1
|
Yuan X, Zhou Y, Bi J, Li S, Wu H, Zeng M, Pan Y, Lin W, Zhou M, Zhang Z, Chen A, Wu H. An antioxidant composite film based on loquat seed starch incorporating resveratrol-loaded core-shell nanoparticles. Int J Biol Macromol 2025; 306:141493. [PMID: 40023425 DOI: 10.1016/j.ijbiomac.2025.141493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A Novel bioactive food packaging film was prepared from non-grain sourced loquat seed starch (LSS) incorporated with resveratrol-loaded nanoparticles (NRs) based on a zein/pectin core-shell system, where the NRs were prepared using the anti-solvent method. The chemical constitution of the LSS was analyzed. The film was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The physical, optical, and antioxidant properties of the films were also identified. The results showed that incorporating NRs into the films significantly increased antioxidation activity, although simultaneously decreasing light transmission, water content, and elongation at break properties. Furthermore, NRs (15 %) facilitated strong hydrogen bonding interactions with the LSS matrix, improving the barrier properties and tensile strength. The resveratrol release behavior of the composite films in ethanol solutions (10 % and 95 % in water, v/v) as a food simulant was also investigated. The LSS/NRs composite film is effective in delaying unwanted oxidation during the storage of soybean oil. In conclusion, LSS could be applied as a good film-forming matrix, and LSS films containing NRs exhibit excellent physical properties and antioxidant activity, making them ideal for convenience foods containing a grease mixture of spices and grease-class packaging.
Collapse
Affiliation(s)
- Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Yuxin Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Jiao Bi
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Huibin Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Mingwan Zeng
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Yixuan Pan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Wenxia Lin
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, Shanxi, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China; College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an 625014, Sichuan, China.
| |
Collapse
|
2
|
Xu Y, Yu P, Liang J, Chen Y, Yang C, Xia C, Deng J, Hai L, Chen J, Wu Y. Synthesis and bioactivity evaluation of glycosylated resveratrol derivatives as antioxidative neuroprotection agents against cerebral Ischemia-Reperfusion injury. Bioorg Chem 2024; 153:107791. [PMID: 39244974 DOI: 10.1016/j.bioorg.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H2O2-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia-reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.
Collapse
Affiliation(s)
- Yanning Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Naseroleslami M, Khakpai F, Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N. The modulatory effects of tyrosol and nano-tyrosol on anxiety-like behavior and emotional memory in streptozotocin-induced diabetic rats. Neuroreport 2024; 35:1011-1018. [PMID: 39324943 DOI: 10.1097/wnr.0000000000002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes were evaluated in streptozotocin-induced diabetic rats. Male diabetic rats were orally treated with 1 ml of saline, nano-niosome, tyrosol, and nano-tyrosol (20 mg/dl) for 30 days. Anxiety-like behavior and memory process were evaluated by an elevated plus-maze (EPM) test-retest paradigm. The results showed that a single intraperitoneal (i.p.) administration of streptozotocin (50 mg/kg) raised blood glucose. While daily intragastric administration of tyrosol and nano-tyrosol reduced blood glucose. Induction of type II diabetes produced a distorted cellular arrangement whereas treatment with tyrosol and nano-tyrosol showed a typical cellular arrangement in the liver. Furthermore, induction of type II diabetes decreased %OAT (%open-arm time) but daily intragastric application of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) enhanced %OAT and %OAE (%open-arm entry) in the EPM when compared to the saline groups, showing anxiogenic- and anxiolytic-like effects, respectively. Also, induction of type II diabetes increased %OAT while daily intragastric administration of tyrosol (20 mg/dl) and nano-tyrosol (20 mg/dl) decreased %OAT and %OAE in the EPM in comparison to the saline groups, displaying impairment and improvement of emotional memory, respectively. Interestingly, nano-tyrosol exhibited the highest significant effect rather than tyrosol. Upon these results, we proposed the beneficial effects of tyrosol and nano-tyrosol on the modulation of anxiety-like behavior and memory processes in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
| | | | - Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Haniyeh-Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology
- Faculty of Medicine, Herbal Pharmacology Research Center
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Palanisamy S, Varnan N, Venkatachalam S, Kuppuswamy K, Devi Selvaraju G, Ranjith Santhosh Kumar DS, Selvakesavan RK, Bangaru G, Bharathi D. Preparation of Cellulose Fiber Loaded with CuO Nanoparticles for Enhanced Shelf Life and Quality of Tomato Fruit. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2823. [PMID: 38930193 PMCID: PMC11204958 DOI: 10.3390/ma17122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The present study reports on the preparation of a cellulose fiber (CF) composite from D. lutescens, combined with copper oxide nanoparticles (DL@CF/CuO), to prolong the shelf life of tomatoes after harvest. The isolated cellulose fiber material was comprehensively characterized using XRD, FTIR, and FE-SEM analyses. The DLCF and DL@CF/CuO nanoparticles exhibited crystalline cellulose, as indicated by the XRD investigation. Both DLCF and DL@CF/CuO showed O-H and C-H FTIR spectra with identifiable vibrational peaks. The FE-SEM images depicted the dispersion of DL@CF/CuO-based fibers in a cellulose fiber matrix containing CuO nanoparticles. A 0.3% (wt/wt), a solution of DL@CF/CuO was coated onto the surface of early ripening tomato fruits. After a 25-day storage period at 25-29 °C and 85% RH, the results showed a significant extension in the shelf life of the tomato fruits, in line with changes in physiological properties and fruit quality. The extension of shelf life in tomato fruit epidermis treated with DL@CF/CuO was confirmed through FE-SEM analysis. L929 fibroblast cells were treated with the developed DL@CF/CuO nanocomposite, and no signs of toxicity were detected up to 75 µg/mL. Additionally, the DL@CF/CuO nanocomposite exhibited significant antifungal activity against Aspergillus flavus. In conclusion, this study provides novel insights for sustainable food security and waste control in the agricultural and food industries.
Collapse
Affiliation(s)
- Senthilkumar Palanisamy
- School of Biotechnology, Dr. G R Damodaran College of Science, Coimbatore 641014, Tamil Nadu, India
| | - Nandhana Varnan
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Shanmugam Venkatachalam
- Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, Tamil Nadu, India
| | - Kumarakuru Kuppuswamy
- Department of Food Processing Technology, PSG College of Arts and Science, Coimbatore 641014, Tamil Nadu, India
| | - Gayathri Devi Selvaraju
- Department of Biotechnology, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | | | | | - Gokul Bangaru
- Department of Physics, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Çömez M, Cellat M, Kuzu M, Uyar A, Türk E, Kaya YS, Etyemez M, Gökçek İ, Güvenç M. The effect of tyrosol on diclofenac sodium-induced acute nephrotoxicity in rats. J Biochem Mol Toxicol 2024; 38:e23582. [PMID: 37975510 DOI: 10.1002/jbt.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Although diclofenac (DCF) is a nonsteroidal anti-inflammatory drug that is considered safe, its chronic use and overdose may show some toxic effects. The protective effect of tyrosol (Tyr) pretreatment against DCF-induced renal damage was investigated in this study. The 32 rats used in the study were randomly divided into four groups of eight rats each. According to the data obtained, it was determined that creatinine, urea, and blood urea nitrogen (BUN) levels increased in serum samples of the DCF group. Besides, the levels of reduced glutathione (GSH) and glutathione peroxidase (GPx) activity decreased and the malondialdehyde (MDA) level increased in the kidney tissue. However, no change was observed in catalase (CAT) activity. Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and tumor necrosis factor-alpha (Tnf-α) levels increased and nuclear factor erythroid 2-related factor 2 (Nrf-2) levels decreased. No change was detected in the level of interleukin 1 beta (IL-1β). When the DCF+Tyr group and the DCF group were compared, it was assessed that Tyr had a curative effect on all biochemical parameters. Also, kidney damages, such as degeneration and necrosis of tubular epithelium and congestion of veins, were obviated by treatment with tyrosol in histopathological examinations. It was determined that Tyr pretreatment provided a protective effect against nephrotoxicity induced by DCF with its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Mehmet Çömez
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Müslüm Kuzu
- Faculty of Health Sciences, Karabuk University, Karabuk, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmocology and Toxicology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Yusuf Selim Kaya
- Ministry of Health, Elazig Fethi Sekin City Hospital, Department of Urology, Elazığ, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
6
|
Wang S, Li Y, Ma C, Huang D, Chen S, Zhu S, Wang H. Enzymatic molecular modification of water-soluble polyphenols: Synthesis, structure, bioactivity and application. Crit Rev Food Sci Nutr 2023; 63:12637-12651. [PMID: 35912423 DOI: 10.1080/10408398.2022.2105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The poor lipophilicity and instability of water-soluble polyphenols limit their bioavailability and application in food. However, increasing attention has been given to water-soluble polyphenols due to their multiple biological activities, which prompts the modification of the structure of water-soluble polyphenols to improve their lipophilicity and stability and enable more efficient application. This review presents the enzymatic biosynthesis of lipophilic derivatives of water-soluble polyphenols, which will change the molecular structure of water-soluble polyphenols based on the loss of hydroxyl or carboxyl groups. Therefore, the effects of reaction factors on the structure of polyphenol derivatives and the change in their bioactivities will be further analyzed. Previous studies have shown that lipases, solvent systems, and hydrophobic groups are major factors influencing the synthesis and lipophilicity of polyphenol derivatives. Moreover, the biological activities of polyphenol derivatives were changed to a certain extent, such as through the enhancement or weakening of antioxidant activity in different systems and the increase in anti-influenza virus activity and antibacterial activity. The improvement of lipophilicity also expands polyphenol application in food. This review may contribute to the efficient synthesis of lipophilic derivatives of water-soluble polyphenols to extend the utilization and application range of polyphenols.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chaoyang Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Shangwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Fragopoulou E, Gkotsi K, Petsini F, Gioti K, Kalampaliki AD, Lambrinidis G, Kostakis IK, Tenta R. Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules 2023; 28:5547. [PMID: 37513418 PMCID: PMC10386404 DOI: 10.3390/molecules28145547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Resveratrol, a naturally occurring stilbene, exhibits numerous beneficial health effects. Various studies have demonstrated its diverse biological actions, including anti-oxidant, anti-inflammatory, and anti-platelet properties, thereby supporting its potential for cardio protection, neuroprotection, and anti-cancer activity. However, a significant limitation of resveratrol is its weak bioavailability. To overcome this challenge, multiple research groups have investigated the synthesis of new resveratrol derivatives to enhance bioavailability and pharmacological activities. Nevertheless, there are limited data on the effects of resveratrol derivatives on platelet function. Therefore, the objective of this study was to synthesize resveratrol methoxy derivatives and evaluate their anti-platelet and anti-proliferative activity. Platelet-rich plasma (PRP) obtained from healthy volunteers was utilized to assess the derivatives' ability to inhibit platelet aggregation induced by platelet activating factor (PAF), adenosine diphosphate (ADP), and thrombin receptor activating peptide (TRAP). Additionally, the derivatives' anti-tumor activity was evaluated against the proliferation of PC-3 and HCT116 cells. The results revealed that some methoxy derivatives of resveratrol exhibited comparable or even superior anti-platelet activity compared to the original compound. The most potent derivative was the 4'-methoxy derivative, which demonstrated approximately 2.5 orders of magnitude higher anti-platelet activity against TRAP-induced platelet aggregation, indicating its potential as an anti-platelet agent. Concerning in silico studies, the 4'-methyl group of 4'-methoxy derivative is oriented similarly to the fluorophenyl-pyridyl group of Vorapaxar, buried in a hydrophobic cavity. In terms of their anti-tumor activity, 3-MRESV exhibited the highest potency in PC-3 cells, while 3,4'-DMRESV and TMRESV showed the greatest efficacy in HCT116 cells. In conclusion, methoxy derivatives of resveratrol possess similar or improved anti-platelet and anti-cancer effects, thereby holding potential as bioactive compounds in various pathological conditions.
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gkotsi
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Filio Petsini
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gioti
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Amalia D Kalampaliki
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis K Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Roxane Tenta
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| |
Collapse
|
8
|
Sun T, Liu Y, Wang K, Duan F, Lu L. Biotransformation of Tyrosol into a Novel Valuable α-Galactoside with Increased Solubility and Improved Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37319317 DOI: 10.1021/acs.jafc.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, tyrosol [2-(4-hydroxyphenyl) ethanol], which is rich in olive oil and red wine, was converted to a novel bioactive galactoside by enzymic glycosylation. The gene of α-galactosidase from Geobacillus stearothermophilus 23 was cloned and expressed in Escherichia coli as catalytically active inclusion bodies. The catalytically active inclusion bodies efficiently catalyzed the galactosylation of tyrosol using either melibiose or raffinose family oligosaccharides as glycosyl donors, resulting in a glycoside with 42.2 or 14.2% yields. The glycoside product was purified and identified as p-hydroxyphenethyl α-d-galactopyranoside by mass spectrometry and NMR analyses. The inclusion bodies can be recycled and reused for at least 10 batch reactions of galactoside synthesis. Moreover, the galactoside showed 11-fold increased water solubility and reduced cytotoxicity as compared to tyrosol. Also, it exhibited higher antioxidative and anti-inflammatory activities than tyrosol based on lipopolysaccharide-induced activated BV2 cells. These results provided important insights into the application of tyrosol derivatives in functional foods.
Collapse
Affiliation(s)
- Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yan Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
9
|
Jafari-Rastegar N, Hosseininia HS, Jalilvand E, Naseroleslami M, Khakpai F, Mousavi-Niri N. Oral administration of nano-tyrosol reversed the diabetes-induced liver damage in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2023; 22:297-305. [PMID: 37255797 PMCID: PMC10225388 DOI: 10.1007/s40200-022-01133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2023]
Abstract
Objectives The present study was designed to evaluate the effects of Tyrosol and Nano-tyrosol on the cellular arrangement, collagen disposition, protein level of insulin receptor (INSR), and superoxide dismutase (SOD) activity in both control and streptozotocin-induced diabetic rats. Methods Type 2 Diabetes (T2D) was induced in rats by a single intraperitoneal injection of streptozotocin (50 mg/kg). Experimental rats were administered Tyrosol and Nano-tyrosol 1 ml intra-gastrically at a dose of 20 mg/kg once a day for 30 days. Then, rats were sacrificed according to ethical principles. Livers were removed and processed for histological studies using the paraffin technique. Furthermore, non-paraffin sections were used for the INSR-1 western blot technique. Results At the end of the experiments, the rats in diabetic control and plain niosome groups exhibited a significant increase in collagen disposition (p < 0.001), and apoptotic cells (p < 0.001), as well as decreased total protein levels of INSR (p < 0.001), and SOD activity (p < 0.001) in the hepatic cells. Oral administration of Tyrosol and Nano-tyrosol to diabetic rats reversed all the above-mentioned parameters to near normal levels (p < 0.001). Nano-tyrosol showed the highest significant effect rather than Tyrosol. Conclusion The results of the present study suggested the beneficial effects of Tyrosol and especially Nano-tyrosol on decreasing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal pharmacology research center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haniyeh-Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal pharmacology research center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Jalilvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal pharmacology research center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fateme Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, P.O.Box: 193951495, Tehran, Iran
| |
Collapse
|
10
|
Zhang B, Zhao Y, Guo K, Tian H, Wang C, Wang R, Chen Y, Chen X, Zheng H, Gao B, Shen J, Tian W. Macromolecular nanoparticles to attenuate both reactive oxygen species and inflammatory damage for treating Alzheimer's disease. Bioeng Transl Med 2023; 8:e10459. [PMID: 37206236 PMCID: PMC10189435 DOI: 10.1002/btm2.10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Prevention and early intervention are the current focus of treatment for Alzheimer's disease (AD). An increase in reactive oxygen species (ROS) is a feature of the early stages of AD, thus suggesting that the removal of excess ROS can be a viable method of improving AD. Natural polyphenols are able to scavenge ROS and thus promising for treating AD. However, some issues need to be addressed. Among them, important are that most polyphenols are hydrophobic, have low bioavailability in the body, are easily degraded, and that single polyphenols have insufficient antioxidant capacity. In this study, we employed two polyphenols, resveratrol (RES) and oligomeric proanthocyanidin (OPC), and creatively grafted them with hyaluronic acid (HA) to form nanoparticles to address the aforementioned issues. Meanwhile, we strategically grafted the nanoparticles with the B6 peptide, enabling the nanoparticles to cross the blood-brain barrier (BBB) and enter the brain for AD treatment. Our results illustrate that B6-RES-OPC-HA nanoparticles can significantly scavenge ROS, reduce brain inflammation, and improve learning and memory ability in AD mice. B6-RES-OPC-HA nanoparticles have the potential to prevent and alleviate early AD.
Collapse
Affiliation(s)
- Bosong Zhang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yufang Zhao
- Laboratory for Space Environment and Physical SciencesHarbin Institute of TechnologyHarbinChina
| | - Kai Guo
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Hui Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cao Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Ruiqi Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Yue Chen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
- Division of Biomedical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada
| | | | - Bingxin Gao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Jieyi Shen
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Weiming Tian
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
11
|
Liu J, Wang K, Wang M, Deng H, Chen X, Shang Y, Liu X, Yu X. Efficient whole cell biotransformation of tyrosol from L-tyrosine by engineered Escherichia coli. Enzyme Microb Technol 2022; 160:110100. [PMID: 35872508 DOI: 10.1016/j.enzmictec.2022.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 ℃, and the space-time yield reached 0.478 mM·L-1·h-1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.
Collapse
Affiliation(s)
- Jinbin Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Kaipeng Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Mian Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Xiaodong Chen
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaochen Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
12
|
Effect of Moderate Wine Consumption on Oxidative Stress Markers in Coronary Heart Disease Patients. Nutrients 2022; 14:nu14071377. [PMID: 35405991 PMCID: PMC9002743 DOI: 10.3390/nu14071377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Evidence from research studies reports that wine consumption is associated with lower cardiovascular disease risk, partly through the amelioration of oxidative stress. The aim of the present study was to examine the effect of regular light to moderate wine consumption from coronary heart disease (CHD) patients compared to the effect induced by alcohol intake without the presence of wine microconstituents, on oxidation-induced macromolecular damage as well as on endogenous antioxidant enzyme activity. A randomized, single-blind, controlled, three-arm parallel intervention was carried out, in which 64 CHD patients were allocated to three intervention groups. Group A consumed no alcohol, and Group B (wine) and Group C (ethanol) consumed 27 g of alcohol/day for 8 weeks. Blood and urine samples were collected at baseline and at 4 and 8 weeks. Urine oxidized guanine species levels, protein carbonyls, thiobarbituric acid substances (TBARS) levels, as well as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, were measured. Oxidized guanine species and protein carbonyl levels were significantly increased in the ethanol group during the intervention and were significantly decreased in the wine group. These results support the idea that wine’s bioactive compounds may exert antioxidant actions that counteract the macromolecular oxidative damage induced by alcohol in CHD patients.
Collapse
|
13
|
Ali M, Ansari AN, Nayab M, Ansari H, Ansari S. Efficacy of a poly-herbal Unani formulation and dry cupping in treatment of post-stroke hemiplegia: An exploratory, single arm clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
De novo biosynthesis of tyrosol acetate and hydroxytyrosol acetate from glucose in engineered Escherichia coli. Enzyme Microb Technol 2021; 150:109886. [PMID: 34489039 DOI: 10.1016/j.enzmictec.2021.109886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Tyrosol and hydroxytyrosol derived from virgin olive oil and olives extract, have wide applications both as functional food components and as nutraceuticals. However, they have low bioavailability due to their low absorption and high metabolism in human liver and small intestine. Acetylation of tyrosol and hydroxytyrosol can effectively improve their bioavailability and thus increase their potential use in the food and cosmeceutical industries. There is no report on the bioproductin of tyrosol acetate and hydroxytyrosol acetate so far. Thus, it is of great significance to develop microbial cell factories for achieving tyrosol acetate or hydroxytyrosol acetate biosynthesis. In this study, a de novo biosynthetic pathway for the production of tyrosol acetate and hydroxytyrosol acetate was constructed in Escherichia coli. First, an engineered E. coli that allows production of tyrosol from simple carbon sources was established. Four aldehyde reductases were compared, and it was found that yeaE is the best aldehyde reductase for tyrosol accumulation. Subsequently, the pathway was extended for tyrosol acetate production by further overexpression of alcohol acetyltransferase ATF1 for the conversion of tyrosol to tyrosol acetate. Finally, the pathway was further extended for hydroxytyrosol acetate production by overexpression of 4-hydroxyphenylacetate 3-hydroxylase HpaBC.
Collapse
|
15
|
Biocatalyzed Flow Oxidation of Tyrosol to Hydroxytyrosol and Efficient Production of Their Acetate Esters. Antioxidants (Basel) 2021; 10:antiox10071142. [PMID: 34356374 PMCID: PMC8301122 DOI: 10.3390/antiox10071142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tyrosol (Ty) and hydroxytyrosol (HTy) are valuable dietary phenolic compounds present in olive oil and wine, widely used for food, nutraceutical and cosmetic applications. Ty and HTy are endowed with a number of health-related biological activities, including antioxidant, antimicrobial and anti-inflammatory properties. In this work, we developed a sustainable, biocatalyzed flow protocol for the chemo- and regio-selective oxidation of Ty into HTy catalyzed by free tyrosinase from Agaricus bisporus in a gas/liquid biphasic system. The aqueous flow stream was then in-line extracted to recirculate the water medium containing the biocatalyst and the excess ascorbic acid, thus improving the cost-efficiency of the process and creating a self-sufficient closed-loop system. The organic layer was purified in-line through a catch-and-release procedure using supported boronic acid that was able to trap HTy and leave the unreacted Ty in solution. Moreover, the acetate derivatives (TyAc and HTyAc) were produced by exploiting a bioreactor packed with an immobilized acyltransferase from Mycobacterium smegmatis (MsAcT), able to selectively act on the primary alcohol. Under optimized conditions, high-value HTy was obtained in 75% yield, whereas TyAc and HTyAc were isolated in yields of up to 80% in only 10 min of residence time.
Collapse
|
16
|
Makky EA, AlMatar M, Mahmood MH, Ting OW, Qi WZ. Evaluation of the Antioxidant and Antimicrobial Activities of Ethyl Acetate Extract of Saccharomyces cerevisiae. Food Technol Biotechnol 2021; 59:127-136. [PMID: 34316274 PMCID: PMC8284104 DOI: 10.17113/ftb.59.02.21.6658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
RESEARCH BACKGROUND Antioxidants are important compounds present at low concentrations that inhibit oxidation processes. Due to the side effects of synthetic antioxidants, research interest has increased considerably towards finding natural sources of antioxidants that can replace the synthetic ones. The emergence and spread of antibiotic resistance require the development of new drugs or some potential sources of novel medicine. This work aims to extract the secondary metabolites of Saccharomyces cerevisiae using ethyl acetate as a solvent and to determine the antioxidant and antimicrobial activities of these extracted metabolites. EXPERIMENTAL APPROACH The antioxidant activity of the secondary metabolites of S. cerevisiae were determined using DPPH, ABTS and FRAP assays. Furthermore, the antimicrobial potential of the ethyl acetate extract of S. cerevisiae against Cutibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis was assessed. RESULTS AND CONCLUSION Five out of 13 of the extracted secondary metabolites were identified as antioxidants. The antioxidant activity of the S. cerevisiae extract exhibited relatively high IC50 of 455.26 and 294.51 μg/mL for DPPH and ABTS respectively, while the obtained FRAP value, expressed as ascorbic acid equivalents, was 44.40 μg/mL. Moreover, the extract had a significant antibacterial activity (p<0.05) against Staphylococcus aureus and Staphylococcus epidermidis at the concentrations of 100 and 200 mg/mL, respectively. However, no inhibitory effect was observed against Cutibacterium acnes as the extract was only effective against the bacterium at the concentrations of 300 and 400 mg/mL (inhibition zones ranging from 9.0±0.0 to 9.3±0.6) respectively (p<0.05). Staphylococcus aureus was highly sensitive to the extract, with a MIC value of 18.75 mg/mL. NOVELTY AND SCIENTIFIC CONTRIBUTION This report confirmed the efficacy of the secondary metabolites of S. cerevisiae as a natural source of antioxidants and antimicrobials and suggested the possibility of employing them in drugs for the treatment of infectious diseases caused by the tested microorganisms.
Collapse
Affiliation(s)
- Essam A. Makky
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Manaf AlMatar
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Mahmood H. Mahmood
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Ooi Wei Ting
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Wong Zi Qi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| |
Collapse
|
17
|
Plotnikov MB, Plotnikova TM. Tyrosol as a Neuroprotector: Strong Effects of a "Weak" Antioxidant. Curr Neuropharmacol 2021; 19:434-448. [PMID: 32379590 PMCID: PMC8206466 DOI: 10.2174/1570159x18666200507082311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
The use of neuroprotective agents for stroke is pathogenetically justified, but the translation of the results of preclinical studies of neuroprotectors into clinical practice has been a noticeable failure. One of the leading reasons for these failures is the one-target mechanism of their activity. p-Tyrosol (Tyr), a biophenol, is present in a variety of natural sources, mainly in foods, such as olive oil and wine. Tyr has a wide spectrum of biological activity: antioxidant, stress-protective, anti-inflammatory, anticancer, cardioprotective, neuroprotective and many others. This review analyzes data on the neuroprotective, antioxidant, anti-inflammatory, anti-apoptotic and other kinds of Tyr activity as well as data on the pharmacokinetics of the substance. The data presented in the review substantiate the acceptability of tyr as the basis for the development of a new neuroprotective drug with multitarget activity for the treatment of ischemic stroke. Tyr is a promising molecule for the development of an effective neuroprotective agent for use in ischemic stroke.
Collapse
Affiliation(s)
- Mark B Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 3 Lenin Av., Tomsk 634028, Russian Federation
| | | |
Collapse
|
18
|
Moine E, Boukhallat M, Cia D, Jacquemot N, Guillou L, Durand T, Vercauteren J, Brabet P, Crauste C. New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radic Biol Med 2021; 162:367-382. [PMID: 33129975 DOI: 10.1016/j.freeradbiomed.2020.10.316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Dry age-related macular degeneration and Stargardt disease undergo a known toxic mechanism caused by carbonyl and oxidative stresses (COS). This is responsible for accumulation in the retinal pigment epithelium (RPE) of A2E, a main toxic pyridinium bis-retinoid lipofuscin component. Previous studies have shown that carbonyl stress in retinal cells could be reduced by an alkyl-phloroglucinol-DHA conjugate (lipophenol). Here, we performed a rational design of different families of lipophenols to conserve anti-carbonyl stress activities and improve antioxidant properties. Five synthetic pathways leading to alkyl-(poly)phenol derivatives, with phloroglucinol, resveratrol, catechin and quercetin as the main backbone, linked to poly-unsaturated fatty acid, are presented. These lipophenols were evaluated in ARPE-19 cell line for their anti-COS properties and a structure-activity relationship study is proposed. Protection of ARPE-19 cells against A2E toxicity was assessed for the four best candidates. Finally, interesting anti-COS properties of the most promising quercetin lipophenol were confirmed in primary RPE cells.
Collapse
Affiliation(s)
- Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| | - Manel Boukhallat
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Nathalie Jacquemot
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| |
Collapse
|
19
|
Huang J, Huang N, Xu S, Luo Y, Li Y, Jin H, Yu C, Shi J, Jin F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem 2020; 88:108552. [PMID: 33220405 DOI: 10.1016/j.jnutbio.2020.108552] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), and Parkinson's disease (PD), are characterized by the progressive loss of the structure and function of neurons and most commonly occur in the elderly population. Microglia are resident macrophages of the central nervous system (CNS). The neuroinflammation caused by excessive microglial activation is closely related to the onset and progression of many NDs. Therefore, inhibiting excessive microglial activation is a potential drug target for controlling neuroinflammation. In recent years, natural products as modulators of microglial polarization have attracted considerable attention in the field of NDs therapy. Furthermore, resveratrol (RES) has been found to have a protective effect in NDs through the inhibition of microglial activation and the regulation of neuroinflammation. In this review, we mainly summarize the therapeutic potential of RES and its various molecular mechanisms in the treatment of NDs through the modulation of microglial activation.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China; School of Public Health, Zunyi Medical University, Guizhou, China
| | - Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Yong Luo
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Guizhou, China
| | - Yan Li
- School of Public Health, Zunyi Medical University, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical University, Guizhou, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
20
|
Paulo F, Santos L. New insights in the in vitro release of phenolic antioxidants: The case study of the release behavior of tyrosol from tyrosol-loaded ethylcellulose microparticles during the in vitro gastrointestinal digestion. Colloids Surf B Biointerfaces 2020; 196:111339. [PMID: 32911295 DOI: 10.1016/j.colsurfb.2020.111339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
In this study, tyrosol - a phenolic antioxidant that present in olive oil and olive mill wastes - was embedded in ethylcellulose microparticles by double emulsion solvent evaporation technique. The effect of loading content (5 % w/w and 10 % w/w) on the release behavior and bioaccessibility of tyrosol was evaluated. The polymer endowed efficient protection to tyrosol during the in vitro gastrointestinal digestion of loaded microparticles as the maximum release of tyrosol was observed during the simulated intestinal digestion, and the releases were kept outstanding low during the simulated salivary and gastric digestions. The bioaccessibility of tyrosol was improved when encapsulated. The best-fitting models of the release profiles of tyrosol were the first, and the zero-order models for formulations considering a loading of 5% w/w and 10 % w/w, respectively. The results of this study bring new perspectives for the design of loaded microparticles that will be further submitted to gastrointestinal digestion.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
21
|
Keramat M, Golmakani MT. A kinetic approach to microwave-assisted auto-catalytic synthesis of sesamyl butyrate and evaluating its antioxidant activity on improving canola oil thermal stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Meshginfar N, Tavakoli H, Dornan K, Hosseinian F. Phenolic lipids as unique bioactive compounds: a comprehensive review on their multifunctional activity toward the prevention of Alzheimer's disease. Crit Rev Food Sci Nutr 2020; 61:1394-1403. [PMID: 32363900 DOI: 10.1080/10408398.2020.1759024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phenolic lipids are multifunctional compounds which play an important biological role in the body. Their unique biologic functionality stems from their strong amphiphilic character which allows them to be incorporated in erythrocytes. Through membrane incorporation, these compounds exert their biological effects on neurons which are not modulated by hydrophilic compounds. These bioactive compounds are present in nature as secondary plant metabolites, and consequently their availability is limited, for dietary and medical purposes. In this review, the pathways and mechanisms associated with the pathogenesis of Alzheimer's disease will be described. In addition, the modulatory effects of phenolic lipids on these pathways and a list of several synthetic, semi synthetic and natural sources of phenolic lipids will be examined as having the potential to prevent or combat Alzheimer's disease.
Collapse
Affiliation(s)
- Nasim Meshginfar
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Hamed Tavakoli
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Kelly Dornan
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada
| | - Farah Hosseinian
- Department of Chemistry, Food Science and Nutrition, Carleton University, Ottawa, Ontario, Canada.,Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Gelatin/zein fiber mats encapsulated with resveratrol: Kinetics, antibacterial activity and application for pork preservation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Paulo F, Santos L. Encapsulation of the Antioxidant Tyrosol and Characterization of Loaded Microparticles: an Integrative Approach on the Study of the Polymer-Carriers and Loading Contents. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Congming Li, Zhou Y, Ye B, Xu M. Sensitive Voltammetric Sensor for Evaluation of trans-resveratrol Levels in Wines based on Poly(L-lysine) Modified Electrode. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Li QS, Li Y, Deora GS, Ruan BF. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev Med Chem 2019; 19:809-825. [DOI: 10.2174/1389557519666190128093840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/05/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
Resveratrol is a non-flavonoid polyphenol containing a terpenoid backbone. It has been intensively studied because of its various promising biological properties, such as anticancer, antioxidant, antibacterial, neuroprotective and anti-inflammatory activities. However, the medicinal application of resveratrol is constrained by its poor bioavailability and stability. In the past decade, more attention has been focused on making resveratrol derivatives to improve its pharmacological activities and pharmacokinetics. This review covers the literature published over the past 15 years on synthetic analogues of resveratrol. The emphasis is on the chemistry of new compounds and relevant biological activities along with structure-activity relationship. This review aims to provide a scientific and reliable basis for the development of resveratrol-based clinical drugs.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yao Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ban-Feng Ruan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
27
|
Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 2019; 39:2505-2533. [PMID: 31074028 DOI: 10.1002/med.21592] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022]
Abstract
Small molecule, dietary antioxidants exert a remarkably broad range of bioactivities, and many of these can be explained by the influence of antioxidants on the redox homeostasis. Such compounds help to modulate the levels of harmful reactive oxygen/nitrogen species, and therefore participate in the regulation of various redox signaling pathways. However, upon ingestion, antioxidants usually undergo extensive metabolism that can generate a wide range of bioactive metabolites. This makes it difficult, but otherwise a need, to identify the ones responsible for the different activities of antioxidants. By better understanding their ways of action, the use of antioxidants in therapy can be improved. This review provides a summary on the role of the in vivo metabolic changes and the oxidized metabolites on the mechanisms behind the bioactivity of antioxidants. A special attention is given to metabolites described as products of biomimetic oxidative chemical reactions, which can be considered as models of free radical scavenging. During such reactions a wide variety of metabolites are formed, and they can exert completely different specific bioactivities as compared to their parent antioxidants. This implies that exploring the free radical scavenging-related metabolite fingerprint of each antioxidant molecule, collectively defined here as the scavengome, will lead to a deeper understanding of the bioactivity of these compounds. Furthermore, this paper aims to be a working tool for systematic studies on oxidized metabolic fingerprints of antioxidants, which will certainly reveal an often-neglected segment of chemical space that is a treasury of bioactive compounds.
Collapse
Affiliation(s)
- Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary.,Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720, Szeged, Hungary
| |
Collapse
|
28
|
Vega-Gálvez A, Poblete J, Quispe-Fuentes I, Uribe E, Bilbao-Sainz C, Pastén A. Chemical and bioactive characterization of papaya (Vasconcellea pubescens) under different drying technologies: evaluation of antioxidant and antidiabetic potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00117-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
|
30
|
Moine E, Brabet P, Guillou L, Durand T, Vercauteren J, Crauste C. New Lipophenol Antioxidants Reduce Oxidative Damage in Retina Pigment Epithelial Cells. Antioxidants (Basel) 2018; 7:E197. [PMID: 30572579 PMCID: PMC6315395 DOI: 10.3390/antiox7120197] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial pathology and its progression is exacerbated by oxidative stress. Oxidation and photo-oxidation reactions modify lipids in retinal cells, contribute to tissue injury, and lead to the formation of toxic adducts. In particular, autofluorescent pigments such as N-retinylidene-N-retinylethanolamine (A2E) accumulate as lipofuscin in retinal pigment epithelial cells, contribute to the production of additional reactive oxygen species (ROS), and lead to cell degeneration. In an effort to develop efficient antioxidants to reduce damage caused by lipid oxidation, various natural polyphenols were structurally modified to increase their lipophilicity (lipophenols). In this study, resveratrol, phloroglucinol, quercetin and catechin were selected and conjugated to various polyunsaturated fatty acids (PUFAs) using classical chemical strategies or enzymatic reactions. After screening for cytotoxicity, the capacity of the synthesized lipophenols to reduce ROS production was evaluated in ARPE-19 cells subjected to H₂O₂ treatment using a dichlorofluorescein diacetate probe. The positions of the PUFA on the polyphenol core appear to influence the antioxidant effect. In addition, two lipophenolic quercetin derivatives were evaluated to highlight their potency in protecting ARPE-19 cells against A2E photo-oxidation toxicity. Quercetin conjugated to linoleic or α-linolenic acid were promising lipophilic antioxidants, as they protected ARPE-19 cells from A2E-induced cell death more effectively than the parent polyphenol, quercetin.
Collapse
Affiliation(s)
- Espérance Moine
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Faculty of Pharmacy, 15 av. Charles Flahault, 34093 Montpellier, France.
| | - Philippe Brabet
- Institute for Neurosciences of Montpellier, INSERM U1051-UM, Hospital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France.
| | - Laurent Guillou
- Institute for Neurosciences of Montpellier, INSERM U1051-UM, Hospital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France.
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Faculty of Pharmacy, 15 av. Charles Flahault, 34093 Montpellier, France.
| | - Joseph Vercauteren
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Faculty of Pharmacy, 15 av. Charles Flahault, 34093 Montpellier, France.
| | - Céline Crauste
- Institute of Biomolecules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Faculty of Pharmacy, 15 av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
31
|
Antioxidant and Antibacterial Activity of Roseroot (Rhodiola rosea L.) Dry Extracts. Molecules 2018; 23:molecules23071767. [PMID: 30022015 PMCID: PMC6099734 DOI: 10.3390/molecules23071767] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
Roseroot (Rhodiola rosea L.) belongs to plants revealing adaptogenic properties, which are attributed to the presence of specific phenolic compounds and are reflected mainly as antioxidant activity. The aim of the present study was to determine the antioxidant and antibacterial activity of various products obtained from R. rosea (underground organs as well as their aqueous and ethanolic dry extracts) in relation to the chemical profiles of phenolic and essential oil compounds. The chemical profiles were determined by High-performance Liquid Chromatography with a diode-array detector (HPLC-DAD) and Gas chromatography-mass spectrometry (GC-MS), antioxidant activity by (1,1-Diphenyl-2-picrylhydrazyl) Scavenging Capacity Assay (DPPH), (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) Scavenging Capacity Assay (ABTS) and Ferric Reducing Antioxidant Power Assay (FRAP) and antimicrobial properties were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) values following the broth microdilutions method. The results show that the investigated samples differed in terms of their chemical compositions and biological activities. The extracts were more abundant in phenolic compounds (salidroside, tyrosol, and rosavin derivatives) in comparison to dried underground organs. The content of the determined phenolics in the analyzed extracts was affected by the solvent used for extraction. The ethanolic extract was characterized by the highest content of these substances in comparison to the aqueous one and the dried raw material, especially with regard to rosavin (969.71 mg/100 g). In parallel, this extract showed the strongest antioxidant and antibacterial activity. However, dried R. rosea underground organs also revealed strong antibacterial effects against, for example, Staphylococcus strains.
Collapse
|
32
|
Oh WY, Shahidi F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem 2018; 261:267-273. [PMID: 29739593 DOI: 10.1016/j.foodchem.2018.03.085] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Resveratrol (R) was lipophilized by esterification in order to facilitate its application in a wide range of products and to possibly enhance its bioactivity. Twelve resveratrol derivatives were prepared using acyl chlorides of different chain length (C3:0-C22:6) and their antioxidant activities assessed. While resveratrol showed the highest antioxidant activity in oil-in-water emulsion, its derivatives (RC6:0, RC8:0, RC10:0, RC12:0, RC16:0) showed better antioxidant activity in a bulk oil system. Resveratrol esters RC20:5n-3 (REPA) and RC22:6n-3 (RDHA) showed the highest antioxidant activity when added to ground meat. Meanwhile, resveratrol derivatives (RC3:0-RC14:0) had better hydrogen peroxide scavenging activity than resveratrol. All test compounds except resveratrol and REPA inhibited copper-induced LDL oxidation. Moreover, test compounds effectively inhibited hydroxyl radical induced DNA scission. These results suggest that resveratrol derivatives could potentially serve as functional food ingredients and supplements for health promotion and disease risk reduction.
Collapse
Affiliation(s)
- Won Young Oh
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
33
|
Savietto A, Polaquini CR, Kopacz M, Scheffers DJ, Marques BC, Regasini LO, Ferreira H. Antibacterial activity of monoacetylated alkyl gallates against Xanthomonas citri subsp. citri. Arch Microbiol 2018. [PMID: 29525827 DOI: 10.1007/s00203-018-1502-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Asiatic citrus canker (ACC) is an incurable disease of citrus plants caused by the Gram-negative bacterium Xanthomonas citri subsp. citri (X. citri). It affects all the commercially important citrus varieties in the major orange producing areas around the world. Control of the pathogen requires recurrent sprays of copper formulations that accumulate in soil and water reservoirs. Here, we describe the improvement of the alkyl gallates, which are potent anti-X. citri compounds, intended to be used as alternatives to copper in the control of ACC. Acetylation of alkyl gallates increased their lipophilicity, which resulted in potentiation of the antibacterial activity. X. citri exposed to the acetylated compounds exhibited increased cell length that is consistent with the disruption of the cell division apparatus. Finally, we show that inhibition of cell division is an indirect effect that seemed to be caused by membrane permeabilization, which is apparently the primary target of the acetylated alkyl gallates.
Collapse
Affiliation(s)
- Abigail Savietto
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Carlos Roberto Polaquini
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Malgorzata Kopacz
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Beatriz Carvalho Marques
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Luís Octavio Regasini
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
34
|
Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chem 2018; 242:369-377. [DOI: 10.1016/j.foodchem.2017.09.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
|
35
|
Comparison of chicoric acid, and its metabolites caffeic acid and caftaric acid: In vitro protection of biological macromolecules and inflammatory responses in BV2 microglial cells. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Sun Y, Zhou D, Shahidi F. Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem 2017; 245:1262-1268. [PMID: 29287352 DOI: 10.1016/j.foodchem.2017.11.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yuanxin Sun
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Dayong Zhou
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
37
|
Banihani SA. Semen quality as affected by olive oil. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1357044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
38
|
Wang F, Chatterjee S. Dominant Carbons in trans- and cis-Resveratrol Isomerization. J Phys Chem B 2017; 121:4745-4755. [PMID: 28402662 DOI: 10.1021/acs.jpcb.7b02115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A comprehensive analysis for isomerization of geometric isomers in the case of resveratrol (R) has been presented. As an important red wine molecule, only one geometric isomer of resveratrol, i.e., trans-R rather than cis-R, is primarily associated with health benefit. In the present study, density function theory (DFT) provides accurate descriptions of isomerization of resveratrol. The nearly planar trans-R forms a relatively rigid and less flexible conjugate network, but the nonplanar cis-R favors a more flexible structure with steric through space interaction. The calculated carbon nuclear magnetic resonance (NMR) chemical shift indicates that all carbons are different in the isomers; it further reveals that four carbon sites, i.e., C(6), C(8)═C(9), and C(11), have a significant response to the geometric isomerization. Here C(6) is related to the steric effect in cis-R, whereas C(11) may indicate the isomerization proton transfer on C(9) linking with the resorcinol ring. The excess orbital energy spectrum (EOES) confirms the NMR "bridge of interest" carbons and reveals that five valence orbitals of 34a, 35a, 46a, 55a, and 60a respond to the isomerization most significantly. The highest occupied molecular orbital (HOMO), 60a, of the isomer pair is further studied using dual space analysis (DSA) for its orbital momentum distributions, which exhibit p-electron dominance for trans-R but hybridized sp-electron dominance for cis-R. Finally, energy decomposition analysis (EDA) highlights that trans-R is preferred over cis-R by -4.35 kcal·mol-1, due to small electrostatic energy enhancement of the attractive orbital energy with respect to the Pauli repulsive energy.
Collapse
Affiliation(s)
- Feng Wang
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne, P.O. Box 218, Victoria, 3122, Australia
| | - Subhojyoti Chatterjee
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, Melbourne, P.O. Box 218, Victoria, 3122, Australia
| |
Collapse
|
39
|
Tang F, Xie Y, Cao H, Yang H, Chen X, Xiao J. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chem 2017; 219:321-328. [PMID: 27765233 DOI: 10.1016/j.foodchem.2016.09.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
|
40
|
|
41
|
Fernandez-Pastor I, Fernandez-Hernandez A, Rivas F, Martinez A, Garcia-Granados A, Parra A. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives. JOURNAL OF NATURAL PRODUCTS 2016; 79:1737-1745. [PMID: 27337069 DOI: 10.1021/acs.jnatprod.6b00124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.
Collapse
Affiliation(s)
- Ignacio Fernandez-Pastor
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonia Fernandez-Hernandez
- Centro "Venta del Llano" del Instituto Andaluz de Investigacion y Formacion Agraria, Pesquera, Agroalimentaria y de la Produccion Ecologica (IFAPA) , Mengibar, Jaén 23620, Spain
| | - Francisco Rivas
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Antonio Martinez
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Garcia-Granados
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| | - Andres Parra
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada , Fuentenueva s/n, ES-18071 Granada, Spain
| |
Collapse
|
42
|
Cao H, Jia X, Shi J, Xiao J, Chen X. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure–affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. Food Chem 2016; 202:383-8. [PMID: 26920308 DOI: 10.1016/j.foodchem.2016.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 02/08/2023]
|
43
|
Farag MR, Alagawany M, Tufarelli V. In vitro antioxidant activities of resveratrol, cinnamaldehyde and their synergistic effect against cyadox-induced cytotoxicity in rabbit erythrocytes. Drug Chem Toxicol 2016; 40:196-205. [DOI: 10.1080/01480545.2016.1193866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mayada Ragab Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt,
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt, and
| | - Vincenzo Tufarelli
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Science and Animal Production, University of Bari ‘Aldo Moro’, Valenzano, Bari, Italy
| |
Collapse
|
44
|
Wang G, Zhang M, Zhong Q, Lei Z, Wu H, Lai F. Protective effects of resveratrol against hypoxanthine-xanthine oxidase-induced toxicity on human erythrocytes. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
45
|
Aldawsari FS, Aguiar RP, Wiirzler LAM, Aguayo-Ortiz R, Aljuhani N, Cuman RKN, Medina-Franco JL, Siraki AG, Velázquez-Martínez CA. Anti-inflammatory and antioxidant properties of a novel resveratrol–salicylate hybrid analog. Bioorg Med Chem Lett 2016; 26:1411-5. [DOI: 10.1016/j.bmcl.2016.01.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 11/24/2022]
|
46
|
Zhou P, Yang X, Jia X, Yu J, Asenso J, Xiao F, Wang C, Wei W. Effect of 6′-acetylpaeoniflorin on dinitrochlorobenzene-induced allergic contact dermatitis in BALB/c mice. Immunol Res 2016; 64:857-68. [PMID: 26798038 DOI: 10.1007/s12026-016-8788-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Antenucci S, Panzella L, Farina H, Ortenzi MA, Caneva E, Martinotti S, Ranzato E, Burlando B, d'Ischia M, Napolitano A, Verotta L. Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization. RSC Adv 2016. [DOI: 10.1039/c5ra23004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative polymerization of tyrosol afforded a mixture of oligomers (OligoTyr) which proved to be more active than tyrosol as antioxidant and as stimulator of alkaline phosphatase (ALP) activity when loaded into polylactic acid (PLA) scaffolds.
Collapse
Affiliation(s)
- Stefano Antenucci
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| | - Lucia Panzella
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples
- Italy
| | - Hermes Farina
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| | - Enrico Caneva
- Interdepartmental Center for Large Instrumentation (CIGA)
- University of Milan
- I-20133 Milan
- Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
| | - Bruno Burlando
- Department of Science and Technological Innovation
- University of Piemonte Orientale “Amedeo Avogadro”
- I-15121 Alessandria
- Italy
- Biophysics Institute
| | - Marco d'Ischia
- Department of Chemical Sciences
- University of Naples “Federico II”
- Naples
- Italy
| | | | - Luisella Verotta
- Department of Chemistry
- University of Milan
- I-20133 Milan
- Italy
- CRC Materiali Polimerici “LaMPo”
| |
Collapse
|
48
|
TRPA1 channels as targets for resveratrol and related stilbenoids. Bioorg Med Chem Lett 2015; 26:899-902. [PMID: 26750258 DOI: 10.1016/j.bmcl.2015.12.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022]
Abstract
A series of twenty resveratrol analogues was synthesized and tested on TRPA1 and TRPV1 channels. None was able to significantly modulate TRPV1 channels. Conversely, most of them exhibited remarkably higher TRPA1 modulating activity than resveratrol. Optimal potency was observed with ortho monoxygenated stilbenes 6 and 17.
Collapse
|
49
|
Prasad C, Imrhan V, Juma S, Maziarz M, Prasad A, Tiernan C, Vijayagopal P. Bioactive Plant Metabolites in the Management of Non-Communicable Metabolic Diseases: Looking at Opportunities beyond the Horizon. Metabolites 2015; 5:733-65. [PMID: 26703752 PMCID: PMC4693193 DOI: 10.3390/metabo5040733] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
There has been an unprecedented worldwide rise in non-communicable metabolic diseases (NCDs), particularly cardiovascular diseases (CVD) and diabetes. While modern pharmacotherapy has decreased the mortality in the existing population, it has failed to stem the rise. Furthermore, a large segment of the world population cannot afford expensive pharmacotherapy. Therefore, there is an urgent need for inexpensive preventive measures to control the rise in CVD and diabetes and associated co-morbidities. The purpose of this review is to explore the role of food bioactives in prevention of NCDs. To this end, we have critically analyzed the possible utility of three classes of food bioactives: (a) resistant starch, a metabolically resistant carbohydrate known to favorably modulate insulin secretion and glucose metabolism; (b) cyclo (His-Pro), a food-derived cyclic dipeptides; and (c) polyphenol-rich berries. Finally, we have also briefly outlined the strategies needed to prepare these food-bioactives for human use.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
| | - Mindy Maziarz
- Department of Nutrition and Food Sciences, Texas Woman's University, Houston, TX 77030, USA.
| | - Anand Prasad
- Department of Medicine, Division of Cardiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Casey Tiernan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA.
| |
Collapse
|
50
|
Zhao H, Ma T, Fan B, Yang L, Han C, Luo J, Kong L. Protective effect of trans-δ-viniferin against high glucose-induced oxidative stress in human umbilical vein endothelial cells through the SIRT1 pathway. Free Radic Res 2015; 50:68-83. [PMID: 26483208 DOI: 10.3109/10715762.2015.1108412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress plays a critical role in the pathogenesis of diabetic vascular complications. Trans-δ-viniferin (TVN), a polyphenolic compound, has recently attracted much attention as an antioxidant exhibiting a hypoglycemic potential. In the present study, we aimed at investigating the protective effect of TVN against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and the potential mechanism involved. We found that TVN attenuated reactive oxygen species (ROS) production, increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels to ameliorate cell survival induced by 35 mM glucose. Meanwhile, it inhibited high glucose-induced apoptosis by maintaining Ca(2+) and preserving mitochondrial membrane potential (MMP) levels. The immunoblot analysis indicated that TVN efficiently regulated the cleavage of caspase family, p53, Bax and Bcl-2, all mediated by SIRT1. Furthermore, the increased level of SIRT1 induced by TVN was inhibited by nicotinamide and siRNA-medicated SIRT1 silencing (si-SIRT1), thereby confirming the significant role of SIRT1 in these events. In conclusion, our results indicated that TVN efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in high glucose-treated HUVECs. It suggested that TVN is pharmacologically promising for treating diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Huijun Zhao
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Ting Ma
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Boyi Fan
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Lei Yang
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Chao Han
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Jianguang Luo
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| | - Lingyi Kong
- a Department of Natural Medicinal Chemistry, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , China
| |
Collapse
|