1
|
Chen S, Wang Y, Yan J, Wang C, Lu D. Determination of iron species in food samples with dual direct immersion single-drop microextraction followed by graphite furnace atomic absorption spectrometry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Impedimetric sensor for iron (III) detection based on small molecule (E)-2-((phenylimino)methyl) phenol-modified platinum electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Zhang K, Guo R, Wang Y, Nie Q, Zhu G. One-step derivatization and temperature-controlled vortex-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents coupled to UV–Vis spectrophotometry for the rapid determination of total iron in water and food samples. Food Chem 2022; 384:132414. [DOI: 10.1016/j.foodchem.2022.132414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 01/21/2023]
|
4
|
Cheng F, Zhang T, Yang C, Zhu H, Li Y, Sun T, Zhou C. A direct and rapid method for determination of total iron in environmental samples and hydrometallurgy using UV–Vis spectrophotometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Noori SMA, Hashemi M, Ghasemi S. A Comprehensive Review of Minerals, Trace Elements, and Heavy Metals in Saffron. Curr Pharm Biotechnol 2022; 23:1327-1335. [PMID: 34983343 DOI: 10.2174/1389201023666220104142531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.
Collapse
Affiliation(s)
- Sayyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medicine, Jundishahpour University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajjad Ghasemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Khan MS, Riaz N, Shaikh AJ, Shah JA, Hussain J, Irshad M, Awan MS, Syed A, Kallerhoff J, Arshad M, Bilal M. Graphene quantum dot and iron co-doped TiO 2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112855. [PMID: 34628153 DOI: 10.1016/j.ecoenv.2021.112855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The present study reports the synthesis, photocatalytic decolorization of reactive black 5 dye and phytotoxicity of graphene quantum dots (GQDs) and iron co-doped TiO2 photocatalysts via modified sol gel method. GQDs were synthesized by direct pyrolysis of citric acid (CA). Scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL) were used to determine the physicochemical properties of the best performing photocatalysts. The results indicated improved physicochemical properties of GQD-0.1Fe-TiO2-300 with root mean square roughness (Rz) (33.82 nm), higher surface area (170.79 m2 g-1), pore volume (0.08 cm3 g-1), and bandgap (2.94 eV). Moreover, GQD-0.1Fe co-doping of TiO2 greatly improved the photocatalytic decolorization efficiency for RB5 dye. The photocatalytic reaction followed the pseudo first order reaction with gradual decrease in Kapp values for increment in RB5 concentration. The KC value was obtained as 2.45 mg L-1 min-1 while the KLH value was 0.45 L mg-1 indicating the heterogeneous reaction system followed the Langmuir-Hinshelwood isotherm and simultaneously occurring adsorption and photocatalytic processes. Photocatalytic reaction mechanism studies exhibited the holes and OH radicals as the main active species in the GQD-0.1Fe-TiO2-300 responsible for the decolorization of RB5. The proposed reaction pathway showed that both Fe-TiO2 and GQDs play important role in generation of electrons and holes. Additionally, GQD-0.1Fe-TiO2-300 were durable up to four cycles. Phytotoxicity assay displayed that treated water and best performing photocatalysts had no effect on Lycopersicon esculentum seed germination. Therefore, the proposed system can pave a viable solution for safe usage of dye loaded wastewater and effluent for irrigation after treatment.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - M Saifullah Awan
- Nano Science and Technology Department, National Centre for Physics (NCP), Shahdra Valley Road, Islamabad 44000, Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455 Riyadh 11451, Saudi Arabia
| | | | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
7
|
Zhang S, Shi Y, Deng J, Zhang J, Cheng M, Yu G. A High Selective Chemiluminescent Probe Derived from
Iso
‐luminol Enabling High Sensitive Determination of Ferrous Ions in the Environmental Waters. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shenghai Zhang
- Quality Supervision and Inspection Centre of Se‐enriched Food of Shaanxi Province School of Chemistry & Chemical Engineering Ankang Univerisity, An'kang Shaanxi 725000 China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Yalin Shi
- Quality Supervision and Inspection Centre of Se‐enriched Food of Shaanxi Province School of Chemistry & Chemical Engineering Ankang Univerisity, An'kang Shaanxi 725000 China
| | - Jiawang Deng
- Quality Supervision and Inspection Centre of Se‐enriched Food of Shaanxi Province School of Chemistry & Chemical Engineering Ankang Univerisity, An'kang Shaanxi 725000 China
| | - Jidong Zhang
- Quality Supervision and Inspection Centre of Se‐enriched Food of Shaanxi Province School of Chemistry & Chemical Engineering Ankang Univerisity, An'kang Shaanxi 725000 China
| | - Mengqi Cheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Geting Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 China
| |
Collapse
|
8
|
Cheng F, Zhang T, Sun T, Wang Y, Zhou C, Zhu H, Li Y. A simple, sensitive and selective spectrophotometric method for determining iron in water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Accurate and sensitive analytical method for trace iron determination in clove tea and tap water samples by slotted quartz tube-flame atomic absorption spectrometry after its preconcentration with supramolecular solvent-based liquid-phase microextraction. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01652-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ballesteros JI, Caleja-Ballesteros HJR, Villena MC. Digital image-based method for iron detection using green tea (Camellia sinensis) extract as natural colorimetric reagent. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Nguyen LD, Huynh TM, Nguyen TSV, Le DN, Baptist R, Doan TCD, Dang CM. Nafion/platinum modified electrode-on-chip for the electrochemical detection of trace iron in natural water. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kasa NA, Bakırdere EG. Determination of Iron in Licorice Samples by Slotted Quartz Tube Flame Atomic Absorption Spectrometry (FAAS) with Matrix Matching Calibration Strategy after Complexation with Schiff Base Ligand-Based Dispersive Liquid–Liquid Microextraction. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1801709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nursu Aylin Kasa
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
- Science Department, Nun Schools, İstanbul, Turkey
| | - Emine Gülhan Bakırdere
- Department of Science Education, Faculty of Education, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
13
|
Laosuwan M, Mukdasai S, Srijaranai S. A Simple in Syringe Low Density Solvent-Dispersive Liquid Liquid Microextraction for Enrichment of Some Metal Ions Prior to Their Determination by High Performance Liquid Chromatography in Food Samples. Molecules 2020; 25:E552. [PMID: 32012808 PMCID: PMC7037012 DOI: 10.3390/molecules25030552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/04/2023] Open
Abstract
A simple and highly sensitive method is developed for the simultaneous determination of Ni2+, Cr2O72-, Co2+, and Hg2+ by using in syringe low density solvent-dispersive liquid liquid microextraction (ISLD-DLLME), followed by high performance liquid chromatography with a UV detector. The four metal ions were derivatized with pyrrolidine dithiocarbamate (PDC) based on complexation before their enrichment by ISLD-DLLME in which 1-octanol and methanol were used as the extraction solvent and the dispersive solvent, respectively. The extraction was performed in a commercially available syringe under vortex agitation. Phase separation was achieved without centrifugation, and the extraction phase was easily collected by moving the syringe plunger. Parameters affecting the extraction efficiency were studied and optimized. Under the optimum conditions, the four metal-PDC complexes were detected within 18 min, and ISLD-DLLME could increase the detection sensitivity in the range of 64-230 times compared to the direct HPLC analysis. The obtained limits of detection (LODs) were found to be in the range of 0.011-2.0 µg L-1. The applicability of the method is demonstrated for freshwater fish, shrimp, and shellfish samples. In addition, the results are in good agreement with those obtained by inductively-coupled plasma-optical emission spectrometry (ICP-OES).
Collapse
Affiliation(s)
| | | | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (M.L.); (S.M.)
| |
Collapse
|
14
|
Kong FY, Li RF, Yao L, Zou HY, Li HY, Wang ZX, Wang W. An OFF-ON detection method for copper(ii) ions using a AgAu-NG nanocomposite modified electrode. Analyst 2019; 144:3967-3971. [PMID: 31140474 DOI: 10.1039/c9an00535h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OFF-ON detection method for Cu2+ was developed at the AgAu bimetallic nanoparticle decorated nitrogen-doped graphene (AgAu-NG) nanocomposite modified electrode. The measurement was based on the copper-catalyzed oxidation of cysteamine (Cys) to regulate the oxidation peak current of Ag. In the absence of Cu2+, Cys can bind to the surface of AgAu-NG via the Ag-S or Au-S bond, thus leading to an obvious decrease of the oxidation peak current of Ag. However, in the presence of Cu2+, Cu2+ can greatly catalyze the oxidation of Cys by dissolved O2 to form cystamine, which would fall off the surface of AgAu-NG nanocomposites, leading to the partial recovery of the oxidation peak current of Ag. With the increase in the concentration of Cu2+, the oxidation peak current of Ag in the presence of Cys increases accordingly. So, the concentration of Cu2+ can be measured. By using the optimum conditions, this method can detect Cu2+ concentrations down to 0.3 nM (S/N = 3) with a linear response range of 1 nM-1 mM. Furthermore, this method was applied to determine Cu2+ concentrations in river water samples and showed excellent analytical performance.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Deng M, Liao C, Wang X, Chen S, Qi F, Zhao X, Yu P. A paper-based colorimetric microfluidic sensor fabricated by a novel spray painting prototyping process for iron analysis. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel, simple, and low-cost spray painting technique has been developed for the fabrication of microfluidic paper-based devices. The devices that we developed utilize aerosol spray paint to build hydrophobic barriers and employ a hole puncher to obtain paper-based patterned layers and paper dots without using any specialized instruments (e.g., without a laser cutter). The entire manufacturing process is extremely simple, inexpensive, and rapid, which means that it can be applied broadly. Furthermore, the application of the device to iron detection was demonstrated. A linear relationship between the colour value and the iron concentration was observed from 0 to 0.02 g/L. The developed microfluidic paper-based device for iron detection exhibited a low detection limit (0.00090 g/L), good selectivity, and acceptable recovery.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Changhan Liao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Fugang Qi
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Xueliang Zhao
- Key Laboratory of Geological Environment Monitoring Technology, Center for Hydrogeology and Environmental Geology Survey, Baoding 071051, PR China
| | - Peng Yu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
16
|
Wu ZY, Xu ZY, Tan HY, Li X, Yan JW, Dong CZ, Zhang L. Two novel rhodamine-based fluorescent probes for the rapid and sensitive detection of Fe 3+: Experimental and DFT calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:167-175. [PMID: 30685555 DOI: 10.1016/j.saa.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Fe3+ ions play an important role in both biological and environmental field. In this work, two novel rhodamine-based colorimetric and fluorescent probes (RBA2 and RBA3) were designed and synthesized for the efficient detection of Fe3+. Upon the addition of Fe3+, the fluorescence intensity of RBA2 and RBA3 enhanced 108-fold and 222-fold, respectively. RBA2 and RBA3 exhibited a low detection limit which could achieve 12.8 nM and 11.0 nM. In addition, the binding modes of RBA2 and RBA3 with Fe3+ were proved to be 1:1 stoichiometry in the complexes by Job's plot, ESI-MS and 1H NMR results. The complexing ability of RBA3 with Fe3+ excessed to that of RBA2 that was determined by the binding association constants, and highly consistent with DFT calculations results. Furthermore, RBA2 and RBA3 were further utilized to detect Fe3+ in living cells and real water samples, indicating their promising prospects in biological and environmental field.
Collapse
Affiliation(s)
- Zi-Ying Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhong-Yong Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Hui-Ya Tan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xue Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| | - Chang-Zhi Dong
- Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China; Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Lei Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Yang K, Huang LJ, Wang YX, Du YC, Tang JG, Wang Y, Cheng MM, Zhang Y, Kipper MJ, Belfiore LA, Wickramasinghe SR. Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj06045b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reviewed the recent developments in graphene-based composite membranes and discussed their challenges in this paper.
Collapse
|
18
|
A fast and green preconcentration method based on surfactant ion pair-switchable solvent dispersive liquid–liquid microextraction for determination of phenazopyridine in pharmaceutical and biological samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1378-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Development of spectrophotometric method for iron determination in fortified wheat and maize flours. Food Chem 2018; 242:205-210. [DOI: 10.1016/j.foodchem.2017.08.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 11/17/2022]
|
20
|
Zhu Y, Hu X, Pan D, Han H, Lin M, Lu Y, Wang C, Zhu R. Speciation determination of iron and its spatial and seasonal distribution in coastal river. Sci Rep 2018; 8:2576. [PMID: 29416105 PMCID: PMC5803190 DOI: 10.1038/s41598-018-20991-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
In this study, the speciation of iron (Fe), including total Fe (TFe) and acidified dissolved Fe (ADFe), was assessed by fast cathodic absorption stripping voltammetry, using a gold electrode and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) as a novel complexing agent for Fe. The validity and accuracy of this method were compared with the standard spectrophotometry and tested by the standard samples. Under optimized conditions, the Fe response was linear within the range of 0.01 to 1 μM with a detection limit of 1.2 nM. To further validate this method, the variation in concentrations of TFe and ADFe were investigated at twelve sampling stations in a local coastal river, in both the dry and wet season. Additionally, to further understand the interaction between Fe and environmental factors, the relationships between the concentration of Fe species and dissolved oxygen (DO) and salinity were also discussed.
Collapse
Affiliation(s)
- Yun Zhu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xueping Hu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Dawei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Haitao Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China
| | - Mingyue Lin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yan Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chenchen Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, P.R. China
| | - Rilong Zhu
- Hunan Environmental Monitoring Center Station, State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, P.R. China.
| |
Collapse
|
21
|
Hamid Y, Fat’hi MR. A colorimetric-dispersive solid-phase extraction method for the sensitive and selective determination of iron using dissolvable bathocuproinedisulfonic acid-intercalated layered double hydroxide nanosheets. NEW J CHEM 2018. [DOI: 10.1039/c7nj04282e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, a novel, simple, sensitive and selective method has been presented for the determination of iron using dissolvable bathocuproine disulfonic acid (BCS)-layered double hydroxides (LDHs) for dispersive solid-phase extraction (DSPE).
Collapse
Affiliation(s)
- Yahya Hamid
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Mohammad Reza Fat’hi
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| |
Collapse
|
22
|
Sadeghi S, Ashoori V. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4635-4642. [PMID: 28369892 DOI: 10.1002/jsfa.8335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/08/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The task-specific ionic liquid (TSIL) of 1-ethyl-3-methylimidazolium bromide functionalized with 8-hydroxyquinoline was used as a chelating agent and extracting solvent for dispersive liquid-liquid microextraction and subsequent determination of Fe(III) by flame atomic absorption spectrometry. The in situ solvent formation of TSIL using KPF6 provided the desired water-immiscible ionic liquid. The total Fe concentration could be determined after pre-oxidation of Fe(II) to Fe(III). Various factors affecting the proposed extraction procedure were optimized. RESULTS The proposed analytical conditions were: sample pH 5, TSIL amount 0.3% (w/v), KPF6 amount 0.15% (w/v), anti-sticking 0.1% (w/v) and salt concentration 5% (w/v). Under optimal conditions, the linear dynamic ranges for Fe(III) and total Fe were 20-80 and 20-110 ng mL-1 , respectively, with a detection limit of 6.9 ng mL-1 for Fe(III) and relative standard deviation of 2.2%. The proposed method was successfully applied to the determination of trace Fe(III) in water (underground, tap, refined water and artificial sea water) and beverage (apple, tomato, and tea) samples. CONCLUSION The developed method offers advantages such as simplicity, ease of operation, and extraction of Fe(III) from aqueous solutions without the use of organic solvent. It was successfully applied for iron speciation in different real samples. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, South khorasan, Iran
| | - Vahid Ashoori
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, South khorasan, Iran
| |
Collapse
|
23
|
A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Anal Bioanal Chem 2017; 409:6663-6675. [DOI: 10.1007/s00216-017-0622-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 09/02/2017] [Indexed: 12/25/2022]
|
24
|
Dispersive liquid-liquid microextraction coupled with digital image colorimetric analysis for detection of total iron in water and food samples. Food Chem 2017; 230:667-672. [DOI: 10.1016/j.foodchem.2017.03.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
|
25
|
Han H, Pan D, Wang C, Zhu R. Controlled synthesis of dendritic gold nanostructures by graphene oxide and their morphology-dependent performance for iron detection in coastal waters. RSC Adv 2017. [DOI: 10.1039/c6ra27075a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendritic gold nanostructures were controllably synthesized by graphene oxide for voltammetric determination of Fe(iii) in coastal waters.
Collapse
Affiliation(s)
- Haitao Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Dawei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Chenchen Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS)
- Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
| | - Rilong Zhu
- College of Water Sciences
- Beijing Normal University
- Beijing 100875
- P. R. China
- Hunan Environmental Monitoring Center Station
| |
Collapse
|
26
|
Shirkhanloo H, Ghazaghi M, Eskandari MM. Cloud point assisted dispersive ionic liquid -liquid microextraction for chromium speciation in human blood samples based on isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl] ethane thioate. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ancr.2016.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Thongsaw A, Chaiyasith WC, Sananmuang R, Ross GM, Ampiah-Bonney RJ. Determination of cadmium in herbs by SFODME with ETAAS detection. Food Chem 2016; 219:453-458. [PMID: 27765251 DOI: 10.1016/j.foodchem.2016.09.177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/28/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022]
Abstract
A method for the determination of cadmium in herb samples based on solidified floating organic drop microextraction (SFODME) using 1-(2-Pyridylazo)-2-naphthol (PAN) as a chelating reagent and detection by electrothermal atomic absorption spectrometry (ETAAS) was developed in the present work. The effects of pH, extraction solvent, extraction time, stirring rate, and extraction temperature were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.017-3.0μgL-1, with a detection limit (LOD) of 0.0052μgL-1. The relative standard deviation (%RSD) for 6 replicate measurements of 1.0μgL-1 cadmium was ±2.67%. The method was applied to the analysis of 10 types of Thai herb samples. Percentage recoveries were in the range 94.5-110.2%. It was found that cadmium concentrations in all Thai herb samples were less than the maximum residue level.
Collapse
Affiliation(s)
- Arnon Thongsaw
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wipharat Chuachuad Chaiyasith
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Ratana Sananmuang
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | |
Collapse
|
28
|
Tokay F, Bağdat S. Extraction of nickel from edible oils with a complexing agent prior to determination by FAAS. Food Chem 2016; 197:445-9. [DOI: 10.1016/j.foodchem.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/03/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
29
|
Hu X, Pan D, Lin M, Han H, Li F. Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1733-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Sundramoorthy AK, Premkumar BS, Gunasekaran S. Reduced Graphene Oxide-Poly(3,4-ethylenedioxythiophene) Polystyrenesulfonate Based Dual-Selective Sensor for Iron in Different Oxidation States. ACS Sens 2015. [DOI: 10.1021/acssensors.5b00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ashok K. Sundramoorthy
- Department of Biological
Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| | - Bhagya S. Premkumar
- Department of Biological
Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| | - Sundaram Gunasekaran
- Department of Biological
Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Li F, Pan D, Lin M, Han H, Hu X, Kang Q. Electrochemical determination of iron in coastal waters based on ionic liquid-reduced graphene oxide supported gold nanodendrites. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Determination of uranium in water samples using homogeneous liquid–liquid microextraction via flotation assistance and inductively coupled plasma-optical emission spectrometry. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-3951-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|