crop SciencesUniversity of Natural Resources and Life Sciences Vienna (BOKU)Tulln an der DonauAustria
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
| | - Johann Vollmann
- Department of Crop SciencesUniversity of Natural Resources and Life Sciences Vienna (BOKU)Tulln an der DonauAustria
| |
Collapse
|
30
|
Xie M, An F, Yue X, Liu Y, Shi H, Yang M, Cao X, Wu J, Wu R. Characterization and comparison of metaproteomes in traditional and commercial dajiang, a fermented soybean paste in northeast China. Food Chem 2019; 301:125270. [PMID: 31377619 DOI: 10.1016/j.foodchem.2019.125270] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Dajiang is a popular Chinese fermented soybean condiment. Here, a comparative metaproteomic analysis of traditional and commercial dajiang was performed during fermentation. A total of 4250 and 1421 peptide sequences were obtained from 3493 and 1987 proteins in traditional and commercial dajiang, respectively. 4299 differentially expressed microbial proteins show a high metabolic heterogeneity between the two types of dajiang. The KEGG annotation indicated that there were some pathways related to human diseases, which suggest that some microbes in traditional dajiang fermentation may have greater food safety hazards. In combination with qualitative metabolomic analysis, we further traced metabolic intermediates and key enzymes in several main fermentation pathways of dajiang to be mainly affiliated with Penicillium, Tetracoccus and Bacillus in traditional samples, as well as Aspergilus in commercial samples. These results could provide information for the selection of strains that are more suitable to produce high quality dajiang and other fermented products.
Collapse
Affiliation(s)
- Mengxi Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yiming Liu
- College of Foreign Languages, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
31
|
Xie M, An F, Wu J, Liu Y, Shi H, Wu R. Meta-omics reveal microbial assortments and key enzymes in bean sauce mash, a traditional fermented soybean product. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6522-6534. [PMID: 31321764 DOI: 10.1002/jsfa.9932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dajiang is fermented based on the metabolism of microbial communities in bean sauce mash, a traditional fermented soybean product in China. The current study first investigated the metaproteome of bean sauce mash. This was followed by an analysis of its biological functions and its microbial community to reveal information about strains and about the expressed proteins to better understand the roles of the microbiota in bean sauce mash. RESULTS The metaproteomic results demonstrated that a total of 1415 microbial protein clusters were expressed mainly by members of the Penicillium and Rhizopus genera and were classified into 100 cellular components, 238 biological processes, and 220 molecular function categories by gene ontology (GO) annotation. Enzymes associated with glycolysis metabolic pathways were also identified. These can provide the energy required for microbial fermentation. Illumina MiSeq sequencing technology results showed that the microorganism communities of bean sauce mash exhibited a high level of diversity. Microbiological analysis demonstrated that the Penicillium, Mucor, Fusarium, Aspergillus, and Rhizopus fungi, and Lactobacillus, Enterococcus, Fructobacillus, Staphylococcus, Carnobacterium genera were predominant 22 samples. CONCLUSION The profiles and insights in the current study are important for research on bean sauce mash and related products in terms of their food microbial ecology. The information obtained from this study will help the development of stable sufu starter cultures with unique sensory qualities. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengxi Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yiming Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Haishu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
32
|
Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Res Int 2019; 128:108744. [PMID: 31955786 DOI: 10.1016/j.foodres.2019.108744] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
Neuroactive compounds are synthesized by certain plants and microorganisms by undertaking different tasks, especially as a stress response. Most common neuroactive compounds in foods are gamma-aminobutyric acid (GABA), serotonin, melatonin, kynurenine, kynurenic acid, dopamine, norepinephrine, histamine, tryptamine, tyramine and β-phenylethylamine. Fermented foods contain some of these compounds, which can affect human health and mood. Moreover, food processing such as roasting and malting alter amount and profile of neuroactive compounds in foods. In addition to plant-origin and microbially-formed neuroactive compounds in foods, these substances are also formed by gut microbiota, which is the most attractive subject to assess the interaction between gut microbiota and mental health. The discovery of microbiota-gut-brain axis calls for the investigation of the effects of diet on the formation of neuroactive compounds in the gut. Furthermore, probiotics and prebiotics are indispensable elements for the understanding of the food-mood relationship. The focus of this comprehensive review is to investigate the neuroactive compounds found naturally in foods or formed during fermentation. Their formation pathways in humans, plants and microorganisms, potential health effects, effects of diet on the formation of microbial metabolites including neuroactive compounds in the gut are discussed throughout this review. Furthermore, the importance of gut-brain axis, probiotics and prebiotics are discussed.
Collapse
|
33
|
Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine. Biomolecules 2019; 9:biom9100597. [PMID: 31614550 PMCID: PMC6843301 DOI: 10.3390/biom9100597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 11/26/2022] Open
Abstract
Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In this work, despite violating the classical hapten design criteria which recommend introducing a linear aliphatic (phenyl free) linker into the immunizing hapten, a novel haptens, HA-245 designed and synthesized with a phenyl-contained linker, exhibited significantly enhanced immunological properties. Thus, a quality-improved monoclonal antibody (Mab) against HA was elicited by its hapten-carrier conjugates. Then, as the linear aliphatic linker contained haptens, Hapten B was used as linker-heterologous coating haptens to eliminate the recognition of linker antibodies. Indirect competitive ELISA (ic-ELISA) was developed with a 50% inhibition concentration (IC50) of 0.21 mg/L and a limit of detection (LOD) of 0.06 mg/L in buffer solution. The average recoveries of HA from spiked food samples for this ic-ELISA ranged from 84.1% and 108.5%, and the analysis results agreed well with those of referenced LC-MS/MS. This investigation not only realized derivatization-free immunoassay for HA, but also provided a valuable guidance for hapten design and development of immunoassay for small molecules.
Collapse
|
34
|
Esposito F, Montuori P, Schettino M, Velotto S, Stasi T, Romano R, Cirillo T. Level of Biogenic Amines in Red and White Wines, Dietary Exposure, and Histamine-Mediated Symptoms upon Wine Ingestion. Molecules 2019; 24:E3629. [PMID: 31597389 PMCID: PMC6804232 DOI: 10.3390/molecules24193629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines (BAs) are involved in physiological processes. Foods where typically high levels of BAs occur are fermented food and beverage. This work set out to evaluate the occurrence of BAs in red and white wines, and to also ascertain the dietary exposure to BAs among consumers. Besides, a case report of a probable histamine intoxication upon ingestion of contaminated wine was described. The samples were analyzed through derivatization with dansyl chloride and HPLC-UV detection. Red wines showed higher levels of BAs, especially putrescine (PUT) and histamine (HIS), than white wines (median concentrations of 7.30 and 2.45 mg/L, respectively). However, results of our investigation showed that the dietary exposure to BAs through the consumption of wine (red and white) were lower than the recommended maximum levels for the acute exposure to HIS and tyramine (TYR). In contrast, the levels of BAs in wine on tap were much higher than in bottled wine and close to recommended values. The levels of HIS, TYR, and PUT in tap wine of 9.97, 8.23, and 13.01 mg/L, respectively, were associated with histamine-mediated symptoms in six young individuals after consumption of about three glasses of wine. The overall results and multivariate analysis confirm that red wine shows a higher concentration of BAs than white wine, especially putrescine and histamine. This finding is attributable to the malolactic fermentation that is common for most red wine production. It is also evident that incorrect preservation processes can lead to an increase in BA levels, probably due to the action of bacteria with high decarboxylase activity. The exposure values, although below the toxicity thresholds, could lead to histamine-mediated symptoms in susceptible individuals, also according to the case report discussed in this study.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100-80055 Portici, Naples, Italy.
| | - Paolo Montuori
- Department of Public Health, University of Naples "Federico II", via Sergio Pansini, 5-80131 Naples, Italy.
| | - Mario Schettino
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University of Naples "Federico II", via Sergio Pansini, 5-80131 Naples, Italy.
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma "San Raffaele", via di Val Cannuta 247-00166 Roma, Italy.
| | - Tommaso Stasi
- Department of Science and Technology, Newton Consulting srl, 80146 Naples, Italy.
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100-80055 Portici, Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100-80055 Portici, Naples, Italy.
| |
Collapse
|
35
|
Muñoz-Esparza NC, Latorre-Moratalla ML, Comas-Basté O, Toro-Funes N, Veciana-Nogués MT, Vidal-Carou MC. Polyamines in Food. Front Nutr 2019; 6:108. [PMID: 31355206 PMCID: PMC6637774 DOI: 10.3389/fnut.2019.00108] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
The polyamines spermine, spermidine, and putrescine are involved in various biological processes, notably in cell proliferation and differentiation, and also have antioxidant properties. Dietary polyamines have important implications in human health, mainly in the intestinal maturation and in the differentiation and development of immune system. The antioxidant and anti-inflammatory effect of polyamine can also play an important role in the prevention of chronic diseases such as cardiovascular diseases. In addition to endogenous synthesis, food is an important source of polyamines. Although there are no recommendations for polyamine daily intake, it is known that in stages of rapid cell growth (i.e., in the neonatal period), polyamine requirements are high. Additionally, de novo synthesis of polyamines tends to decrease with age, which is why their dietary sources acquire a greater importance in an aging population. Polyamine daily intake differs among to the available estimations, probably due to different dietary patterns and methodologies of data collection. Polyamines can be found in all types of foods in a wide range of concentrations. Spermidine and spermine are naturally present in food whereas putrescine could also have a microbial origin. The main polyamine in plant-based products is spermidine, whereas spermine content is generally higher in animal-derived foods. This article reviews the main implications of polyamines for human health, as well as their content in food and breast milk and infant formula. In addition, the estimated levels of polyamines intake in different populations are provided.
Collapse
Affiliation(s)
- Nelly C. Muñoz-Esparza
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Luz Latorre-Moratalla
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Oriol Comas-Basté
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - Natalia Toro-Funes
- Eurecat, Technological Unit of Nutrition and Health, Technology Centre of Catalonia, Reus, Spain
| | - M. Teresa Veciana-Nogués
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA·UB), Barcelona, Spain
- Catalonian Reference Network on Food Technology (XaRTA), Barcelona, Spain
| |
Collapse
|
36
|
Abstract
“Plant milks” are water-based beverages, such as, extracts from cereals, pseudo-cereals, oil seeds, legumes or fruits. Plant milk consumption is rising in European and North American markets due to problems related to cow milk allergies, intolerances, but also because of vegan diets and sensitivity to environmental issues. There is no specific regulation for these beverages, therefore their composition can vary considerably, even in the same category. The aim of this study is to characterize the main categories of cereal and pseudo-cereal milks on the market by studying the profile of 8 biogenic amines (histamine, serotonin, spermine, spermidine, putrescine, β-phenylethylamine, cadaverine, tyramine) through a RP-HPLC/FD method with a pre-column derivatization. Biogenic amines are ubiquitous compounds, produced by the decarboxylation of the respective amino acids and they have been proposed as quality and safety markers of different foods and beverages. In the analyzed samples, the total biogenic amines content ranged from a minimum of 1.92 mg/L, to a maximum of 9.27 mg/L. The main biogenic amine found in the samples was histamine. The results show a low content of biogenic amines in all types of analyzed products. This ensures the quality and safety of cereal and pseudo-cereal milk samples.
Collapse
|
37
|
Park YK, Lee JH, Mah JH. Occurrence and reduction of biogenic amines in traditional Asian fermented soybean foods: A review. Food Chem 2019; 278:1-9. [PMID: 30583348 DOI: 10.1016/j.foodchem.2018.11.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022]
Abstract
Biogenic amines are harmful substances generated during the fermentation process. Regulations on biogenic amine content in fermented foods are currently insufficient in comparison to the popularity of fermented food consumption in Asian countries. The current review evaluated the biogenic amine content of fermented soybean-based Asian foods to determine whether the food products are safe for consumption. Though the reported ranges of biogenic amine content in fermented soybean foods varied widely, most products contained biogenic amine concentrations at potentially hazardous levels. To ensure the safety of fermented soybean food products, further efforts are required in the improvement of the food manufacturing process, as well as the establishment of regulations on managing biogenic amine content.
Collapse
Affiliation(s)
- Young Kyoung Park
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae Hoan Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Biogenic amines (BAs) are low molecular weight compounds formed from precursor amino acids, mainly by microbial decarboxylation. The presence of these compounds is important in the food and beverage industry because, in high amounts, they can lead to negative effects on consumers. In this review, we illustrate the critical aspects needed to control the formation of BAs during winemaking and their presence in the final product. Recent biotechnological approaches related to microorganisms and their ability to reduce BAs are illustrated. The current methods used for BA detection and quantification are also presented. These methods are very important to consider, as BAs can serve as markers for the quality assessment of products. The information presented here offers an overview useful for identifying specific parameters and conditions which should be controlled to minimise BA content in wine; knowledge about BAs in foods and beverages has been accumulating in recent years, not only to ensure and improve quality (since BAs have been used as an indicator of spoilage) but especially to guarantee consumer safety due to the potential toxic effects of BAs on humans.
Collapse
|
39
|
Mah JH, Park YK, Jin YH, Lee JH, Hwang HJ. Bacterial Production and Control of Biogenic Amines in Asian Fermented Soybean Foods. Foods 2019; 8:E85. [PMID: 30823593 PMCID: PMC6406601 DOI: 10.3390/foods8020085] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/03/2022] Open
Abstract
Fermented soybean foods possess significant health-promoting effects and are consumed worldwide, especially within Asia, but less attention has been paid to the safety of the foods. Since fermented soybean foods contain abundant amino acids and biogenic amine-producing microorganisms, it is necessary to understand the presence of biogenic amines in the foods. The amounts of biogenic amines in most products have been reported to be within safe levels. Conversely, certain products contain vasoactive biogenic amines greater than toxic levels. Nonetheless, government legislation regulating biogenic amines in fermented soybean foods is not found throughout the world. Therefore, it is necessary to provide strategies to reduce biogenic amine formation in the foods. Alongside numerous existing intervention methods, the use of Bacillus starter cultures capable of degrading and/or incapable of producing biogenic amines has been proposed as a guaranteed way to reduce biogenic amines in fermented soybean foods, considering that Bacillus species have been known as fermenting microorganisms responsible for biogenic amine formation in the foods. Molecular genetic studies of Bacillus genes involved in the formation and degradation of biogenic amines would be helpful in selecting starter cultures. This review summarizes the presence and control strategies of biogenic amines in fermented soybean foods.
Collapse
Affiliation(s)
- Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Young Kyoung Park
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Jun-Hee Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| | - Han-Joon Hwang
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
| |
Collapse
|
40
|
Chen YH, Liu XW, Huang JL, Baloch S, Xu X, Pei XF. Microbial diversity and chemical analysis of Shuidouchi, traditional Chinese fermented soybean. Food Res Int 2019; 116:1289-1297. [PMID: 30716918 DOI: 10.1016/j.foodres.2018.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/06/2018] [Indexed: 12/18/2022]
Abstract
Shuidouchi is a traditional Chinese fermented soybean product and its quality is largely affected by the microbes involved in the fermentation. In this study, eleven Shuidouchi samples were collected from southwest China and the microbial diversity and its correlations with chemical characteristics were investigated. Bacterial community was detected using 16S rRNA sequencing, along with bacterial and fungal viable plate counts. Biogenic amines and other chemical characteristics were determined by HPLC and corresponding chemical reaction methods. Among eleven Shuidouchi samples, 21 phyla and 356 genera were identified. Firmicutes, Bacteroidetes and Proteobacteria were the predominant phyla while Bacillus, Bacteroides and Lactobacillus were the main genera. The average cell number of bacteria, lactic acid bacteria and fungi were 1.6 × 106, 5.9 × 104 and 7.6 × 103 CFU/g, respectively. HPLC results showed that the mean concentration of tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine were 23.11, 3.66, 12.21, 7.12, 8.13, 22.98, 24.72, and 39.00 mg/kg, respectively. The average content of other characteristics including amino acid nitrogen, titratable acidity, and reducing sugar were 2.08, 3.44, and 25.78 g/kg, respectively. Shuidouchi samples were slightly acidic or neutral. Fibrinolytic enzyme activity was detected only in one sample. Among top 52 identified genera, 9 genera showed positive correlations with the chemical characteristics of Shuidouchi while 15 genera were negatively associated. Our results indicated that Shuidouchi contained rich microbial resources and were edible safety based on the tested indexes. The associations identified between microbes and chemical characteristics could be further utilized in the food fermentation industry.
Collapse
Affiliation(s)
- Yu-Hang Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 61000, China
| | - Xue-Wei Liu
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China
| | - Jia-Ling Huang
- Department of Public Health Laboratory Sciences, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 61000, China
| | - Saira Baloch
- Department of Public Health Laboratory Sciences, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 61000, China
| | - Xin Xu
- Department of Public Health Laboratory Sciences, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 61000, China
| | - Xiao-Fang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 61000, China.
| |
Collapse
|
41
|
Duflos G, Inglebert G, Himber C, Degremont S, Lombard B, Brisabois A. Validation of standard method EN ISO 19343 for the detection and quantification of histamine in fish and fishery products using high-performance liquid chromatography. Int J Food Microbiol 2019; 288:97-101. [DOI: 10.1016/j.ijfoodmicro.2018.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 11/16/2022]
|
42
|
Biogenic Amines in Plant-Origin Foods: Are They Frequently Underestimated in Low-Histamine Diets? Foods 2018; 7:foods7120205. [PMID: 30558197 PMCID: PMC6306728 DOI: 10.3390/foods7120205] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Low-histamine diets are currently used to reduce symptoms of histamine intolerance, a disorder in histamine homeostasis that increases plasma levels, mainly due to reduced diamine-oxidase (DAO) activity. These diets exclude foods, many of them of plant origin, which patients associate with the onset of the symptomatology. This study aimed to review the existing data on histamine and other biogenic amine contents in nonfermented plant-origin foods, as well as on their origin and evolution during the storage or culinary process. The only plant-origin products with significant levels of histamine were eggplant, spinach, tomato, and avocado, each showing a great variability in content. Putrescine has been found in practically all plant-origin foods, probably due to its physiological origin. The high contents of putrescine in certain products could also be related to the triggering of the symptomatology by enzymatic competition with histamine. Additionally, high spermidine contents found in some foods should also be taken into account in these diets, because it can also be metabolized by DAO, albeit with a lower affinity. It is recommended to consume plant-origin foods that are boiled or are of maximum freshness to reduce biogenic amine intake.
Collapse
|
43
|
Shukla S, Lee JS, Bajpai VK, Nile SH, Huh YS, Han YK, Kim M. Detection of biogenic amines and microbial safety assessment of novel Meju fermented with addition of Nelumbo nucifera, Ginkgo biloba, and Allium sativum. Food Chem Toxicol 2018; 119:231-236. [DOI: 10.1016/j.fct.2018.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 12/28/2022]
|
44
|
Guo H, Zhang Z, Yao Y, Liu J, Chang R, Liu Z, Hao H, Huang T, Wen J, Zhou T. A new strategy for statistical analysis-based fingerprint establishment: Application to quality assessment of Semen sojae praeparatum. Food Chem 2018; 258:189-198. [PMID: 29655722 DOI: 10.1016/j.foodchem.2018.03.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/09/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Semen sojae praeparatum with homology of medicine and food is a famous traditional Chinese medicine. A simple and effective quality fingerprint analysis, coupled with chemometrics methods, was developed for quality assessment of Semen sojae praeparatum. First, similarity analysis (SA) and hierarchical clusting analysis (HCA) were applied to select the qualitative markers, which obviously influence the quality of Semen sojae praeparatum. 21 chemicals were selected and characterized by high resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS). Subsequently, principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to select the quantitative markers of Semen sojae praeparatum samples from different origins. Moreover, 11 compounds with statistical significance were determined quantitatively, which provided an accurate and informative data for quality evaluation. This study proposes a new strategy for "statistic analysis-based fingerprint establishment", which would be a valuable reference for further study.
Collapse
Affiliation(s)
- Hui Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yuan Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Jialin Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ruirui Chang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Zhao Liu
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | - Hongyuan Hao
- Shimadzu China Co. Ltd., Shanghai 200233, China.
| | | | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
45
|
Biogenic amines analysis and microbial contribution in traditional fermented food of Douchi. Sci Rep 2018; 8:12567. [PMID: 30135497 PMCID: PMC6105706 DOI: 10.1038/s41598-018-30456-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Biogenic amines (BAs) have been reported to threaten the Douchi safety, while the BAs formation mechanism and corresponding control method have not been clarified for Douchi. The present study aims to investigate the microbial contribution to BAs in Douchi, and to find the beneficial strain for BAs control. Firstly, the BAs profiles of 15 Douchi samples were analyzed, and common 6 kinds of BAs were detected from different samples. All the samples showed the total BAs contents within the safe dosage range, while the histamine concentrations in 2 samples and β-phenethylamine in 6 samples were above the toxic level. Then, the bacterial and fungal communities were investigated by high-throughput sequencing analysis, and Bacillus and Candida were identified as the dominant bacteria and fungi genus, respectively. Furthermore, nineteen strains were selected from the dominant species of Douchi samples, including 14 Bacillus strains, 2 Staphylococcus strains, 1 Enterococcus strain and 2 Candida strains, and their BAs formation and degradation abilities were evaluated. B. subtilis HB-1 and S. pasteuri JX-2 showed no BAs producing ability, and B. subtilis GD-4 and Candida sp. JX-3 exhibited high BAs degradation ability. Finally, fermented soybean model analysis further verified that B. subtilis HB-1 and S. pasteuri JX-2 could significantly reduce BAs. This study not only contributed to understanding the BAs formation mechanism in Douchi, but also provided potential candidates to control the BAs in fermented soybean products.
Collapse
|
46
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
47
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
48
|
Pleva P, Cabáková V, Butor I, Pachlová V, Buňková L. Biogenic amines content in the fermented asian food in the Czech Republic. POTRAVINARSTVO 2018. [DOI: 10.5219/896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to study the typical fermented Asian food (miso paste, soy sauce, rice vinegar, kimchi and tempeh) to monitor their microbial quality and presence of biogenic amines in relation to time and temperature of storage. This study is focused on microbiological research in order to determinate presence of selected indicator groups of microorganisms during storage of individual products at three different temperatures, 8 °C, 23 °C, 30 °C. It was found that the highest increase of total viable counts was observed in products stored in 23 °C and 30 °C, especially in tempeh and miso paste. In soy sauce and rice vinegar were observed only very low amounts of microorganisms through the storage period. In the second part of the experiment, the biogenic amines were analyzed using high performance liquid chromatography. It was found that the levels of biogenic amines in tested products were low and does not affect human health.
Collapse
|
49
|
Papageorgiou M, Lambropoulou D, Morrison C, Kłodzińska E, Namieśnik J, Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Qiu S, Wang Y, Cheng Y, Liu Y, Yadav MP, Yin L. Reduction of biogenic amines in sufu by ethanol addition during ripening stage. Food Chem 2017; 239:1244-1252. [PMID: 28873546 DOI: 10.1016/j.foodchem.2017.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the content of biogenic amines (BAs) in different types of sufu samples obtained from different producers, and the effect of ethanol in reducing BA levels during sufu ripening. The results showed that different manufacturing processes altered the distribution of BAs in commercial sufu. Putrescine, cadaverine, histamine, and tryptamine were the main and common BAs in red, white and grey sufu. The contents of putrescine, cadaverine, tryptamine, β-phenylethylamine and tyramine in the grey sufu of all producer brands were significantly (p<0.05) higher than those in the white and red sufu. The addition of ethanol to the dressing mixture had a significant influence in reducing the total content of BAs in laboratory-made sufu. The slight increase in polypeptide and amino nitrogen contents after the addition of ethanol indicated a reduction in the degradation of water soluble protein.
Collapse
Affiliation(s)
- Shuang Qiu
- Beijing Key Laboratory for Food Non-thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, PR China; Eastern Regional Research Center, Agricultural Research Service, US Department of Agricultural, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Ying Wang
- Beijing Key Laboratory for Food Non-thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Yongqiang Cheng
- Beijing Key Laboratory for Food Non-thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, PR China; Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Yan Liu
- Beijing Key Laboratory for Food Non-thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Madhav P Yadav
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agricultural, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Lijun Yin
- Beijing Key Laboratory for Food Non-thermal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, PR China; Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No.17 Qinghuadonglu, Haidian, Beijing 100083, PR China.
| |
Collapse
|