1
|
Xiang G, Wang H, Lu C, Yu S, Wu A, Wang X. Luteolin-Manganese Nanozyme Induces Apoptosis and Ferroptosis for Enhanced Cancer Therapy. Inorg Chem 2025; 64:3885-3897. [PMID: 39969912 DOI: 10.1021/acs.inorgchem.4c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Cancer presents a significant global public health challenge that impacts millions of individuals worldwide. The incorporation of natural products into cancer treatment has the potential to mitigate many of the side effects commonly associated with chemotherapy. This study builds on the advantages of enhancing the anticancer activity of natural flavonoids through metal chelation by synthesizing a natural antioxidant flavonoid complex, termed Lu-Mn nanozyme, which involves the chelation of luteolin with manganese ions. In vitro experiments demonstrated that Lu-Mn exhibits a strong affinity for hydrogen peroxide (H2O2) and effectively catalyzes the generation of hydroxyl radicals (•OH) from H2O2 within the tumor microenvironment. The administration of the Lu-Mn nanozyme not only induced apoptosis in tumor cells by upregulating the expression of cleaved caspase3 and caspase9 but also activated ferroptosis through downregulation of the NRF2-GPX4 signaling pathway. Furthermore, animal studies have shown that Lu-Mn possesses significant antitumor efficacy and a favorable safety profile. Collectively, these findings suggest that luteolin, through its chelation with metal ions, has considerable potential for application in cancer treatment.
Collapse
Affiliation(s)
- Gang Xiang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siyuan Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
2
|
Tong X, Fu X, Gong A, Yu G, Chen N, Chen B, Gu J, Liu Z. Effect of Luteolin on cadmium-inhibited bone growth via suppressing osteoclastogenesis in laying chickens. J Anim Sci 2025; 103:skaf033. [PMID: 39921628 PMCID: PMC11912829 DOI: 10.1093/jas/skaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025] Open
Abstract
Luteolin (Lut) is a flavonoid derived from several plant sources. Cadmium (Cd) is a widespread environmental contaminant and potential toxin with detrimental effects on animal health. However, the effect of Lut on Cd-induced inhibition of bone growth in laying chickens remains unclear. This study investigates the effects of Lut on Cd-induced inhibition of bone growth in the femur and tibia of laying chickens. A total of sixty 1-d-old green-eggshell yellow feather laying chickens were randomly assigned to 4 groups after a 5-d acclimation period: basal diet (Con), cadmium chloride (CdCl2, Cd), Lut, and Lut + Cd. Bone microstructure, serum biomarkers of bone remodeling, the levels of Cd, calcium (Ca), phosphorus (P), and trace metal elements were assessed using the micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA), and microwave digestion, respectively. Bone remodeling biomarkers, late endosomal/lysosomal adaptor and MAPK and mTOR activator 1 (LAMTOR1), as well as the phosphorylation of AMP-activated protein kinase α (AMPKα) and protein kinase B (Akt), were quantified using the qRT-PCR and western blot. The results indicated that Lut effectively mitigated Cd-induced bone mass loss compared to the Cd group, resulting in increased bone volume (BV), bone surface/BV (BS/BV), connectivity density (Conn.Dn), and the length and weight of the femur and tibia in laying chickens. Mechanistically, compared to the Cd group, Lut restored the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) in serum and bone tissue, enhanced the expression of bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and Osterix (OSX), while reducing the levels of Ca, Cd, and alkaline phosphatase (ALP) activity, as well as the expression of osteopontin (OPN), c-Fos, osteoclast stimulatory-transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase, cathepsin K (CTSK), matrix metalloprotein-9 (MMP-9), LAMTOR1, and the phosphorylation of AMPKα and Akt. Therefore, Lut alleviates Cd-induced damage to the femur and tibia of chickens by promoting osteogenesis and inhibiting osteoclastogenesis, positioning Lut as a potential therapeutic plant extract for enhancing bone growth in laying chickens.
Collapse
Affiliation(s)
- Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Xiaohui Fu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Anqing Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Gengsheng Yu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Naineng Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Bing Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Jianhong Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| | - Zongping Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of The Ministry of Education of China, Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
3
|
Liu Q, Wang Q, Ning L, Chen Z, Zhang C, Liu Y, Qian B, Guo J, Yin Y. Efficient identification of genomic insertions and surrounding regions in two transgenic maize events using third-generation single-molecule nanopore sequencing technology. Sci Rep 2024; 14:31921. [PMID: 39738762 PMCID: PMC11685737 DOI: 10.1038/s41598-024-83403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress. Southern hybridization confirmed that the exogenous T-DNA was singly inserted in both maize transformation events, ND4401 and ND4403. This study utilized third-generation sequencing technology-nanopore single-molecule sequencing-to perform molecular characterization of the integration events. It successfully determined the exogenous gene insertion sites and flanking sequences in ND4401 and ND4403. Comparative analysis with the control group facilitated the preliminary identification of the integration sites of the exogenous T-DNA fragments in these transgenic maize events. Based on the obtained flanking sequences, specific PCR primers were designed for different transformation events. The insertion site for ND4401 was pinpointed in the non-coding region of chromosome 5, and for ND4403, in the non-coding region of chromosome 3. Utilizing the sequencing results, the study developed specific detection primers for the maize transformation events, establishing a precise method for detecting newly created transgenic maize events, which will contribute to subsequent safety assessments.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Lihua Ning
- Jiangsu Provincia Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Buxuan Qian
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Jia Guo
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
| |
Collapse
|
4
|
Li R, Zheng Y, Li X, Su R, He J, Xue S, Wang K, Gao Y, Ni J. Hyaluronic Acid-Modified Luteolin-Copper Complex Nanodelivery System for Bacterial Prostatitis. ACS OMEGA 2024; 9:42582-42592. [PMID: 39431109 PMCID: PMC11483909 DOI: 10.1021/acsomega.4c07724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024]
Abstract
Bacterial prostatitis is a common disease of the male genitourinary system, which seriously affects the normal life and health of male patients. Antibiotics are commonly used in the clinical treatment of bacterial prostatitis, but the efficacy of fluoroquinolones is gradually declining due to the increasing drug resistance of bacteria. Hence, it is necessary to find new antibacterial drugs to treat bacterial prostatitis. Luteolin is a natural flavonoid compound with many pharmacological activities such as antibacterial and anti-inflammatory activities, but its poor water solubility and low structural stability seriously limit its clinical application. In this study, we designed a targeting drug delivery system via a luteolin-copper complex grafted with hyaluronic acid. The results of the characterization proved the successful synthesis of the system. The results of the in vitro performance test show that the system has a good antibacterial effect and excellent blood compatibility and can be effectively released under different pH conditions. The prepared nanodrug delivery system not only provides a new idea for the treatment of bacterial prostatitis but also lays a theoretical and practical foundation for the wide application of luteolin in clinical practice.
Collapse
Affiliation(s)
- Ruixiao Li
- Urology
and Nephrology Hospital, Xi’an People’s
Hospital (Xi’an Fourth Hospital), Xi’an, Shaanxi Province 710199, China
| | - Yunhe Zheng
- School
of Pharmacy, Health Science Center, Xi’an
Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Xuelian Li
- Department
of Surgery, Xi’an Hospital of Traditional
Chinese Medicine, Xi’an, Shaanxi Province 710000, China
| | - Ruiping Su
- Urology
and Nephrology Hospital, Xi’an People’s
Hospital (Xi’an Fourth Hospital), Xi’an, Shaanxi Province 710199, China
| | - Jiangchuan He
- School
of Pharmacy, Health Science Center, Xi’an
Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Song Xue
- Urology
and Nephrology Hospital, Xi’an People’s
Hospital (Xi’an Fourth Hospital), Xi’an, Shaanxi Province 710199, China
| | - Ke Wang
- School
of Pharmacy, Health Science Center, Xi’an
Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Yanyao Gao
- Department
of Urology, Tangdu Hospital, Air Force Medical
University, Xi’an 710038, China
| | - Jianxin Ni
- Urology
and Nephrology Hospital, Xi’an People’s
Hospital (Xi’an Fourth Hospital), Xi’an, Shaanxi Province 710199, China
| |
Collapse
|
5
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
6
|
Peng X, Liu K, Hu X, Gong D, Zhang G. Hesperitin-Copper(II) Complex Regulates the NLRP3 Pathway and Attenuates Hyperuricemia and Renal Inflammation. Foods 2024; 13:591. [PMID: 38397567 PMCID: PMC10888018 DOI: 10.3390/foods13040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Hyperuricaemia (HUA) is a disorder of purine metabolism in the body. We previously synthesized a hesperitin (Hsp)-Cu(II) complex and found that the complex possessed strong uric acid (UA)-reducing activity in vitro. In this study we further explored the complex's UA-lowering and nephroprotective effects in vivo. METHODS A mouse with HUA was used to investigate the complex's hypouricemic and nephroprotective effects via biochemical analysis, RT-PCR, and Western blot. RESULTS Hsp-Cu(II) complex markedly decreased the serum UA level and restored kidney tissue damage to normal in HUA mice. Meanwhile, the complex inhibited liver adenosine deaminase (ADA) and xanthine oxidase (XO) activities to reduce UA synthesis and modulated the protein expression of urate transporters to promote UA excretion. Hsp-Cu(II) treatment significantly suppressed oxidative stress and inflammatory in the kidney, reduced the contents of cytokines and inhibited the activation of the nucleotide-binding oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory pathway. CONCLUSIONS Hsp-Cu(II) complex reduced serum UA and protected kidneys from renal inflammatory damage and oxidative stress by modulating the NLRP3 pathway. Hsp-Cu(II) complex may be a promising dietary supplement or nutraceutical for the therapy of hyperuricemia.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Kai Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.P.); (K.L.); (X.H.); (D.G.)
| |
Collapse
|
7
|
Kaur M, Kaushal R. Spectroscopic investigations, ab-initio DFT calculations, molecular docking and in-vitro assay studies of novel oxovanadium(V)chalcone complexes as potential antidiabetic agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Elmowafy M, Shalaby K, Elkomy MH, Awad Alsaidan O, Gomaa HAM, Abdelgawad MA, Massoud D, Salama A, El-Say KM. Development and assessment of phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. Int J Pharm 2022; 629:122375. [PMID: 36351506 DOI: 10.1016/j.ijpharm.2022.122375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Luteolin is an excellent flavone possessing several beneficial properties such as antioxidant and anti-inflammatory effects which are interesting for skin delivery. Development of an appropriate skin delivery system could be a promising strategy to improve luteolin cutaneous performance.So, the main aim of this work was to fabricate, characterize and evaluate phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. The influence of phospholipid/oil ratio, surfactant type and chitosan coating were investigated. The prepared formulations underwent in vitro assessment and the selected formulations were evaluated ex vivo and in vivo. The mean diameters of investigated formulations varied between 174 nm and 628 nm while zeta potential varied between -25.7 ± 4.8 mV and 6.8 ± 1.7 mV. Increasing in phospholipid/oil ratios resulted in decrease in particles size with little effect on zeta potential and drug encapsulation. Cremophor EL showed the lowest particle sizes and the highest drug encapsulation. Chitosan coating shifted zeta potential towards positive values. Structural analyses showed that luteolin is incorporated into lipid core of nanocapsules. Selected formulations (LNC4 and LNC13) exhibited sustained in vitro release and antioxidant activity. LNC13 (chitosan coated) showed higher flux (0.457 ± 0.113 µg/cm2/h), permeability (45.70 ± 11.66 *10-5 cm2/h) and skin retention (121.66 ± 7.6 µg/cm2 after 24 h) when compared to LNC4 and suspension. It also showed disordered the integrity of the stratum corneum, increased epidermal thickness and relieving most of inflammatory features in animal model. In conclusion, this study proves that lipid nanocapsules could effectively deliver luteolin into skin and then can be established as a potential system in the pharmaceutical and cosmeceutical horizons.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia.
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Abdel-Ghafar RY, Sehim AE, Hamza ZK, El-Nekeety AA, Abdel-Wahhab MA. Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Against MCF-7 Breast Cell Lines of Biosynthesized Vanadium Nanoparticles. BIONANOSCIENCE 2022; 12:1097-1105. [DOI: 10.1007/s12668-022-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 11/25/2022]
|
10
|
Mohsin SA, Shaukat S, Nawaz M, Ur-Rehman T, Irshad N, Majid M, Hassan SSU, Bungau S, Fatima H. Appraisal of selected ethnomedicinal plants as alternative therapies against onychomycosis: Evaluation of synergy and time-kill kinetics. Front Pharmacol 2022; 13:1067697. [PMID: 36506532 PMCID: PMC9729263 DOI: 10.3389/fphar.2022.1067697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 μg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.
Collapse
Affiliation(s)
- Syeda Aroosa Mohsin
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shaukat
- Department of Pathology, Shifa College of Medicine, Islamabad, Pakistan
| | - Marya Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| |
Collapse
|
11
|
Sevindik M, Bal C. Chemical Characterization, Antibacterial, Antifungal, Antioxidant and Oxidant Activities of Wild Mushrooms Rhizopogon luteolus and Rhizopogon roseolus. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Ali N, Naz I, Ahmed S, Mohsin SA, Kanwal N, Fatima H, Hussain S. Polarity-guided phytochemical extraction, polyphenolic characterization, and multimode biological evaluation of Seriphidium kurramense (Qazilb.) Y. R. Ling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Zhao J, Huang L, Li R, Zhang Z, Chen J, Tang H. Insights from multi-spectroscopic analysis and molecular modeling to understand the structure-affinity relationship and the interaction mechanism of flavonoids with gliadin. Food Funct 2022; 13:5061-5074. [PMID: 35404372 DOI: 10.1039/d1fo03816h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gliadin, as a main component of wheat storage protein, is used as a drug encapsulation and delivery system owing to its specific characteristics. Flavonoids are regarded as active natural products with a variety of pharmacological effects. In this study, an integrated method including UV-vis, fluorescence, and FT-IR spectroscopy and molecular modelling was applied to explore the structure-affinity relationship and the interaction nature between a library of flavonoids and gliadin. The characteristic UV-vis spectral changes of gliadin mediated by flavonoids with absorption bands at 218 and 278 nm demonstrated the existence of an interaction depending on generating the ground-state complexes. Fluorescence quenching results showed that the intrinsic fluorescence of gliadin could be effectively quenched by flavonoids coupled with the formation of flavonoid-gliadin complexes through the static quenching mechanism. The structure-affinity relationship revealed the critical structural elements associated with the binding affinity on gliadin and underlined the favorable substituents at the specific positions of flavonoid skeletons leading to a stronger binding potency. From the analysis of synchronous fluorescence spectra, flavonoids could cause the conformation change of gliadin and impact the microenvironment around TYR and TRP residues. Moreover, the ANS fluorescent probe assay suggested that these flavonoids also influenced the surface hydrophobicity of glaidin based on the further exposure or blocking of hydrophobic domains. Molecular modelling was subsequently performed and illustrated the proposed binding conformation of flavonoids on gliadin. Combined with the FT-IR spectra, these results further confirmed the important role of hydrophobic interactions and hydrogen bonds in their binding process.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Lin Huang
- Blood Purification Center, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, P. R. China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| |
Collapse
|
14
|
Li J, Zhu J, Wu H, Li W. Synthesis, in vitro, and in silico studies of fisetin and quercetin and their metal complexes as inhibitors of α-glucosidase and thrombin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Santos AED, Dal Magro C, de Britto LS, Aguiar GPS, de Oliveira JV, Lanza M. Micronization of luteolin using supercritical carbon dioxide: Characterization of particles and biological activity in vitro. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Sekaran S, Thangavelu L. Re-appraising the role of flavonols, flavones and flavonones on osteoblasts and osteoclasts- A review on its molecular mode of action. Chem Biol Interact 2022; 355:109831. [PMID: 35120918 DOI: 10.1016/j.cbi.2022.109831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Bone disorders have become a global concern illustrated with decreased bone mineral density and disruption in microarchitecture of natural bone tissue organization. Natural compounds that promote bone health by augmenting osteoblast functions and suppressing osteoclast functions has gained much attention and offer greater therapeutic value compared to conventional therapies. Amongst several plant-based molecules, flavonoids act as a major combatant in promoting bone health through their multi-faceted biological activities such as antioxidant, anti-inflammatory, and osteogenic properties. They protect bone loss by regulating the signalling cascades involved in osteoblast and osteoclast functions. Flavonoids augment osteoblastogenesis and inhibits osteoclastogenesis through their modulation of various signalling pathways. This review discusses the role of various flavonoids and their molecular mechanisms involved in maintaining bone health by regulating osteoblast and osteoclast functions.
Collapse
Affiliation(s)
- Saravanan Sekaran
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| | - Lakshmi Thangavelu
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
17
|
Nguyen TLA, Dao DQ. From green to near-infrared emission of cyclometalated Iridium (III) complexes modified with flavonoids: a theoretical insight. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Danang, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Danang, Vietnam
| |
Collapse
|
18
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Solubility of Luteolin and Other Polyphenolic Compounds in Water, Nonpolar, Polar Aprotic and Protic Solvents by Applying FTIR/HPLC. Processes (Basel) 2021. [DOI: 10.3390/pr9111952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, flavonoids have become a highly researched topic due to their health beneficial effects. Since flavonoids’ solubility plays a significant role in their use in pharmaceutical, food, biological, and chemical areas, the determination of suitable solvents is crucial. Fourier transform infrared (FTIR) analysis was used to characterize functional groups of several flavonoids and phenolic compounds, namely luteolin, hesperidin, quercetin, naringenin, gallic acid and tannic acid. Concentration dependence on transmittance was evaluated for these compounds in ethanol. Afterwards, luteolin was chosen as a model flavonoid, with its concentration correlated with transmittance using 15 solvents with different polarities. Luteolin solubility was further corroborated with high-performance liquid chromatography (HPLC). These results shed light on using FTIR as a semi-quantitative method for the initial screening of solvents and the solubility of different compounds while saving time and solvents. Hence, HPLC would only be needed as a final step for the most promising solvents.
Collapse
|
20
|
Theerawatanasirikul S, Thangthamniyom N, Kuo CJ, Semkum P, Phecharat N, Chankeeree P, Lekcharoensuk P. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Viruses 2021; 13:2118. [PMID: 34834926 PMCID: PMC8625466 DOI: 10.3390/v13112118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth-disease virus (FMDV) is a picornavirus that causes a highly contagious disease of cloven-hoofed animals resulting in economic losses worldwide. The 3C protease (3Cpro) is the main protease essential in the picornavirus life cycle, which is an attractive antiviral target. Here, we used computer-aided virtual screening to filter potential anti-FMDV agents from the natural phytochemical compound libraries. The top 23 filtered compounds were examined for anti-FMDV activities by a cell-based assay, two of which possessed antiviral effects. In the viral and post-viral entry experiments, luteolin and isoginkgetin could significantly block FMDV growth with low 50% effective concentrations (EC50). Moreover, these flavonoids could reduce the viral load as determined by RT-qPCR. However, their prophylactic activities were less effective. Both the cell-based and the fluorescence resonance energy transfer (FRET)-based protease assays confirmed that isoginkgetin was a potent FMDV 3Cpro inhibitor with a 50% inhibition concentration (IC50) of 39.03 ± 0.05 and 65.3 ± 1.7 μM, respectively, whereas luteolin was less effective. Analyses of the protein-ligand interactions revealed that both compounds fit in the substrate-binding pocket and reacted to the key enzymatic residues of the 3Cpro. Our findings suggested that luteolin and isoginkgetin are promising antiviral agents for FMDV and other picornaviruses.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
21
|
Selvaraj S, Krishnan UM. Vanadium-Flavonoid Complexes: A Promising Class of Molecules for Therapeutic Applications. J Med Chem 2021; 64:12435-12452. [PMID: 34432460 DOI: 10.1021/acs.jmedchem.1c00405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Several reports have revealed the superior biological activity of metal ion-flavonoid complexes when compared with the parent flavonoid. Among the different metal ions explored, vanadium and its compounds are in the forefront because of their anticancer and antidiabetic properties. However, the toxicity of vanadium-based ions and their inorganic derivatives limits their therapeutic applications. Complexation of vanadium with flavonoids not only reduces its adverse effects but also augments its biological activity. This Review discusses the nature of coordination in vanadium-flavonoid complexes, their structure-activity correlations, with special emphasis on their therapeutic activities. Several investigations suggest that the superior biological activity of vanadium complexes arise because of their ability to regulate metabolic pathways distinct from those acted upon by vanadium alone. These studies serve to decipher the underlying molecular mechanism of vanadium-flavonoid complexes that can be explored further for generating a series of novel compounds with improved pharmacological and therapeutic performance.
Collapse
|
22
|
Baruah K, Haque M, Langbang L, Das S, Aguan K, Singha Roy A. Ocimum sanctum mediated green synthesis of silver nanoparticles: A biophysical study towards lysozyme binding and anti-bacterial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Kalinowska M, Gołębiewska E, Mazur L, Lewandowska H, Pruszyński M, Świderski G, Wyrwas M, Pawluczuk N, Lewandowski W. Crystal Structure, Spectroscopic Characterization, Antioxidant and Cytotoxic Activity of New Mg(II) and Mn(II)/Na(I) Complexes of Isoferulic Acid. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3236. [PMID: 34208366 PMCID: PMC8231219 DOI: 10.3390/ma14123236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
The Mg(II) and heterometallic Mn(II)/Na(I) complexes of isoferulic acid (3-hydroxy-4-methoxycinnamic acid, IFA) were synthesized and characterized by infrared spectroscopy FT-IR, FT-Raman, electronic absorption spectroscopy UV/VIS, and single-crystal X-ray diffraction. The reaction of MgCl2 with isoferulic acid in the aqueous solutions of NaOH resulted in synthesis of the complex salt of the general formula of [Mg(H2O)6]⋅(C10H9O4)2⋅6H2O. The crystal structure of this compound consists of discrete octahedral [Mg(H2O)6]2+ cations, isoferulic acid anions and solvent water molecules. The hydrated metal cations are arranged among the organic layers. The multiple hydrogen-bonding interactions established between the coordinated and lattice water molecules and the functional groups of the ligand stabilize the 3D architecture of the crystal. The use of MnCl2 instead of MgCl2 led to the formation of the Mn(II)/Na(I) complex of the general formula [Mn3Na2(C10H7O4)8(H2O)8]. The compound is a 3D coordination polymer composed of centrosymmetric pentanuclear subunits. The antioxidant activity of these compounds was evaluated by assays based on different antioxidant mechanisms of action, i.e., with •OH, DPPH• and ABTS•+ radicals as well as CUPRAC (cupric ions reducing power) and lipid peroxidation inhibition assays. The pro-oxidant property of compounds was measured as the rate of oxidation of Trolox. The Mg(II) and Mn(II)/Na(I) complexes with isoferulic acid showed higher antioxidant activity than ligand alone in DPPH (IFA, IC50 = 365.27 μM, Mg(II) IFA IC50 = 153.50 μM, Mn(II)/Na(I) IFA IC50 = 149.00 μM) and CUPRAC assays (IFA 40.92 μM of Trolox, Mg(II) IFA 87.93 μM and Mn(II)/Na(I) IFA 105.85 μM of Trolox; for compounds' concentration 10 μM). Mg(II) IFA is a better scavenger of •OH than IFA and Mn(II)/Na(I) IFA complex. There was no distinct difference in ABTS•+ and lipid peroxidation assays between isoferulic acid and its Mg(II) complex, while Mn(II)/Na(I) complex showed lower activity than these compounds. The tested complexes displayed only slight antiproliferative activity tested in HaCaT human immortalized keratinocyte cell line within the solubility range. The Mn(II)/Na(I) IFA (16 μM in medium) caused an 87% (±5%) decrease in cell viability, the Mg salt caused a comparable, i.e., 87% (±4%) viability decrease in a concentration of 45 μM, while IFA caused this level of cell activity attenuation (87% ± 5%) at the concentration of 1582 μM (significant at α = 0.05).
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| | - Liliana Mazur
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. C. Skłodowskiej Sq. 2, 20-031 Lublin, Poland;
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (H.L.); (M.P.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (H.L.); (M.P.)
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, 7 Andrzeja Soltana Street, 05-400 Otwock, Poland
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| | - Marta Wyrwas
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| | - Natalia Pawluczuk
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| | - Włodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Institute of Civil Engineering and Energetics, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (M.W.); (N.P.); (W.L.)
| |
Collapse
|
24
|
Mukhamedov N, Wubulikasimu A, Rustamova N, Nuerxiati R, Mirzaakhmedov S, Ishimov U, Ziyavitdinov J, Yili A, Aisa HA. Synthesis and Characterization of Novel Chickpea Protein Hydrolysate-Vanadium Complexes Having Cell Inhibitory Effects on Lung Cancer A549 Cells Lines. Protein J 2021; 40:721-730. [PMID: 33993411 DOI: 10.1007/s10930-021-09979-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Designing new types of drugs with preferred properties against cancer is a great issue for scientists dealing with synthesis and study of biological activity. Several organometallic compounds used in chemotherapy reveal side effects. Peptides from edible sources having no side effects may play a transport role in the delivery of anticancer metal ions into targeted tumor cells. For the last two decades, peptide-metal complexes have been considered as potential anticancer agents. In this work, oxovanadium complexes of peptides from Chickpea (Cicer arietinum L.) seeds' protein hydrolysate were investigated. The albumin fraction of Chickpea seeds protein was hydrolyzed with a combination of enzymes papain, trypsin, and alcalase. The hydrolysate was combined with vanadyl ions and obtained oxovanadium complexes were studied by FTIR, SEM-EDX, and TG-DSC analyses, and cell inhibition activity against A549 cells was detected by MTT Assay. In a result, activity of the complexes (IC50 = 14.39 µg/mL) increased 1.7-fold compared to the activity of inorganic salt of vanadium (IC50 = 24.75 µg/mL) against A549 cells. The complexes (CPH-V) were fractionated through Sephadex G-15, and the second active fraction, named CPH-V G15-II was studied by nano-Q-TOF LC/MS. Nine peptides with a molecular mass range of 437-1864 Da were identified. Seven of them were theoretically considered as cell-penetrating peptides. These results could serve first steps for deeper fundamental research on food-derived peptide-vanadium complexes.
Collapse
Affiliation(s)
- Nurkhodja Mukhamedov
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Atikan Wubulikasimu
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Nigora Rustamova
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Rehebati Nuerxiati
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | | | - Uchqun Ishimov
- Institute of Bioorganic Chemistry, Tashkent Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | | | - Abulimiti Yili
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China. .,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Haji Akber Aisa
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| |
Collapse
|
25
|
Characterization and Quantification of Luteolin-Metal Complexes in Aqueous Extract of Lonicerae Japonicae Flos and Huangshan Wild Chrysanthemum. Int J Anal Chem 2021; 2021:6677437. [PMID: 33777144 PMCID: PMC7979300 DOI: 10.1155/2021/6677437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Luteolin is a flavonoid compound widely found in vegetables, fruits, and medicinal plants. In this study, the reaction conditions for luteolin and five metal ions (Ca2+, Mg2+, Zn2+, Fe3+, and Cu2+) to form complexes in hot water were optimized, which was at a molar ratio of 1 : 1 for luteolin and metal ions at 90°C in a volume of 20 mL for 2 h, and the ability of luteolin to form complexes with Cu2+ was the strongest. The DPPH scavenging test showed that luteolin exerted a dose-dependent effect on the clearance of free radicals; luteolin-Cu2+ complexes and luteolin-Fe3+ complexes accentuated the clearance of free radicals. Furthermore, we used high performance liquid chromatography (HPLC) to analyze luteolin in samples from two medicinal plants, obtained from the dissolution of aqueous extracts in two different solvents. The results showed that the peak areas for luteolin in the samples dissolved in 20% formic acid-methanol were significantly larger than those from the samples dissolved in methanol alone, with increases in the peak area being 135.6% (Lonicerae Japonicae Flos), and 161.16% (Huangshan wild chrysanthemum). The aforementioned results indicate that complexes formed from organic compounds and metal ions are present in the decoction of a plant.
Collapse
|
26
|
Mbatha B, Khathi A, Sibiya N, Booysen I, Mangundu P, Ngubane P. Cardio-protective effects of a dioxidovanadium(V) complex in male sprague-dawley rats with streptozotocin-induced diabetes. Biometals 2020; 34:161-173. [PMID: 33206308 DOI: 10.1007/s10534-020-00270-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Cardiovascular complications are among the leading causes of morbidity and mortality in diabetes mellitus (DM). Despite the anti-hyperglycemic effects of various anti-diabetic therapeutic agents like insulin, some of these drugs are implicated in precipitating cardiovascular dysfunction. There is therefore an imperative need to seek alternative drugs that may ameliorate these complications. Accordingly, the aim of the study was to investigate the effects of a dioxidovanadium (V) complex, cis-[VO2(obz)py]) on selected cardiovascular function markers in STZ-induced diabetic rats. The vanadium complex (40 mg kg) was administered orally twice every 3rd day 5 weeks, non-diabetic and diabetic control groups received distilled water whereas the insulin group received subcutaneous insulin injections twice daily for 5 weeks. Blood glucose concentrations, mean arterial pressure (MAP), heart rate, triglycerides (TG) and total cholesterol concentrations were monitored weekly for 5 weeks. Rats were then euthanised and blood and hearts were collected for biochemical analysis. There was a significant decrease in blood glucose, triglycerides, cholesterol concentrations as well as blood pressure of vanadium treated rats compared to the untreated diabetic animals. Vanadium treatment also attenuated cardiac oxidative stress and decreased the expression of transforming growth factor β1 (TGFβ1) and Smad7. Lastly, the administration of the vanadium complex significantly decreased C reactive protein (CRP) and cardiotropin 1(CT-1) concentrations in the plasma and heart tissues. The administration of the dioxidovanadium(V) complex to diabetic rats culminated into cardio-protective effects. Taken together, these observations suggest that this metal complex exhibit a significant potential as an alternative therapeutic drug for DM management.
Collapse
Affiliation(s)
- Bonisiwe Mbatha
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa. .,Department of Human Physiology, University of KwaZulu Natal, E-Block, Level 4, Room E4-402, University Road, Chiltern Hills, Westville Campus, 3629, Westville, Private Bag X54001, Durban, 4000, South Africa.
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Irvin Booysen
- School of Chemistry and Physics, College of Agricultural and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Patrick Mangundu
- School of Chemistry and Physics, College of Agricultural and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
27
|
Zheng K, Xiong Y, Li Z, Peng L, Guo Q, Li X, Deng X. ESI-TOF MS analysis and DNA cleavage activity of complexes formed by luteolin and five metal ions in hot water. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1737820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kangkang Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Yunhao Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Zhimin Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Liang Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Qianhui Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiaojun Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xuezhen Deng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China
| |
Collapse
|
28
|
Zhang S, Taehwan Kim A, Liu X, Yan L, Moo Kim S. Antioxidant and antidiabetic activities of vanadium-binding protein and trifuhalol A. J Food Biochem 2020; 44:e13540. [PMID: 33103256 DOI: 10.1111/jfbc.13540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 01/12/2023]
Abstract
The antioxidant and antidiabetic activities of vanadium-binding protein (VBP) and trifuhalol A, alone or combined, were investigated. Both VBP and trifuhalol A showed potent radical scavenging activity (RSA) on 2,2'-azinobis (3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), hydrogen peroxide, and ferric-reducing antioxidant power. Their combination at a concentration of 100 μg/ml VBP and 40 μg/ml trifuhalol A exhibited more than 99% RSA against ABTS. Additionally, VBP and trifuhalol A, alone or combined, displayed potential antidiabetic activities against Saccharomyces cerevisiae α-glucosidase. The highest inhibition of 70.26% against S. cerevisiae α-glucosidase was observed in the case of the combination of 250 μg/ml VBP and 1.75 μg/ml trifuhalol A. Kinetics study revealed that VBP and trifuhalol A were noncompetitive inhibition type against S. cerevisiae α-glucosidase, while VBP and trifuhalol A combined treatment was a mixed inhibition type against S. cerevisiae α-glucosidase. These results indicated that VBP and trifuhalol A, alone or combined, had high free radical scavenging activity and inhibitory activity against S. cerevisiae a-glucosidase, suggesting that VBP and trifuhalol A could be used as candidates for the development of natural antidiabetic drugs or functional food. PRACTICAL APPLICATIONS: The present study showed that VBP and trifuhalol A, alone or combined, had potential antioxidant and antidiabetic activities, suggesting that VBP and trifuhalol A could be developed to a novel nutraceutical or natural antidiabetic drugs in the management of obesity or diabetes. This finding will be beneficial for all peoples who are directly or indirectly associated with obesity or diabetes.
Collapse
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
29
|
Ali F, Siddique YH. Bioavailability and Pharmaco-therapeutic Potential of Luteolin in Overcoming Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:352-365. [PMID: 30892166 DOI: 10.2174/1871527318666190319141835] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Luteolin is a naturally occurring, yellow crystalline flavonoid found in numerous dietary supplements we frequently have in our meals. Studies in the last 2 decades have revealed its therapeutic potential to reduce the Alzheimer's disease (AD) symptoms in various in vitro and in vivo models. The anti-Alzheimer's potential of luteolin is attributed to its ability to suppress Aβ as well as tau aggregation or promote their disaggregation, down-regulate the expression of COX-2, NOS, MMP-9, TNF-α, interleukins and chemokines, reduce oxidative stress by scavenging ROS, modulate the activities of transcription factors CREB, cJun, Nrf-1, NF-κB, p38, p53, AP-1 and β-catenine and inhibiting the activities of various protein kinases. In several systems, luteolin has been described as a potent antioxidant and anti-inflammatory agent. In addition, we have also discussed about the bio-availability of the luteolin in the plasma. After being metabolized luteolin persists in plasma as glucuronides and sulphate-conjugates. Human clinical trials indicated no dose limiting toxicity when administered at a dose of 100 mg/day. Improvements in the formulations and drug delivery systems may further enhance the bioavailability and potency of luteolin. The current review describes in detail the data supporting these studies.
Collapse
Affiliation(s)
- Fahad Ali
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | | |
Collapse
|
30
|
Qian LL, Lu Y, Xu Y, Yang ZY, Yang J, Zhou YM, Han RM, Zhang JP, Skibsted LH. Alkaline earth metal ion coordination increases the radical scavenging efficiency of kaempferol. RSC Adv 2020; 10:30035-30047. [PMID: 35518270 PMCID: PMC9056298 DOI: 10.1039/d0ra03249b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/08/2020] [Indexed: 01/07/2023] Open
Abstract
Flavonoids are used as natural additives and antioxidants in foods, and after coordination to metal ions, as drug candidates, depending on the flavonoid structure. The rate of radical scavenging of the ubiquitous plant flavonoid kaempferol (3,5,7,4'-tetrahydroxyflavone, Kaem) was found to be significantly enhanced by coordination of Mg(ii), Ca(ii), Sr(ii), and Ba(ii) ions, whereas the radical scavenging rate of apigenin (5,7,4'-trihydroxyflavone, Api) was almost unaffected by alkaline earth metal (AEM) ions, as studied for short-lived β-carotene radical cations (β-Car˙+) formed by laser flash photolysis in chloroform/ethanol (7 : 3) and for the semi-stable 2,2-diphenyl-1-picrylhydrazyl radical, DPPH˙, in ethanol at 25 °C. A 1 : 1 Mg(ii)-Kaem complex was found to be in equilibrium with a 1 : 2 Mg(ii)-Kaem2 complex, while for Ca(ii), Sr(ii) and Ba(ii), only 1 : 2 AEM(ii)-Kaem complexes were detected, where all complexes showed 3-hydroxyl and 4-carbonyl coordination and stability constants of higher than 109 L2 mol-2. The 1 : 2 Ca(ii)-Kaem2 complex had the highest second order rate constant for both β-Car˙+ (5 × 108 L mol-1 s-1) and DPPH˙ radical (3 × 105 L mol-1 s-1) scavenging, which can be attributed to the optimal combination of the stronger electron withdrawing capability of the (n - 1)d orbital in the heavier AEM ions and their spatially asymmetrical structures in 1 : 2 AEM-Kaem complexes with metal ion coordination of the least steric hindrance of two perpendicular flavone backbones as ligands in the Ca(ii) complex, as shown by density functional theory calculations.
Collapse
Affiliation(s)
- Ling-Ling Qian
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Yao Lu
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Yi Xu
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Zhi-Yin Yang
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Jing Yang
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Yi-Ming Zhou
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China Beijing China 100872 +86-10-6251-6444 +86-10-6251-6604
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen Rolighedsvej 30 DK-1958 Frederiksberg C Denmark
| |
Collapse
|
31
|
Wang Q, Zhao H, Zhu M, Gao L, Cheng N, Cao W. Spectroscopy characterization, theoretical study and antioxidant activities of the flavonoids-Pb(II) complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med Chem 2019; 11:2845-2867. [DOI: 10.4155/fmc-2019-0237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Flavonoids are polyphenolic compounds of natural origin. They are extensively studied within drug discovery programs due to their wide ranging biological activities such as antimicrobial, antioxidant, antitumor, neuroprotective and cardioprotective properties. The ability of flavonoids to coordinate with metal atoms has provided new leads for drug discovery programs, with better pharmacological activities and clinical profiles than the parent flavonoids. In this review, the enhanced antioxidant and anticancer activities of flavonoid metal complexes versus the parent flavonoids are discussed. Possible mechanisms of action for the metal complexes, such as DNA binding and apoptosis induction, are also presented alongside an overview of the synthesis of the metal complexes, and the different techniques used for their characterization.
Collapse
|
33
|
Zhang S, Kim SM. Synthesis, characterization, antioxidant and anti‐diabetic activities of a novel protein–vanadium complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo‐Waste in Cold Region, College of Life Science and BiotechnologyHeilongjiang Bayi Agricultural University Daqing Heilongjiang Province 163319 PR China
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon‐do 25457 Republic of Korea
| | - Sang Moo Kim
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon‐do 25457 Republic of Korea
| |
Collapse
|
34
|
Deng SP, Yang YL, Cheng XX, Li WR, Cai JY. Synthesis, Spectroscopic Study and Radical Scavenging Activity of Kaempferol Derivatives: Enhanced Water Solubility and Antioxidant Activity. Int J Mol Sci 2019; 20:E975. [PMID: 30813425 PMCID: PMC6412309 DOI: 10.3390/ijms20040975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Kaempferol (Kae) is a natural flavonoid with potent antioxidant activity, but its therapeutic use is limited by its low aqueous solubility. Here, a series of Kae derivatives were synthesized to improve Kae dissolution property in water and antioxidant activity. These compounds included sulfonated Kae (Kae-SO₃), gallium (Ga) complexes with Kae (Kae-Ga) and Kae-SO₃ (Kae-SO₃-Ga). The compound structures were characterized by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and thermal methods (TG/DSC). The results showed that a sulfonic group (-SO₃) was successfully tethered on the C3' of Kae to form Kae-SO₃. And in the metal complexation, 4-CO and 3-OH of the ligand participated in the coordination with Ga(III). The metal-to-ligand ratio 1:2 was suggested for both complexes. Interestingly, Kae-SO₃-Ga was obviously superior to other compounds in terms of overcoming the poor water-solubility of free Kae, and the solubility of Kae-SO₃-Ga was about 300-fold higher than that of Kae-Ga. Furthermore, the evaluation of antioxidant activities in vitro was carried out for Kae derivatives by using α,α-diphenyl-β-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging. The results showed that Kae-SO₃-Ga was also optimal for scavenging free radicals in a dose-dependent manner. These data demonstrate that sulfonate kaempferol-gallium complex has a promising future as a potential antioxidant and as a potential therapeutic agent for further biomedical studies.
Collapse
Affiliation(s)
- Sui-Ping Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yi-Li Yang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xing-Xing Cheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Wen-Rong Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Ji-Ye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 000853, China.
| |
Collapse
|
35
|
Wang Q, Zhao L, Zhao H, Liu X, Gao L, Cheng N, Cao W. Complexation of luteolin with lead (II): Spectroscopy characterization and theoretical researches. J Inorg Biochem 2019; 193:25-30. [PMID: 30669063 DOI: 10.1016/j.jinorgbio.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 11/30/2022]
Abstract
The interactions of (CH3COO)2Pb·3H2O (lead acetate trihydrate) with luteolin, 5,7,3',4'-tetrahydroxyflavone, were investigated in methanol solution. The spectroscopy (UV-Vis, FT-IR, HPLC-MS, 1H NMR) and elemental analysis were adopted to assess the interaction of luteolin and Pb(II). The results show that luteolin reacts with Pb(II) through the chelating sites of 4‑carbonyl and 5-hydroxy in two luteolin molecules. The structures, energies, CDA (charge decomposition analysis) and orbitals analysis of the ligand and complex have been analyzed according to quantum-chemical calculation, which is further proofed that luteolin molecule can effectively chelate Pb(II) by 5-hydroxyl-4-oxo chelating site. It is speculated that luteolin has a high potential of becoming a health care product to eliminate lead cation in the future.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Lingling Zhao
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Haoan Zhao
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Xinyan Liu
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Liguo Gao
- College of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Ni Cheng
- School of Food Science and Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China; Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- School of Food Science and Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China; Bee Product Research Center of Shaanxi Province, Xi'an 710065, China.
| |
Collapse
|
36
|
A Novel Oxidovanadium (IV)-Orotate Complex as an Alternative Antidiabetic Agent: Synthesis, Characterization, and Biological Assessments. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8108713. [PMID: 30671472 PMCID: PMC6323442 DOI: 10.1155/2018/8108713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 12/02/2022]
Abstract
Diabetes is an increasingly common metabolic disorder with high comorbidity and societal and personal costs. Insulin replacement therapy is limited by a lack of oral bioavailability. Recent studies suggest vanadium has therapeutic potential. A newly synthesized complex between oxidovanadium (IV) and orotic acid (OAH3), [(OAH1)(VO)(NH3)2].3H2O, was characterized using spectroscopic and thermogravimetric techniques. In vivo potential was assessed in a streptozocin-induced rat model of diabetes. OAH3 acts as a bidentate ligand in the formation of the dark green, crystalline oxidovanadium (IV) complex in a square pyramidal configuration. Treatment with oxidovanadium (IV)-orotate in vivo significantly improved many biochemical parameters with minimal toxicity and restored pancreatic and hepatic histology. The results of the present work describe a safe, new compound for the treatment of diabetes.
Collapse
|
37
|
Xu Y, Qian LL, Yang J, Han RM, Zhang JP, Skibsted LH. Kaempferol Binding to Zinc(II), Efficient Radical Scavenging through Increased Phenol Acidity. J Phys Chem B 2018; 122:10108-10117. [PMID: 30295482 DOI: 10.1021/acs.jpcb.8b08284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc(II) enhances radical scavenging of the flavonoid kaempferol (Kaem) most significantly for the 1:1 Zn(II)-Kaem complex in equilibrium with the 1:2 Zn(II)-Kaem complex both with high affinity at 3-hydroxyl and 4-carboxyl coordination. In methanol/chloroform (7/3, v/v), 1:1 Zn(II)-Kaem complex reduces β-carotene radical cation, β-Car•+, with a second-order rate constant, 1.88 × 108 L·mol-1·s-1, while both Kaem and 1:2 Zn(II)-Kaem complex are nonreactive, as determined by laser flash photolysis. In ethanol, 1:1 Zn(II)-Kaem complex reduces the 2,2-diphenyl-1-picrylhydrazyl radical, DPPH•, with a second-order rate constant, 2.48 × 104 L·mol-1·s-1, 16 times and 2 times as efficient as Kaem and 1:2 Zn(II)-Kaem complex, respectively, as determined by stopped-flow spectroscopy. Density functional theory calculation results indicate significantly increased acidity of Kaem as ligand in 1:1 Zn(II)-Kaem complex other than in 1:2 Zn(II)-Kaem complex. Kaem in 1:1 Zn(II)-Kaem complex loses two protons (one from 3-hydroxyl and one from phenolic hydroxyl) forming 1:1 Zn(II)-(Kaem-2H) during binding with Zn(II), while Kaem in 1:2 Zn(II)-Kaem complex loses one proton in each ligand forming Zn(II)-(Kaem-H)2, as confirmed by UV-vis absorption spectroscopy. Zn(II)-(Kaem-2H) is a far stronger reductant than Kaem and Zn(II)-(Kaem-H)2 as determined by cyclic voltammetry. Significant rate increases for the 1:1 complex in both β-Car•+ scavenging by electron transfer and DPPH• scavenging by hydrogen atom transfer were ascribed to decreases of ionization potential and of bond dissociation energy of 4'-OH for deprotonated Zn(II)-(Kaem-2H), respectively. Increased phenol acidity of plant polyphenols by 1:1 coordination with Zn(II) may explain the unique function of Zn(II) as a biological antioxidant and may help to design nontoxic metal-based drugs derived from natural bioactive molecules.
Collapse
Affiliation(s)
- Yi Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Ling-Ling Qian
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jing Yang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui-Min Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Leif H Skibsted
- Department of Food Science , University of Copenhagen , Rolighedsvej 30 , Frederiksberg C DK-1058 , Denmark
| |
Collapse
|
38
|
Queiroz MMF, Monteillier A, Berndt S, Marcourt L, Franco EDS, Carpentier G, Nejad Ebrahimi S, Cuendet M, Bolzani VDS, Maia MBS, Queiroz EF, Wolfender JL. NF-κB and Angiogenesis Inhibitors from the Aerial Parts of Chresta martii. JOURNAL OF NATURAL PRODUCTS 2018; 81:1769-1776. [PMID: 30067035 DOI: 10.1021/acs.jnatprod.8b00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ethyl acetate extract of the aerial parts of Chresta martii showed significant in vitro NF-κB inhibition. Bioactivity-guided isolation was undertaken using HPLC microfractionation to localize the active compounds. Different zones of the HPLC chromatogram were linked to NF-κB inhibition. In parallel to this HPLC-based activity profiling, HPLC-PDA-ESI-MS and UHPLC-TOF-HRMS were used for the early identification of some of the compounds present in the extract and to get a complete phytochemical overview. The isolation of the compounds was performed by high-speed counter-current chromatography and further semipreparative HPLC. Using this approach, 14 compounds were isolated, two of them being new sesquiterpene lactones. The structures of the isolated compounds were elucidated by spectroscopic methods including UV, ECD, NMR, and HRMS. All isolated compounds were evaluated for their inhibitory activity of NF-κB and angiogenesis, and compound 2 showed promising NF-κB inhibition activity with an IC50 of 0.7 μM. The isolated compounds 1, 2, 5, 7, and 8 caused a significant reduction in angiogenesis when evaluated by an original 3D in vitro angiogenesis assay.
Collapse
Affiliation(s)
- Marcos Marçal Ferreira Queiroz
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Aymeric Monteillier
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Sarah Berndt
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Eryvelton de Souza Franco
- Pharmacology of Bioactive Products , Federal University of Pernambuco, UFPE , Postal code 50670-901 , Recife , Pernambuco , Brazil
| | - Gilles Carpentier
- Laboratoire CRRET, Faculté des Sciences et Technologie , Université Paris Est Créteil , 94010 Créteil Cedex , France
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute , Shahid Beheshti University , G. C., Evin, 1983963113 Tehran , Iran
| | - Muriel Cuendet
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Vanderlan da Silva Bolzani
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, NuBBE , Instituto de Química, UNESP , 14800-900 Araraquara, São Paulo , Brazil
| | - Maria Bernadete Souza Maia
- Pharmacology of Bioactive Products , Federal University of Pernambuco, UFPE , Postal code 50670-901 , Recife , Pernambuco , Brazil
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , Rue Michel-Servet 1 , CH-1211 Geneva 4 , Switzerland
| |
Collapse
|
39
|
Effect of Subcritical Water on the Extraction of Bioactive Compounds from Carrot Leaves. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2151-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Roy S, Chakraborty T. Deciphering the molecular mechanism and apoptosis underlying the in-vitro and in-vivo chemotherapeutic efficacy of vanadium luteolin complex in colon cancer. Cell Biochem Funct 2018; 36:116-128. [PMID: 29574863 DOI: 10.1002/cbf.3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| |
Collapse
|
41
|
Roy S, Das R, Ghosh B, Chakraborty T. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog 2018; 57:700-721. [PMID: 29442390 DOI: 10.1002/mc.22792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are the most investigated phytochemicals due to their pharmacological and therapeutic activities. Their ability to chelate with metal ions has resulted in the emergence of a new category of molecules with a broader spectrum of pharmacological activities. In this study, the ruthenium quercetin complex has been synthesized and anticancer activity has been evaluated on a well-defined model of DMH followed by DSS induced rat colon cancer and on human colon cancer cell line HT-29. The characterizations accomplished through UV-visible, NMR, IR, Mass spectra and XRD techniques, and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro study confirmed that the complex increased p53 expression, reduced VEGF and mTOR expression, apoptosis induction, and DNA fragmentation in the HT-29 cells. Acute and subacute toxicity study was also assessed and results from in vivo study revealed that complex was efficient to suppress ACF multiplicity and hyperplastic lesions and elevated the CAT, SOD, and glutathione levels. Furthermore, the complex was found to decrease cell proliferation and increased apoptotic events in tumor cells correlates upregulation of p53 and Bax and downregulation of Bcl2 expression. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium quercetin complex possesses a potential chemotherapeutic activity against colon cancer and was efficient in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Rituparna Das
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
42
|
Genistein Binding to Copper(II)-Solvent Dependence and Effects on Radical Scavenging. Molecules 2017; 22:molecules22101757. [PMID: 29057848 PMCID: PMC6151749 DOI: 10.3390/molecules22101757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022] Open
Abstract
Genistein, but not daidzein, binds to copper(II) with a 1:2 stoichiometry in ethanol and with a 1:1 stoichiometry in methanol, indicating chelation by the 5-phenol and the 4-keto group of the isoflavonoid as demonstrated by the Jobs method and UV-visible absorption spectroscopy. In ethanol, the stability constants had the value 1.12 × 1011 L²∙mol-2 for the 1:2 complex and in methanol 6.0 × 10⁵ L∙mol-1 for the 1:1 complex at 25 °C. Binding was not detected in water, as confirmed by an upper limit for the 1:1 stability constant of K = 5 mol-1 L as calculated from the difference in solvation free energy of copper(II) between methanol and the more polar water. Solvent molecules compete with genistein as demonstrated in methanol where binding stoichiometry changes from 1:2 to 1:1 compared to ethanol and methanol/chloroform (7/3, v/v). Genistein binding to copper(II) increases the scavenging rate of the stable, neutral 2,2-diphenyl-1-picrylhydrazyl radical by more than a factor of four, while only small effects were seen for the short-lived but more oxidizing β-carotene radical cation using laser flash photolysis. The increased efficiency of coordinated genistein is concluded to depend on kinetic rather than on thermodynamic factors, as confirmed by the small change in reduction potential of -0.016 V detected by cyclic voltammetry upon binding of genistein to copper(II) in methanol/chloroform solutions.
Collapse
|
43
|
Vardhan PV, Shukla LI. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int J Radiat Biol 2017; 93:967-979. [PMID: 28714761 DOI: 10.1080/09553002.2017.1344788] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made. RESULTS Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15 Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100 Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20 Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16 Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20 Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins. CONCLUSIONS An increase in secondary metabolites in response to various biotic and abiotic stresses is compared with ionizing radiation. A ∼5- to 20-fold increase is noted with ∼20 Gy irradiation dose. It increases the yield of secondary metabolites by enhancing the activity of certain key biosynthetic enzymes. Identification of the optimum dose is the important step in the large-scale production of secondary metabolites at industrial level.
Collapse
Affiliation(s)
- P Vivek Vardhan
- a Department of Biotechnology, School of Life Sciences , Pondicherry University , Pondicherry , India
| | - Lata I Shukla
- a Department of Biotechnology, School of Life Sciences , Pondicherry University , Pondicherry , India
| |
Collapse
|
44
|
Fernandez ACAM, Rosa MF, Fernandez CMM, C Bortolucci W, Melo UZ, Siqueira VLD, Cortez DAG, Gonçalves JE, Linde GA, Gazim ZC. Antimicrobial and Antioxidant Activities of the Extract and Fractions of Tetradenia riparia (Hochst.) Codd (Lamiaceae) Leaves from Brazil. Curr Microbiol 2017; 74:1453-1460. [PMID: 28840299 DOI: 10.1007/s00284-017-1340-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
Abstract
Tetradenia riparia (Lamiaceae) is native to Central Africa popularly known as myrrh, used in folk medicine to treat various diseases like malaria, gastroenteritis, and tropical skin disease. This research was to evaluate the antioxidant and antibacterial activities of the crude extract (CE) and fractions (FR) of the T. riparia by classical chromatography. The CE of T. riparia leaves was submitted to column chromatographic fractionation to obtain four fractions of the interest, which were identified by nuclear magnetic resonance and gas chromatograph coupled to mass spectrum: FR-I (abieta-7,9(11)-dien-13-β-ol), FR-II (Ibozol), FR-III (8 (14), 15-sandaracopimaradiene-2α, 18-diol and 8 (14), 15-sandaracopimaradiene-7α, 18-diol), and FR-IV (Astragalin, Boronolide and Luteolin). Total phenol content of CE and FR were measured, and antioxidant action by methods of DPPH (2,2-diphenyl-1-picrylhydrazyl), β-carotene/linoleic acid system, and ferric reducing/antioxidant power (FRAP) and the antibacterial activity was evaluated by the broth microdilution method with the determination of the minimum inhibitory concentration (MIC). The FR-IV presented antioxidant potential with 181.67 μg gallic acid/mg, IC50 of 0.61 μg/mL by DPPH method, 55.61% oxidation protection by β-carotene/linoleic acid system and 4.59 µM ferrous sulfate/mg of sample by FRAP, and the FR-I showed higher antibacterial potential on the strain Staphylococcus aureus with MIC 0.98 μg/mL, Enterococcus faecalis and Bacillus cereus with MIC 31.2 μg/mL. Thus, the fractionation of CE was extremely important to detect fractions with potential activities, and investigations are necessary regarding the mechanism of action and action in vivo.
Collapse
Affiliation(s)
| | - Maurício F Rosa
- Pharmaceutical Sciences, State University of Western Paraná, Cascavel, Paraná, 85.819-110, Brazil
| | - Carla M M Fernandez
- Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Wanessa C Bortolucci
- Biotechnology Applied to the Agriculture, Paranaense University, Umuarama, Paraná, 87.502-210, Brazil
| | - Ulisses Z Melo
- Department of Chemistry, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera L D Siqueira
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | | | - José E Gonçalves
- Clean Technologies and Cesumar Institute of Science, Technology and Innovation - ICETI, Cesumar University, Maringá, Paraná, 87.050-900, Brazil
| | - Giani A Linde
- Biotechnology Applied to the Agriculture, Paranaense University, Umuarama, Paraná, 87.502-210, Brazil
| | - Zilda C Gazim
- Biotechnology Applied to the Agriculture, Paranaense University, Umuarama, Paraná, 87.502-210, Brazil. .,Laboratory of Chemistry of Natural Products, Paranaense University, Mascarenhas de Moraes Square, 4282, Umuarama, PR, Brazil.
| |
Collapse
|
45
|
Samsonowicz M, Regulska E, Kalinowska M. Hydroxyflavone metal complexes - molecular structure, antioxidant activity and biological effects. Chem Biol Interact 2017. [DOI: 10.1016/j.cbi.2017.06.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Samsonowicz M, Regulska E. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:757-771. [PMID: 27792987 DOI: 10.1016/j.saa.2016.10.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 05/05/2023]
Abstract
Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.
Collapse
Affiliation(s)
- Mariola Samsonowicz
- Bialystok University of Technology, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Ewa Regulska
- Bialystok University of Technology, Division of Chemistry, Wiejska 45E, 15-351 Bialystok, Poland
| |
Collapse
|
47
|
Dong H, Yang X, He J, Cai S, Xiao K, Zhu L. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(ii) and its inhibition kinetics on xanthine oxidase. RSC Adv 2017. [DOI: 10.1039/c7ra11036g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A coordination compound with enhanced biological activities was synthesized with luteolin and manganese(ii) cation. The inhibition effect assay found that the complex reversibly inhibited xanthine oxidase in a competitive manner.
Collapse
Affiliation(s)
- Hao Dong
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Xiaocui Yang
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Jiapeng He
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Sheng Cai
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Kaijun Xiao
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Liang Zhu
- School of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| |
Collapse
|
48
|
ÇOL AYVAZ M, TURAN İ, DURAL B, DEMİR S, KARAOĞLU K, ALİYAZICIOĞLU Y, SERBEST K. Synthesis, in vitro DNA interactions, cytotoxicities, antioxidative activities, and topoisomerase inhibition potentials of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes with azo-oxime ligands. Turk J Chem 2017. [DOI: 10.3906/kim-1612-53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
49
|
Li C, Sun P, Yu H, Zhang N, Wang J. Scavenging ability of dendritic PAMAM bridged hindered phenolic antioxidants towards DPPH˙ and ROO˙ free radicals. RSC Adv 2017. [DOI: 10.1039/c6ra26134e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intramolecular synergistic effects of two dendritic antioxidants between hindered phenol groups and tertiary amine groups were investigated using the DPPH˙ method and the oxygen uptake method.
Collapse
Affiliation(s)
- Cuiqin Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology
- College of Chemistry & Chemical Engineering
- Northeast Petroleum University
- Daqing
- China
| | - Peng Sun
- Provincial Key Laboratory of Oil & Gas Chemical Technology
- College of Chemistry & Chemical Engineering
- Northeast Petroleum University
- Daqing
- China
| | - Hongyang Yu
- Provincial Key Laboratory of Oil & Gas Chemical Technology
- College of Chemistry & Chemical Engineering
- Northeast Petroleum University
- Daqing
- China
| | - Na Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology
- College of Chemistry & Chemical Engineering
- Northeast Petroleum University
- Daqing
- China
| | - Jun Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology
- College of Chemistry & Chemical Engineering
- Northeast Petroleum University
- Daqing
- China
| |
Collapse
|
50
|
Naso LG, Lezama L, Valcarcel M, Salado C, Villacé P, Kortazar D, Ferrer EG, Williams PAM. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J Inorg Biochem 2016; 157:80-93. [PMID: 26828287 DOI: 10.1016/j.jinorgbio.2016.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Chemotherapy using metal coordination compounds for cancer treatment is the work of the ongoing research. Continuing our research on the improvement of the anticancer activity of natural flavonoids by metal complexation, a coordination compound of the natural antioxidant flavone luteolin (lut) and the oxidovanadium(IV) cation has been synthesized and characterized. Using different physicochemical measurements some structural aspects of [VO(lut)(H2O)2]Na·3H2O (VOlut) were determined. The metal coordinated to two cis-deprotonated oxygen atoms (ArO(-)) of the ligand and two H2O molecules. Magnetic measurements in solid state indicated the presence of an effective exchange pathway between adjacent vanadium ions. VOlut improved the antioxidant capacity of luteolin only against hydroxyl radical. The antitumoral effects were evaluated on MDAMB231 breast cancer and A549 lung cancer cell lines. VOlut exhibited higher viability inhibition (IC50=17 μM) than the ligand on MDAMB231 cells but they have the same behavior on A549 cells (ca. IC50=60 μM). At least oxidative stress processes were active during cancer cell-killing. When metals chelated through the carbonyl group and one adjacent OH group of the flavonoid an effective improvement of the biological properties has been observed. In VOlut the different coordination may be the cause of the small improvement of some of the tested properties of the flavonoid. Luteolin and VOlut could be distributed and transported in vivo. Luteolin interacted in the microenvironment of the tryptophan group of the serum binding protein, BSA, by means of electrostatic forces and its complex bind the protein by H bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain; BCMaterials, Parque científico y Tecnológico de Bizkaia, Edificio 500-1, 48160 Derio, Spain
| | - María Valcarcel
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Patricia Villacé
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Danel Kortazar
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-(B1900AVV), 1900 La Plata, Argentina.
| |
Collapse
|