1
|
Lu Y, He S, Zhao Z, Liu C, Lei Y, Liu M, Zhang Q, Lin D, Liu Y, Lin S, Lu X, Qin W. Structural Characteristics, Gelling Properties, In Vitro Antioxidant Activity and Immunomodulatory Effects of Rhamnogalacturonan-I Rich Pectic Polysaccharides Alkaline-Extracted from Wax Apple ( Syzygium samarangense). Foods 2025; 14:1227. [PMID: 40238448 PMCID: PMC11988759 DOI: 10.3390/foods14071227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
To upgrade the utilization of Syzygium samarangense in food industries, the key biological component, i.e., polysaccharide, was extracted from the fruit by alkaline treatment, and its structural characteristics, physicochemical properties, gelling properties and biological activities were investigated. The findings demonstrated that the alkaline-extracted S. samarangense polysaccharide (SSP-AK) predominantly exists as a pectic polysaccharide with a high rhamnogalacturonan-I domain. The monosaccharide composition primarily includes rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose. The molecular weight distribution of SSP-AK was characterized by two peaks, with fraction 1 exhibiting a high molecular weight of 7658 kDa and fraction 2 exhibiting a molecular weight of 345.3 kDa. Meanwhile, SSP-AK exhibited excellent rheological behavior and gelling properties upon Ca2+-induced gelation, which may be related to its relatively low degree of esterification of 41.3%. Further studies revealed that higher concentrations of pectin and Ca2+ led to the formation of stronger gels. The SSP-AK gels exhibited superior rheological properties, increased hardness, enhanced water-holding capacity, and a more compact network structure than the other gels. Moreover, SSP-AK exhibited significant in vitro antioxidant activity and immunomodulatory effects, including significantly enhancing the DPPH and ABTS radical-scavenging abilities and production of NO, IL-6, and TNF-α in RAW264.7 cell models. This study enhances the understanding of S. samarangense cell wall polysaccharides and may facilitate their application in the development of functional and health-oriented food products.
Collapse
Affiliation(s)
- Yue Lu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Siyu He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Zifan Zhao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Changxin Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Ye Lei
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Mingyu Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Shang Lin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| | - Xuesong Lu
- College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.L.); (S.H.); (Z.Z.); (C.L.); (Y.L.); (M.L.); (Q.Z.); (D.L.); (Y.L.); (S.L.)
| |
Collapse
|
2
|
Zhang G, Hao E, Xiao J, Yao C, Wang Y, Luo H. Abrus cantoniensis Hance: Ethnopharmacology, phytochemistry and pharmacology of a promising traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118543. [PMID: 38986752 DOI: 10.1016/j.jep.2024.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abrus cantoniensis Hance (ACH), known as Jigucao (Chinese: ) has been used in ethnopharmacology for a long history with therapeutic effects for clearing heat, soothing the liver, especially in treating acute and chronic hepatitis which was very effective. In southern China, such as Guangdong and Guangxi, people often use ACH in soup or herbal tea as dietetic therapy. AIM OF THE REVIEW This paper aims to review ACH's ethnopharmacology, phytochemistry, and pharmacological activity systematically, at the same time, we also hope to provide more research avenues between traditional uses and pharmacological properties. MATERIAL AND METHODS Through PubMed, Wan Fang Database, CNKI, Web of Science, EBSCO Database, and Google Scholar search for relevant literature in both Chinese and English, the keywords "Abrus cantoniensis, Abrus cantoniensis Hance, Jigucao, pharmacology, chemical constituents, clinical application, network pharmacology" were used alone or combination. RESULTS Traditionally, ACH was believed to have the effect of soothing the liver, clearing heat, and detoxifying, often used to treat diseases of the liver and inflammation. Modern pharmacological research indicates that ACH has liver protection, anti-inflammation, anti-oxidant, immunomodulation, anti-tumor effects and so on. Whether it was a single chemical compound or an extract from ACH, studies have found that it has abundant pharmacological activities, these were the fundamental sources of traditional uses, like liver protection and anti-inflammation. CONCLUSIONS A systematic review found that modern phytochemistry and pharmacodynamic research reports on ACH are closely related to its traditional uses, especially its hepatoprotective and anti-inflammatory effects. Modern research has also further explored and expanded the effects of ACH, such as its anti-tumor effect. And all these efforts are gradually filling the gap between traditional uses and modern pharmacology. In general, the current research on the pharmacodynamic mechanism of ACH still needs further in-depth research, and the strategies adopted must also be further strengthened.
Collapse
Affiliation(s)
- Guohui Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Erwei Hao
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Jian Xiao
- Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning, 530001, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Zhang Y, Dong R, Zhou H, Wang J, Shi J, Ye S, Cheng Y, Leng Y, Xu W, Kong L, Zhang H. The Flavonoid Glycoside from Abrus cantoniensis Hance Alleviates Alcoholic Liver Injury by Inhibiting Ferroptosis in an AMPK-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16323-16333. [PMID: 38990278 DOI: 10.1021/acs.jafc.4c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Abrus cantoniensis Hance is a vegetative food and can be used as a folk beverage or soup to clear liver toxins and prevent liver damage. However, the components and effects of A. cantoniensis Hance in alcohol-induced liver injury were unknown. This study aimed to obtain abundant phytochemicals from A. cantoniensis Hance and identify the potency of the isolates in preventing alcohol-induced liver injury. Alcohol-stimulated AML12 cells and Lieber-DeCarli diet-fed mice were used to establish in vitro and in vivo models, respectively. Our findings indicated that flavonoid glycosides, especially AH-15, could significantly alleviate alcohol-induced liver injury by inhibiting oxidative stress. Furthermore, we demonstrated that AH-15 inhibited ferroptosis induced by lipid peroxidation. Mechanically, we found that AH-15 regulated nuclear factor erythroid 2-related factor 2 (NRF2) expression via activation of AMP-activated protein kinase (AMPK) signaling. These results indicate that A. cantoniensis Hance is a great potential functional food for alleviating alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shenzhen Research Institute of China Pharmaceutical University, Shenzhen 518057, China
| | - Ruirui Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huiling Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingyi Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianfei Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Cheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yingrong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shenzhen Research Institute of China Pharmaceutical University, Shenzhen 518057, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shenzhen Research Institute of China Pharmaceutical University, Shenzhen 518057, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shenzhen Research Institute of China Pharmaceutical University, Shenzhen 518057, China
| |
Collapse
|
4
|
Sampath P, Rajalingam S, Murugesan S, Bhardwaj R, Gupta V. Evaluation of Chemical Composition among the Multi Colored Germplasm of Abrus precatorius L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1963. [PMID: 39065491 PMCID: PMC11281230 DOI: 10.3390/plants13141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
The medicinal plant Abrus precatorius L. was traditionally used in the Siddha and Ayurvedic systems of medicine in India. The Indian center of origin holds a vast variability in its seed color. The objective of this study was to assess the total monomeric anthocyanin, flavonol, as well as the antioxidative potential, protein content and ash content among the accessions. A total of 99 accessions conserved in the Indian National Genebank were used in this study. The methods used for the estimation of total monomeric anthocyanin, flavonol, as well as the antioxidative potential, protein content and ash content were the pH differential method, Oomah method, Ferric Reducing Antioxidant Potential, Dumas method and gravimetric method, respectively. The completely black colored accession was recorded with highest total monomeric anthocyanin (51.95 mg/100 g of cyanidin 3-glucoside equivalent) and flavonol content (66.41 mg/g of quercetin equivalent). Red + black colored accessions have recorded the maximum value with respect to antioxidants (14.18 mg/g of gallic acid equivalent). The highest amount of protein content was found in a completely white colored accession (20.67%) and the maximum ash content was recorded in red + black colored accession (4.01%). The promising accessions identified can be used by pharmaceutical companies in drug development and in curing degenerative diseases.
Collapse
Affiliation(s)
- Prabakaran Sampath
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India; (S.R.); (S.M.)
| | - Sowmyapriya Rajalingam
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India; (S.R.); (S.M.)
| | - Sharmila Murugesan
- The Graduate School, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India; (S.R.); (S.M.)
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Veena Gupta
- Division of Germplasm Conservation, National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| |
Collapse
|
5
|
Liu CJ, Li HX, Chen ZH, Li JJ, Shi W, Zhang FX. A review of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and toxicology of Abri Herba (Ji-Gu-Cao). PHYTOCHEMISTRY 2024; 221:114064. [PMID: 38508326 DOI: 10.1016/j.phytochem.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Abri Herba (AH, known as 'Ji-Gu-Cao' in China) has a long-term medicinal history of treating cholecystitis, acute and chronic hepatitis and non-alcoholic fatty liver (NAFL) in China or other Asian countries. This review aimed to provide a comprehensive analysis of AH in terms of ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and toxicology. The information involved in the study was collected from a variety of electronic resources, and >100 scientific studies have been used since 1962. Until now, 95 chemical compounds have been isolated and identified from AH and the seeds of Abrus cantoniensis Hance (ACH), including 47 terpenoids, 26 flavonoids and 4 alkaloids. The pharmacological activities of AH extracts and their pure compounds have been explored in the aspects of anti-hyperlipidaemia, hepatoprotection, anti-tumour, anti-viral, anti-bacterial, anti-inflammatory and analgesic, immunomodulation, antioxidant and others. The pharmacokinetics and excretion kinetics of AH in vivo and 15 traditional and clinical prescriptions containing AH have been sorted out, and the potential therapeutic mechanism and drug metabolism pattern were also summarised. The pods of ACH are toxic, with a median lethal dose (LD50) of 10.01 ± 2.90 g/kg (i.g.) in mice. Interestingly, the toxicity of ACH's pods and seeds decreased after boiling. However, the toxicity mechanism of pods of ACH is unclear, limiting its clinical application. Clinical trials in the future should be used to explore its safety. Meanwhile, as one of the relevant pharmacological activities, the effects and mechanism of AH on anti-hyperlipidaemia and hepatoprotection should be further studied, which is of great significance for understanding its mechanism of action in the treatment of NAFL disease and improving its clinical application.
Collapse
Affiliation(s)
- Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Hong-Xin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
6
|
Keny ES, Kale PP. Plants with potential anti-ulcerogenic activity and possible mechanism of actions based on their phyto-constitutional profile. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:665-674. [PMID: 35152595 DOI: 10.1515/jcim-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Gastric ulcer, the most common disorder of the digestive tract is formed due to an imbalance between acid and mucus content of the stomach. However, the currently used western therapeutic regimens have many drawbacks like adverse effects, recurrence of gastric ulcers, are expensive, and also, may have interactions with other drugs. Hence, there is a need for effective alternative therapy. Medicinal herbs have been used since ancient times to treat several diseases and are also evidenced to be effective against gastric ulcers. It is also evident that medicinal herbs have been proved to be equally effective or superior as compared to the existing synthetic medicines. In this review, five herbs have been taken into consideration and assumed to be effective against gastric ulcers. Abrus mollis, Korean Thistle (Cirsium japonicum var. maackii), Astralagus complanatus Bunge, Bauhinia monandra, and Embelia ribes Burm f. are the herbs whose data is been collected and reviewed for their potential gastro-protective action. Although, their side effects and toxicity profile need to be further evaluated. Hence, the purpose of this review is to gather evidence of these five medicinal herbs and their probable mechanism of action against gastric ulcers based on their phyto-constitutional profile.
Collapse
Affiliation(s)
- Ekta S Keny
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
7
|
Li L, Tu Y, Dai X, Xiao S, Tang Z, Wu Y, Fouad D, Ataya FS, Mehmood K, Li K. The effect of Abrus cantoniensis Hance on liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115560. [PMID: 37827094 DOI: 10.1016/j.ecoenv.2023.115560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The liver is a well-known organ contributing to digestion, hemostasis and detoxification, while liver injury is a world-widely distributed health problem with limited treatment choices. We detected the protective effect of Abrus cantoniensis Hance (ACH) on Carbon tetrachloride-induced (CCl4) liver injury in mice. Fifty ICR (Institute of Cancer Research) animals were grouped into five groups of control (a), CCl4 (d), ACH (25 mg/kg) treated group (c), ACH (50 mg/kg) treated group (b), and ACH (100 mg/kg) treated group (e). Mice in groups d, c, b, and e were given CCl4 every four days, and treated animals received daily ACH supplementation. The results showed that the daily body weights in CCl4-induced animals were slightly lower; however, the weight of ACH-treated mice increased, particularly in the higher dose group. Treatment with CCl4 led to increased liver weight and liver indices in mice, whereas supplementation with ACH reduced both liver weights and liver indices in animals. Histo-pathological analysis indicated that CCl4 led to inflammatory cell infiltration and hepatocellular degeneration, with collagenous fibers proliferation in ICR animals. In contrast, supplementation with ACH prominently decreased inflammatory cells and degeneration of hepatocytes and inhibited collagen fiber hyperplasia. Furthermore, the levels or concentrations of AST (p < 0.0001), ALT (p < 0.0001), MDA (p < 0.0001), IL-1β (p < 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01) were significantly higher in CCl4 induced ICR animals in group d. However, mice treated with ACH showed lower levels or concentrations of those indices in dose dependent manner. The levels of GSH-px (p < 0.0001), CAT (p < 0.0001) and SOD (p < 0.0001) were significantly reduced in CCl4 group; however, all these three enzymes exhibited significant (p < 0.05) increase in animals supplemented with ACH in dose dependent manner. The microbiome sequencing generated 1,168,327 filtered reads in the mice samples. A notable difference was observed in the composition of 6 phyla and 37 genera among the five ICR animal groups. Supplementation with ACH increased the abundance of beneficial genera of Coprococcus, Blautia and Clostridium, while concurrently decreased the presence of pathogenic genera of Mycoplasma and Helicobacter. In conclusion, we revealed that Abrus cantoniensis Hance has the potential to relieve liver damage induced by CCl4, through the reduction of inflammation, enhancement of antioxidant capacity, and regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Yangli Tu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Xiangjie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Shengjia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zhiyi Tang
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE JoInt. International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, the Islamia University of Bahawalpur, 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE JoInt. International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Zhang Z, Wang H, Kuang Z, Liang H, Ju Y, Meng D. From Tea to Health: Exploring Abrus mollis for Liver Protection and Unraveling Its Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15145-15155. [PMID: 37800321 DOI: 10.1021/acs.jafc.3c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Abrus mollis Hance is a characteristic medicinal herb which is used in Guangdong and Guangxi provinces of China for making soup, medicinal meals, and herbal tea to treat dampheat jaundice and rib discomfort. Current phytochemical study on A. mollis led to the isolation of four new flavones, mollisone A-D (1-4), and thirty two known compounds (5-36). Their structures were characterized by an extensive analysis of spectroscopic data including IR, UV, HR-ESI-MS, and 1D and 2D NMR, as well as electronic circular dichroism calculation. In addition, in order to initially understand their biological activities for traditional applications, in vitro antioxidant and hepatoprotective tests were carried out, whose results illustrated that 25 compounds had significant free radical scavenging ability, and compounds 13 and 16 exhibited protective activities on D-GalN-induced LO2 cell damage than the positive control. Moreover, network pharmacological analysis revealed that the hepatoprotective activity of A. mollis involved multitargets and multipathways such as PI3K/Akt, MAPK, and JAK-STAT pathways and various biological processes such as positive regulation of phosphorylation and regulation of kinase activity. These results suggested that this species could serve as a potential hepatoprotective agent for functional food or medicinal use.
Collapse
Affiliation(s)
- Zhiqi Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hanchuan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhulingzhi Kuang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hui Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Ju
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
9
|
Zhang C, Bu Q, Li C, Lu P, Liu C, Huang B. Simultaneous determination of abrine, hypaphorine, schaftoside and soyasaponin Bb in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study after oral administration of Abrus cantoniensis Hance extract. Biomed Chromatogr 2023; 37:e5696. [PMID: 37357379 DOI: 10.1002/bmc.5696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
A simple and sensitive liquid chromatography tandem mass spectrometry method was established and validated for the quantitative determination of abrine, hypaphorine, schaftoside and soyasaponin Bb in rat plasma. After preparation by protein precipitation with acetonitrile, the analytes and internal standard were separated on a Waters CORTECS T3 column using acetonitrile containing 0.1% formic acid and 0.1% formic acid in water as mobile phase by gradient elution in 2 min. The method showed excellent linearity over the range of 5-500 ng/ml with acceptable intra- and inter-day precision, accuracy, matrix effect and recovery. The stability assay indicated that the four analytes were stable during the analysis process. The method was applied to a pharmacokinetic study of Abrus cantoniensis Hance in rats. The result suggested that after oral administration, the four analytes were quickly absorbed into the plasma. The dose-normalized exposure of hypaphorine was the highest with a long elimination half-life (t1/2 9.83 h), followed by abrine and schaftoside with t1/2 values of 1.07 and 1.15 h. The dose normalized exposure of soyasaponin Bb was the lowest, which is possibily due to the high polarity and poor permeability. This study provides a basis for elucidating the material foundation of A. cantoniensis Hance.
Collapse
Affiliation(s)
- Chengzhong Zhang
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Qitao Bu
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Chunyan Li
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Pengfei Lu
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| | - Baokang Huang
- Faculty of Pharmacy, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Cao K, Chen J, Huang R, Lu R, Zhou X, Bu Y, Li L, Yao C. Metabolomics analysis reveals the differences between Abrus cantoniensis Hance and Abrus mollis Hance. BMC PLANT BIOLOGY 2023; 23:375. [PMID: 37525109 PMCID: PMC10391822 DOI: 10.1186/s12870-023-04372-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Abrus cantoniensis Hance. (Ac) and Abrus mollis (Am), two edible and medicinal plants with economic value in southern China, belong to the Abrus genus. Due to its growth characteristics, Am often replaces Ac in folk medicine. However, the latest National Pharmacopeia of China only recommends Ac. The differences in the metabolite composition of the plants are directly related to the differences in their clinical efficacy. RESULTS The difference in metabolites were analyzed using an untargeted metabolomic approach based on ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC‒ESI‒MS/MS). The roots (R), stems (S) and leaves (L) of the two varieties were examined, and 635 metabolites belonging to 8 classes were detected. A comparative study revealed clear variations in the metabolic profiles of the two plants, and the AmR group had more active ingredients (flavonoids and terpenoids) than the AcR group. The metabolites classified as flavonoids and triterpene saponins showed considerable variations among the various samples. Both Ac and Am had unique metabolites. Two metabolites (isovitexin-2''-xyloside and soyasaponin V) specifically belong to Ac, and nine metabolites (vitexin-2"-O-galactoside, ethyl salicylate, 6-acetamidohexanoic acid, rhein-8-O-glucoside, hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)-glucoside, methyl dioxindole-3-acetate, veratric acid, isorhamnetin-3-O-sophoroside-7-O-rhamnoside, and isorhamnetin-3-O-sophoroside) specifically belong to Am. CONCLUSIONS The metabolite differences between Ac and Am cause the differences in their clinical efficacy. Our findings serve as a foundation for further investigation of biosynthesis pathways and associated bioactivities and provide guidance for the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Kexin Cao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Rumei Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Xiao Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yuanyuan Bu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Chun Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| |
Collapse
|
11
|
Wei C, Wang X, Jiang X, Cao L. Preparation of quinoa bran dietary fiber-based zinc complex and investigation of its antioxidant capacity in vitro. Front Nutr 2023; 10:1183501. [PMID: 37305086 PMCID: PMC10249015 DOI: 10.3389/fnut.2023.1183501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
In order to improve the economic utilization of quinoa bran and develop a safe and highly available zinc ion biological supplement. In this study, a four-factor, three-level response surface optimization of quinoa bran soluble dietary fiber (SDF) complexation of zinc was studied. The effect used four factors on the chelation rate was investigated: (A) mass ratio of SDF to ZnSO4.7H2O, (B) chelation temperature, (C) chelation time, and (D) pH. Based on the results of the single-factor test, the four-factor three-level response surface method was used to optimize the reaction conditions. The optimal reaction conditions were observed as mentioned here: the mass ratio of quinoa bran SDF to ZnSO4.7H2O was 1, the reaction temperature was 65°C, the reaction time was 120 min, and the pH of the reaction system was 8.0. The average chelation rate was 25.18%, and zinc content is 465.2 μg/g under optimal conditions. The hydration method rendered a fluffy quinoa bran SDF structure. The intramolecular functional groups were less stable which made the formation of the lone pairs of electrons feasible to complex with the added divalent zinc ions to form a quinoa bran soluble dietary fiber-zinc complex [SDF-Zn(II)]. The SDF-Zn(II) chelate had higher 2,2-diphenylpicrylhydrazyl (DPPH), ABTS+, hydroxyl radical scavenging ability, and total antioxidant capacity. Therefore, metal ion chelation in dietary fiber is of biological importance.
Collapse
Affiliation(s)
- Chunhong Wei
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinhui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiujie Jiang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - LongKui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Thymol Edible Coating Controls Postharvest Anthracnose by Regulating the Synthesis Pathway of Okra Lignin. Foods 2023; 12:foods12020395. [PMID: 36673486 PMCID: PMC9858591 DOI: 10.3390/foods12020395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the methods and potential methods to control the postharvest diseases of okra. In this study, Colletotrichum fioriniae is the major pathogen that causes okra anthracnose, which can be isolated from naturally decaying okra. The pathogenicity of C. fioriniae against okra was preliminarily verified, and the related biological characteristics were explored. At the same time, an observational study was conducted to investigate the in vitro antifungal effect of thymol edible coating (TKL) on C. fioriniae. After culturing at 28 °C for 5 days, it was found that TKL showed an obvious growth inhibition effect on C. fioriniae. The concentration for 50% of the maximal effect was 95.10 mg/L, and the minimum inhibitory concentration was 1000 mg/L. In addition, it was found that thymol edible coating with a thymol concentration of 100 mg/L (TKL100) may cause different degrees of damage to the cell membrane, cell wall, and metabolism of C. fioriniae, thereby inhibiting the growth of hyphae and causing hyphal rupture. Refer to the results of the in vitro bacteriostatic experiment. Furthermore, the okra was sprayed with TKL100. It was found that the TKL100 coating could significantly inhibit the infection of C. fioriniae to okra, reduce the rate of brown spots and fold on the okra surface, and inhibit mycelium growth. In addition, the contents of total phenols and flavonoids of okra treated with TKL100 were higher than those of the control group. Meanwhile, the activities of phenylalaninammo-nialyase, cinnamic acid-4-hydroxylase, and 4-coumarate-CoA ligase in the lignin synthesis pathway were generally increased, especially after 6 days in a 28 °C incubator. The lignin content of TKL-W was the highest, reaching 65.62 ± 0.68 mg/g, which was 2.24 times of that of CK-W. Therefore, TKL may promote the synthesis of total phenols and flavonoids in okra, then stimulate the activity of key enzymes in the lignin synthesis pathway, and finally regulate the synthesis of lignin in okra. Thus, TKL could have a certain controlling effect on okra anthracnose.
Collapse
|
13
|
Tan Z, Chen S, Zhang M, Qu X, Li T, Zhang A, He Y, Ou M, Long L, Chen L, Wu F. An ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry identification and characterization of the active constituents from Abrus mollis Hance. J Sep Sci 2023; 46:e2200311. [PMID: 36349515 DOI: 10.1002/jssc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Abrus mollis Hance is a traditional Chinese medicine that is widely used to treat acute and chronic hepatitis, steatosis, and fibrosis. Its therapeutic qualities of it have long been acknowledged, although the active ingredients responsible for its efficacy and the mechanisms of its action are unknown. In this study, the chemical constituents absorbed into the blood from Abrus mollis Hance were assessed by using liquid chromatography-quadrupole-time-of-flight mass spectrometry and the data was analyzed with the UNIFI screening platform. The results obtained were compared to existing chromatographic-mass spectrometry information, including retention times and molecular weights as well as known reference compounds. 41 chemical constituents were found in Abrus mollis Hance, and these included 16 flavonoids, 13 triterpenoids, five organic acids, and two alkaloids. Experimentally it was found that Abrus mollis Hance had a therapeutic benefit when treating α-naphthalene isothiocyanate-induced acute liver injury in rats. In addition, 11 blood prototypical constituents, including six flavonoids, three triterpenoids, and two alkaloids, were found in serum samples following intragastric administration of Abrus mollis Hance extracts to rats. This novel study can be used for the quality control and pharmacodynamic assessment of Abrus mollis Hance in order to assess its efficacy in the therapeutic treatment of patients.
Collapse
Affiliation(s)
- Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Shimin Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Xiaosheng Qu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lu Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| |
Collapse
|
14
|
Liu R, Zhou F, Yu J, Wei X, Liu X, Yuan X, Yu C. Abrusamide H Impairs the Secretion of the Cytokines in RAW264.7 Cells and the Inflammatory Infiltration in Tail Transection-Induced Zebrafish. Chem Biodivers 2022; 19:e202200474. [PMID: 36190475 DOI: 10.1002/cbdv.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Abrus mollis Hance (Leguminosae) has a variety of biological activities, including anti-inflammatory, antioxidant, antibacterial, antiviral, and antitumor activities. However, the specific substances responsible for the anti-inflammatory effects are unknown. Abrusamide H (BJBS) is a truxillic acid derivative obtained from the leaves of Abrus mollis Hance and has potential anti-inflammatory effects. In this study, we aimed to estimate the potential effect and mechanism of BJBS in inflammation by establishing lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and an injured zebrafish tail fin in vivo. The RAW264.7 cells were treated with different concentrations of BJBS after LPS stimulation. The production of nitric oxide (NO) was detected by Griess reaction, and reactive oxygen species (ROS) were detected by an ROS assay kit. The levels of proinflammatory cytokines, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 18 (IL-18) were measured by ELISA. Results showed that BJBS at all concentrations inhibited the proliferation of RAW264.7 macrophages after LPS stimulation by cell counting kit-8 and the production of NO and ROS. In the BJBS treatment group, the levels of IL-6, TNF-α, IL-1β, and IL-18 decreased in a concentration-dependent manner. The results in vivo showed that no significant difference in the survival of zebrafish between the BJBS and blank groups and BJBS inhibited the migration and aggregation of zebrafish neutrophils in a dose-dependent manner in inflammation induced by tail transection-induced inflammation. In conclusion, BJBS inhibited the production of NO and ROS, decreased the levels of secreted IL-6, TNF-α, IL-1β, and IL-18, and reduced the migration and aggregation of zebrafish neutrophils.
Collapse
Affiliation(s)
- Roujia Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Feirong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Jiaxian Yu
- Jinan University, Guangzhou, P. R. China
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xiangying Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Xujiang Yuan
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| | - Chuqin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, East Waihuan Road 280, Guangzhou, P. R. China
| |
Collapse
|
15
|
Xu S, Li F, Wu B, Mei Y, Wang J, Wang J. Complete genome sequence and phylogenetic analysis of medicinal plant Abrus cantoniensis for evolutionary research and germplasm utilization. THE PLANT GENOME 2022; 15:e20236. [PMID: 35748235 DOI: 10.1002/tpg2.20236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Abrus cantoniensis Hance, a native medicinal plant in southern China, is officially recorded in the Chinese Pharmacopoeia. Here, we presented the first high-quality genome in Abrus genus, A. cantoniensis genome, as well as the detailed genomic information. The assembled genome size was 381.27 Mb with a scaffold N50 of 18.95 Mb, and 98.97% of the assembled sequences were anchored on 11 pseudochromosomes. The A. cantoniensis genome comprised 25,058 protein-coding genes and 45.12% of the assemblies were repetitive sequences. Comparative genome analysis suggested that chromosome translocation and inversion played an important role in the differentiation of Abrus. In addition, 24 toxin-related genes were identified, which formed two tandem gene clusters on chromosomes 2 and 3. The chromosome-level genome of A. cantoniensis obtained in this work provides a valuable resource for understanding the evolution, active ingredient biosynthesis, and genetic improvement for A. cantoniensis and Abrus species.
Collapse
Affiliation(s)
- Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural Univ., Guangzhou, 510642, China
| | - Bingqi Wu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural Univ., Guangzhou, 510642, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jingming Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural Univ., Guangzhou, 510642, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| |
Collapse
|
16
|
Sun WJ, Wu EY, Zhang GY, Xu BC, Chen XG, Hao KY, Wang Y, He LZ, Lv QZ. Total flavonoids of Abrus cantoniensis inhibit CD14/TLR4/NF-κB/MAPK pathway expression and improve gut microbiota disorders to reduce lipopolysaccharide-induced mastitis in mice. Front Microbiol 2022; 13:985529. [PMID: 36090098 PMCID: PMC9449526 DOI: 10.3389/fmicb.2022.985529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Established a model of lipopolysaccharide (LPS)-induced mastitis in mice, pathological sections and myeloperoxidase were used to detect the degree of tissue damage, enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of pro-inflammatory cytokines, meanwhile fluorescence quantitative PCR experiments were performed to detect the mRNA expression of CD14/TLR4/NF-κB/MAPK signalling pathway, and the faeces of mice were collected for 16S measurement of flora. The results showed that Abrus cantoniensis total flavonoids (ATF) could significantly reduce the damage of LPS on mammary tissue in mice and inhibit the secretion of inflammatory factors such as TNF-α, IL-1β and IL-6. At the mRNA level, ATF inhibited the expression of CD14/TLR4/NF-κB/MAPK pathway and enhanced the expression of tight junction proteins in the blood-milk barrier. In the results of the intestinal flora assay, ATF were found to be able to regulate the relative abundance of the dominant flora from the phylum level to the genus level, restoring LPS-induced gut microbial dysbiosis. In summary, ATF attenuated the inflammatory response of LPS on mouse mammary gland by inhibiting the expression of CD14/TLR4/NF-κB/MAPK pathway, enhancing the expression of tight junction proteins and restoring LPS-induced gut microbial dysbiosis. This suggests that ATF could be a potential herbal remedy for mastitis.
Collapse
Affiliation(s)
- Wen-Jing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
| | - En-Yun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ge-Yin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Chang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiao-Gang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kai-Yuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ling-Zhi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qi-Zhuang Lv
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
- *Correspondence: Qi-Zhuang Lv,
| |
Collapse
|
17
|
Combination of calcium lactate impregnation with UV-C irradiation maintains quality and improves antioxidant capacity of fresh-cut kiwifruit slices. Food Chem X 2022; 14:100329. [PMID: 35601211 PMCID: PMC9120056 DOI: 10.1016/j.fochx.2022.100329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023] Open
Abstract
Calcium lactate and shortwave ultraviolet combined treatment (abbr. CA-L + UV-C) has a synergistic effect on fresh-cut kiwifruits preservation. CA-L + UV-C reduced microbial growth. CA-L + UV-C increased phenolics accumulation by activating related enzyme activities. CA-L + UV-C improved antioxidant capacity by increasing antioxidant enzyme activity and promoting phenolics accumulation. CA-L + UV-C maintained quality by improving antioxidant capacity.
This study investigated the combined effects of calcium lactate (CA-L, 3 g L−1) and shortwave ultraviolet (UV-C, 4.0 kJ m−2) irradiation on quality attributes and antioxidant defense capacity of fresh-cut kiwifruits at refrigerated storage for 7 d. The results indicated that CA-L and UV-C joint treatment, compared to either treatment alone, alleviated microbial load, showed higher quality on ascorbic acid (AsA), green color, total chlorophyll, flesh hardness, total sugar, total acid and malonaldehyde (MDA) content. Besides, it inhibited O2·- and •OH generation, induced H2O2 production, improved the activity of antioxidant enzymes (SOD, CAT and APX), activated critical enzymes (PAL, C4H and 4CL) in phenylpropanoid metabolism pathway and further enhanced total phenolic and proanthocyanidin content. Above results demonstrated that UV-C together with CA-L treatment could synergistically maintain overall quality and improve antioxidant capacity of kiwifruit slices. Therefore, the combination of CA-L and UV-C treatment showed a potential practical application in fresh-cut kiwifruits.
Collapse
|
18
|
Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113411. [PMID: 35684349 PMCID: PMC9181920 DOI: 10.3390/molecules27113411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
In this research, the composition of free phenols, bound phenols, and anthocyanins and their in vitro antioxidant activity and in vitro α-glucosidase inhibiting activity were observed in different barley colors. The outcomes revealed that the contents of total phenols (570.78 mg/100 gDW), total flavonoids (47.08 mg/100 gDW), and anthocyanins (48.07 mg/100 g) were the highest in purple barley. Furthermore, the structure, composition, and concentration of phenolics differed depending on the colors of barley. The types and contents of bound total phenolic acids and flavonoids were greater than those of free total phenolic acids and flavonoids. The main phenolic acids in blue barley were cinnamic acid polyphenols, whereas in black, yellow, and purple barley, benzoic acid polyphenols were the main phenolic acids, and the main types of flavonoids in black and blue barley were chalcones and flavanones, respectively, whereas flavonol was the main type of flavonoid in yellow and purple barley. Moreover, cornflower pigment-3-glucoside was the major anthocyanin in blue, yellow, and purple barley, whereas the main anthocyanin in black barley was delphinidin-3-glucoside. The dark color of barley indicated richness in the anthocyanins. In addition, the free polyphenol fractions had stronger DPPH and ABTS radical scavenging capacity as compared to the bound ones. In vitro α-glucosidase-inhibiting activity was greater in bound polyphenols than in free polyphenols, with differences between different varieties of barley. Purple barley phenolic fractions had the greatest ABTS radical scavenging and iron ion reduction capacities, as well as the highest α-glucosidase-inhibiting activity. The strongest DPPH radical scavenging capacity was found in yellow barley, while the strongest in vitro α-glucosidase-inhibiting activity was found in anthocyanins isolated from black barley. Furthermore, in different colors of barley, there was a strong association between the concentration of specific phenolic compounds and antioxidant and α-glucosidase-inhibiting activities. The outcomes of this study revealed that all colored barley seeds tested were high in phenolic compounds, and had a good antioxidant impact and α-glucosidase-inhibiting activity. As a result, colored barley can serve as an antioxidant and hypoglycemic food. Polyphenols extracted from purple barley and anthocyanins extracted from black barley stand out among them.
Collapse
|
19
|
Qu D, Hu H, Lian S, Sun W, Si H. The Protective Effects of Three Polysaccharides From Abrus cantoniensis Against Cyclophosphamide-Induced Immunosuppression and Oxidative Damage. Front Vet Sci 2022; 9:870042. [PMID: 35585861 PMCID: PMC9108546 DOI: 10.3389/fvets.2022.870042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to systematically elucidate the immunomodulatory and antioxidant effects of three polysaccharide fractions (ACP60, ACP80, and ACPt2) from Abrus cantoniensis on cyclophosphamide (CTX)-induced immunosuppressive mice. The experimental mice were divided into 12 groups, then modeled and administrated with different doses of three polysaccharides (50, 150, 300 mg/kg/day) by gavage. The results showed that ACP could markedly recover the CTX-induced decline in immune organ and hemocytes indexes and promote proliferation of splenocytes, earlap swelling rate, secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6), and immunoglobulin (Ig-M and Ig-G). Additionally, ACP improved the enzymatic activities of T-SOD and GSH-PX greatly, while the level of MDA was significantly decreased in the liver. In particular, ACPt2 had higher immunomodulatory and antioxidant activities than ACP60 and ACP80. Based on the present findings, ACP could be utilized as an efficacious candidate for immunomodulators and antioxidants, which provide a new application prospect in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongshuai Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongjie Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaitao Lian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, Yulin, China
- Wenjing Sun
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si
| |
Collapse
|
20
|
Xu S, Sun M, Mei Y, Gu Y, Huang D, Wang J. The complete chloroplast genome sequence of the medicinal plant Abrus pulchellus subsp. cantoniensis: genome structure, comparative and phylogenetic relationship analysis. JOURNAL OF PLANT RESEARCH 2022; 135:443-452. [PMID: 35338406 DOI: 10.1007/s10265-022-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Abrus pulchellus subsp. cantoniensis, an endemic medicinal plant in southern China, is clinically used to treat jaundice hepatitis, cholecystitis, stomachache and breast carbuncle. Here, we assembled and analyzed the first complete chloroplast (cp) genome of A. pulchellus subsp. cantoniensis. The A. pulchellus subsp. cantoniensis cp genome size is 156,497 bp with 36.5% GC content. The cp genome encodes 130 genes, including 77 protein-coding genes, 30 tRNA genes and four rRNA genes, of which 19 genes are duplicated in the inverted repeats (IR) regions. A total of 30 codons exhibited codon usage bias with A/U-ending. Moreover, 53 putative RNA editing sites were predicted in 20 genes, all of which were cytidine to thymine transitions. Repeat sequence analysis identified 45 repeat structures and 125 simple-sequence repeats (SSRs) in A. pulchellus subsp. cantoniensis cp genome. In addition, 19 mononucleotides (located in atpB, trnV-UAC, ycf3, atpF, rps16, rps18, clpP, rpl16, trnG-UCC and ndhA) and three compound SSRs (located in ndhA, atpB and rpl16) showed species specificity between A. pulchellus subsp. cantoniensis and Abrus precatorius, which might be informative sources for developing molecular markers for species identification. Furthermore, phylogenetic analysis inferred that A. pulchellus subsp. cantoniensis was closely related to A. precatorius, and the genus Abrus formed a subclade with Canavalia in the Millettioid/Phaseoloid clade. These data provide a valuable resource to facilitate the evolutionary relationship and species identification of this species.
Collapse
Affiliation(s)
- Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, No. 18, West Second Street, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Mingyang Sun
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, No. 18, West Second Street, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, No. 18, West Second Street, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, No. 18, West Second Street, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning, 530200, Guangxi Zhuang Autonomous Region, China.
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, No. 18, West Second Street, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China.
| |
Collapse
|
21
|
Wang Y, Sun W, Wu E, Wang K, Chen X, Cui Y, Zhang G, Lv F, Wang Y, Peng X, Si H. Polysaccharides From Abrus cantoniensis Hance Modulate Intestinal Microflora and Improve Intestinal Mucosal Barrier and Liver Oxidative Damage Induced by Heat Stress. Front Vet Sci 2022; 9:868433. [PMID: 35445100 PMCID: PMC9013755 DOI: 10.3389/fvets.2022.868433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effects of polysaccharides from Abrus cantoniensis Hance (ACP) on antioxidant capacity, immune function, the hypothalamus-pituitary-adrenal (HPA) axis balance, the intestinal mucosal barrier, and intestinal microflora in heat stress (HS)-induced heat-injured chickens are rarely reported. The purpose of this study was to investigate the protective effects of ACP on HS-injured chickens by enhancing antioxidant capacity and immune function, repairing the intestinal mucosal barrier, and regulating intestinal microflora. A total of 120 native roosters in Guangxi were randomly divided into 5 groups to evaluate the protective effect of ACP on chickens injured by HS (33 ± 2°C). The results showed that ACP increased the body weight and the immune organ index of heat-injured chickens, regulated the oxidative stress kinase secretion, and restored the antioxidant level of heat-injured birds. ACP significantly inhibited the secretion of corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (COR) and reversed the disorder of hormone levels caused by HS. ACP significantly regulated the secretion levels of immune cytokines and restored the immune function of the body. ACP significantly improved the intestinal morphology and increased the expression levels of tight junction proteins, which had a positive effect on protecting intestinal health. The results of high-throughput sequencing of the 16S rRNA gene showed that HS led to an increase in the abundance of harmful bacteria and an abnormal increase in the abundance of intestinal microflora and that ACP restored the HS-induced intestinal microflora imbalance. In conclusion, this study provides a scientific basis for ACP as an antioxidant activity enhancer to reduce liver injury, regulate intestinal microflora, and protect intestinal mucosal damage in chickens.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Enyun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Geyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Wu EY, Sun WJ, Wang Y, Zhang GY, Xu BC, Chen XG, Hao KY, He LZ, Si HB. Optimization of Ultrasonic-Assisted Extraction of Total Flavonoids from Abrus Cantoniensis ( Abriherba) by Response Surface Methodology and Evaluation of Its Anti-Inflammatory Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072036. [PMID: 35408435 PMCID: PMC9000698 DOI: 10.3390/molecules27072036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022]
Abstract
Abrus cantoniensis is a Chinese herbal medicine with efficacy in clearing heat and detoxification, as well as relieving liver pain. The whole plant, except the seeds, can be used and consumed. Flavonoids have been found in modern pharmacological studies to have important biological activities, such as anti-inflammatory, antibacterial and antioxidant properties. The antibacterial and antioxidant bioactivities of the total flavonoids of Abrus cantoniensis (ATF) have been widely reported in national and international journals, but there are fewer studies on their anti-inflammatory effects. The present study focused on the optimization of the ultrasonic extraction process of ATF by response surface methodology and the study of its anti-inflammatory effects in vitro and in vivo. The results showed that the factors that had a great impact on the ATF extraction were the material-to-liquid ratio, ultrasonic extraction cycles and ethanol concentration. The best extraction process used a material-to-liquid ratio of 1:47, ultrasonic extraction cycles of 4 times, an ethanol concentration of 50%, an ultrasonic extraction time of 40 min and an ultrasonic power of 125 W. Under these conditions, the actual extraction rate of total flavonoids was 3.68%, which was not significantly different from the predicted value of 3.71%. In an in vitro anti-inflammatory assay, ATF was found to be effective in alleviating LPS (lipopolysaccharide)-induced inflammation in mouse peritoneal macrophages. In an in vivo anti-inflammatory assay, ATF was found to have a significant inhibitory effect on xylene-induced ear swelling in mice and cotton ball granuloma in mice, and the inhibitory effect was close to that of the positive control drug dexamethasone. This may provide a theoretical basis for the further development of the medicinal value of Abrus cantoniensis.
Collapse
Affiliation(s)
- En-Yun Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Wen-Jing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin 537000, China;
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Ge-Yin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Bai-Chang Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Xiao-Gang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Kai-Yuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Ling-Zhi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
| | - Hong-Bin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (E.-Y.W.); (Y.W.); (G.-Y.Z.); (B.-C.X.); (X.-G.C.); (K.-Y.H.); (L.-Z.H.)
- Correspondence:
| |
Collapse
|
23
|
Antibacterial activity of the ethyl acetate part of Abrus cantoniensis against Staphylococcus aureus. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Yuan X, Liu Y, Zhao H, Men L, He C, Qiu Y, Yu Q, Li K, Qi L, Chen D. The isolation, structure and fragmentation characteristics of natural truxillic and truxinic acid derivatives in Abrus mollis leaves. PHYTOCHEMISTRY 2021; 181:112572. [PMID: 33166750 DOI: 10.1016/j.phytochem.2020.112572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Five undescribed compounds were separated from Abrus mollis leaves, including two truxillate forms (abrusamide D, H) and three truxinate forms (abrusamide E, F, G). The absolute configuration of abrusamide D was determined by X-ray crystallography. Abrusamide A was reassessed and corrected to be β-truxinate configuration rather than α-form. LC-MS/MS and CD spectroscopy were applied to determine and analyze ten compounds, including four truxillate forms (abrusamide B ~ D and H), four truxinate forms (abrusamide E ~ G and A), and two precursors [(E)-N-(4-hydroxycinnamoyl) tyrosine, (Z)-N-(4-hydroxycinnamoyl) tyrosine]. It showed that the fragmentation pattern of truxillate was symmetric, while that of truxinate was asymmetric and irregular. The CD Cotton effect was related to cyclobutane configuration. These findings provided strong evidence for the cyclobutane dimers to discriminate their configuration. In addition, the bioactivity assay showed that the compounds had low toxicity and anti-inflammatory effect.
Collapse
Affiliation(s)
- Xujiang Yuan
- Center for Drug Research and Development, Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C, Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Yadi Liu
- Center for Drug Research and Development, Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C, Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huan Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Lijiao Men
- Center for Drug Research and Development, Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C, Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Cuimin He
- Center for Drug Research and Development, Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C, Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yu Qiu
- Center for Drug Research and Development, Class III Laboratory of Modern Chinese Medicine Preparation, State Administration of Traditional Chinese Medicine of the P.R.C, Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qiangqiang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Longkai Qi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
25
|
Yu MM, Wu FX, Chen WL, Kuang JW, Zhou L, Fu JJ, Sheng XF, Zou H. A new isoflavone glycoside from Abrus cantoniensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:588-593. [PMID: 30982343 DOI: 10.1080/10286020.2019.1598394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
A new isoflavone glycoside named as 8-O-methylrelusin-7-O-β-D-apifuranosyl-(1→2)-β-D-glucopyranoside (1), together with two known compounds, 8-O-methylrelusin-7-O-β-D-glucopyranoside (2) and isobiflorin (3), were isolated from Abrus cantoniensis. The structure of the new compound was elucidated on the basis of spectroscopic methods including extensive 1D NMR, 2D NMR, and HRESIMS. This is the first report of isoflavone from Abrus cantoniensis. Moreover, all isolated compounds were evaluated for their cytotoxicity against SMMC-7721 and MHCC97-H cell lines.[Formula: see text].
Collapse
Affiliation(s)
- Miao-Miao Yu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Fu-Xuan Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wan-Ling Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jun-Wei Kuang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jun-Jiang Fu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Xi-Feng Sheng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
26
|
Yuan Q, Lin S, Fu Y, Nie XR, Liu W, Su Y, Han QH, Zhao L, Zhang Q, Lin DR, Qin W, Wu DT. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus). Int J Biol Macromol 2019; 127:178-186. [DOI: 10.1016/j.ijbiomac.2019.01.042] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
27
|
Physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra ( Abelmoschus esculentus) fruit at different maturation stages. Journal of Food Science and Technology 2019; 56:1275-1286. [PMID: 30956307 DOI: 10.1007/s13197-019-03592-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/27/2023]
Abstract
Phenolic compounds are considered the main bioactive components in okra fruits. In order to well understand the accumulation pattern of phenolic compounds in okra fruits during maturation, and to obtain okra fruits with high level of health-beneficial phenolic compounds, physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes of okra fruits at different maturation stages were investigated. Noticeable variations in physicochemical properties and phenolic profiles of okra were observed at different maturation stages. Phenolic compounds, including quercetin-3-O-gentiobioside, quercetin-3-O-glucoside (isoquercitrin), rutin, quercetin derivative, protocatechuic acid, and catechin derivative, were determined to be the major compounds in okra fruits, while quercetin-3-O-gentiobioside was the most abundant phenolic compound. Considering the accumulation patterns of fruit size, firmness, and total flavonoid content of okra fruits, the optimal harvest time of okra fruits with relatively high level of health-beneficial phenolic compounds was determined. Furthermore, okra fruits at different maturation stages exerted remarkable antioxidant capacities and inhibitory effects on the pancreatic lipase, α-glucosidase, and α-amylase. The Pearson's correlation showed that quercetin-3-O-gentiobioside was one of the major contributors to the antioxidant capacities and inhibitory effects on digestive enzymes. Results are beneficial for understanding of the accumulation pattern of phenolic compounds in okra fruits during maturation, and can aid in the targeting of specific maturation stages with an optimal phenolic profile for the production of health-beneficial products.
Collapse
|
28
|
Guo H, Yuan Q, Fu Y, Liu W, Su YH, Liu H, Wu CY, Zhao L, Zhang Q, Lin DR, Chen H, Qin W, Wu DT. Extraction Optimization and Effects of Extraction Methods on the Chemical Structures and Antioxidant Activities of Polysaccharides from Snow Chrysanthemum ( Coreopsis Tinctoria). Polymers (Basel) 2019; 11:E215. [PMID: 30960199 PMCID: PMC6419038 DOI: 10.3390/polym11020215] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
In order to explore snow chrysanthemum polysaccharides (SCPs) as functional food ingredients and natural antioxidants for industrial applications, both microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) were firstly optimized for the extraction of SCPs. Furthermore, the effects of conventional hot water extraction, UAE, and MAE on the chemical structures and antioxidant activities of SCPs were investigated. The maximum extraction yields of SCPs extracted by UAE (4.13 ± 0.24%) and MAE (4.26 ± 0.21%) were achieved at the optimized extraction parameters as follows: ultrasound amplitude (68%) and microwave power (500 W), ultrasound extraction time (21 min) and microwave extraction time (6.5 min), and ratio of liquid to raw material (42.0 mL/g for UAE and 59.0 mL/g for MAE). In addition, different extraction methods significantly affected the contents of uronic acids, the molecular weights, the molar ratio of constituent monosaccharides, and the degree of esterification of SCPs. SCPs exhibited remarkable DPPH (IC50 ≤ 1.702 mg/mL), ABTS (IC50 ≤ 1.121 mg/mL), and nitric oxide (IC50 ≤ 0.277 mg/mL) radical scavenging activities, as well as reducing power (≥ 80.17 ± 4.8 μg Trolox/mg), which suggested that SCPs might be one of the major contributors toward the antioxidant activities of snow chrysanthemum tea. The high antioxidant activities (DPPH, IC50 = 0.693 mg/mL; ABTS, IC50 = 0.299 mg/mL; nitric oxide, IC50 = 0.105 mg/mL; and reducing power, 127.79 ± 2.57 μg Trolox/mg) observed in SCP-M extracted by the MAE method might be partially attributed to its low molecular weight and high content of unmethylated galacturonic acids. Results suggested that the MAE method could be an efficient technique for the extraction of SCPs with high antioxidant activity, and SCPs could be further explored as natural antioxidants for industrial application.
Collapse
Affiliation(s)
- Huan Guo
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yuan Fu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ya-Hong Su
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hui Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Chao-Yi Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Li Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - De-Rong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
29
|
Li HY, Yuan Q, Yang YL, Han QH, He JL, Zhao L, Zhang Q, Liu SX, Lin DR, Wu DT, Qin W. Phenolic Profiles, Antioxidant Capacities, and Inhibitory Effects on Digestive Enzymes of Different Kiwifruits. Molecules 2018; 23:molecules23112957. [PMID: 30428549 PMCID: PMC6278324 DOI: 10.3390/molecules23112957] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023] Open
Abstract
In order to obtain high-quality kiwifruits with health-promoting characteristics, physicochemical properties, phenolic profiles, antioxidant capacities, and inhibitory effects on digestive enzymes (pancreatic lipase and α-glucosidase), of fourteen different types of kiwifruit obtained from China were systematically investigated and compared. Noticeable variations in the fruits’ physicochemical properties and phenolic profiles were observed among them. The total phenolic content of Actinidia chinensis cv. Hongshi, A. chinensis cv. Jinshi, and A. chinensis cv. Jinlong were 16.52 ± 0.26 mg GAE/g DW (dry weight), 13.38 ± 0.20 mg GAE/g DW, and 11.02 ± 0.05 mg GAE/g DW, respectively, which were much higher than those of the other tested kiwifruits. According to high performance liquid chromatography (HPLC) analysis, phenolic compounds, including procyanidin B1, procyanidin B2, (−)-epicatechin, chlorogenic acid, gallic acid, and quercetin-3-rhamnoside, were found to be the major compounds in kiwifruits, while procyanidin B1, procyanidin B2, and chlorogenic acid were the most abundant phenolic compounds. Furthermore, all the tested kiwifruits exerted remarkable antioxidant capacities and inhibitory effects on pancreatic lipase and α-glucosidase. Indeed, A. chinensis cv. Hongshi, Actinidia chinensis cv. Jinshi, and Actinidia chinensis cv. Jinlong exhibited much better antioxidant capacities and inhibitory effects on digestive enzymes than those of the other tested kiwifruits. Particularly, A. polygama showed the highest inhibitory activity on α-glucosidase. Therefore, Actinidia chinensis cv. Hongshi, Actinidia chinensis cv. Jinshi, and Actinidia chinensis cv. Jinlong, as well as A. polygama could be important dietary sources of natural antioxidants and natural inhibitors against pancreatic lipase and α-glucosidase, which is helpful for meeting the growing demand for high-quality kiwifruits with health-promoting characteristics in China.
Collapse
Affiliation(s)
- Hong-Yi Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qin Yuan
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yu-Ling Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qiao-Hong Han
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Jing-Liu He
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Li Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - De-Rong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
30
|
Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Masood-Ur-Rehman, Akhtar N, Mustafa R. ANTIBACTERIAL AND ANTIOXIDANT POTENTIAL OF STEM BARK EXTRACT OF BOMBAX CEIBA COLLECTED LOCALLY FROM SOUTH PUNJAB AREA OF PAKISTAN. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:9-15. [PMID: 28573217 PMCID: PMC5446470 DOI: 10.21010/ajtcam.v14i2.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Ethnic medication systems have been used extensively by humans since their origin. Now a day, in the developing countries these systems are being used due to their effectiveness and affordability. Especially inhabitants of rural areas still rely on these systems as first line of treatment against diseased conditions. Till now, majority of medicines is derived from the natural origin particularly plants owing to their little side effects and cost effectiveness. Materials and Methods: In the present work, we evaluated antibacterial and antioxidant activity of methanolic extract of Bombax ceiba stem bark. Total phenolic and flavonoid contents were also assessed in the extract. The antioxidant capacity was determined by DPPH, Nitric Oxide scavenging and reducing power activity. For antibacterial activity, Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi) and Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) were used. Results: Phenolic content was 133.21±1.56 μg GAE/mg of extract while Flavonoid content was 997.93±2.14 μg QE/mg. Plant extract demonstrated strong antiradical activity with EC50 18.78 ± 0.69 and 23.62 ± 1.99fg/ml for Nitric Oxide and DPPH assay respectively while EC50 in case of reducing power activity was 139.4 ± 0.98μg/ml. Plant extract displayed inhibitory effect against microbial growth with S. typhi as the most resistant strain and Staphylococcus aureus the most sensitive one. Conclusion: This study revealed that Bombax ceiba of local origin has broad spectrum antibacterial activity and it can also provide defense against oxidative stress.
Collapse
Affiliation(s)
- Masood-Ur-Rehman
- Department of Pharmacy, Faculty of Pharmacy and Alternative medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naveed Akhtar
- Department of Pharmacy, Faculty of Pharmacy and Alternative medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rehan Mustafa
- Department of Pharmacy, Faculty of Pharmacy and Alternative medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
32
|
Nakamura M, Ra JH, Jee Y, Kim JS. Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J Food Drug Anal 2016; 25:316-326. [PMID: 28911673 PMCID: PMC9332518 DOI: 10.1016/j.jfda.2016.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022] Open
Abstract
The leaves of Sasa quelpaertensis Nakai were extracted with 80% ethanol and further partitioned with n-hexane, chloroform, ethyl acetate, n-butanol, and aqueous fractions to evaluate the biological activity through assessment via various in vitro assays, including total phenol content; 1,1-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazothiazoline-6-sulfornic acid (ABTS) radical scavenging; reducing power; α-glucosidase and tyrosinase inhibitory; and alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity assays. The highest activity was found in the ethyl acetate fraction for all assays and showed stronger DPPH radical scavenging, reducing power, and tyrosinase inhibitory activity than the positive controls (butylated hydroxytoluene, α-tocopherol, and arbutin, respectively). When compared to the ethyl acetate fraction, the n-butanol fraction had lower rates, but it still demonstrated relatively high activity. The activity of the n-hexane fraction was high for DPPH and ABTS radical scavenging activity and contained significant amounts of phenol content, whereas the chloroform fraction possessed the highest reducing power, tyrosinase inhibitory, and ADH and ALDH activity, despite having the lowest phenol content when compared to the other fractions. These findings clearly indicate that S. quelpaertensis Nakai leaves can be a good natural source of antioxidants and tyrosinase inhibitors, as well as ADH and ALDH activity inducers, suggesting that may have potential for treating various diseases and improving human health.
Collapse
Affiliation(s)
- Masaya Nakamura
- College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Jong-Hwan Ra
- College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Ju-Sung Kim
- College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
33
|
Liu H, Chen Y, Hu T, Zhang S, Zhang Y, Zhao T, Yu H, Kang Y. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Wu S, Fu X, You L, Abbasi AM, Meng H, Liu D, Aadil RM. Antioxidant, antitumor and immunomodulatory activities of water-soluble polysaccharides in Abrus cantoniensis. Int J Biol Macromol 2016; 89:707-16. [PMID: 27057623 DOI: 10.1016/j.ijbiomac.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/18/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022]
Abstract
Abrus cantoniensis is a vegetative food in tropical areas of Asia and claimed as folk beverages and soups consumed for cleansing liver toxicants and preventing liver diseases. Polysaccharides (ACP-І and ACP-II) were extracted with hot water from A. cantoniensis, and isolated by DEAE cellulose chromatography. The chemical properties as well as antioxidant, antitumor and immunomodulatory activities of ACP-I and ACP-II were investigated. The results showed that the ACP-I (9.09kDa) contained only glucose and ACP-II (38.45kDa) consisted of rhamnose, arabinose, galactose and glucose. ACP-II exhibited higher oxygen radical absorbance capacity (ORAC) and hydroxyl radical prevention capacity (HRPC) than ACP-I with ORAC values and HRPC values of 53.42±3.32μmol Trolox equiv./g DW and 34.84±5.07μmol Trolox equiv./g DW. Besides, in the wound healing assay, ACP-II exhibited potent migration inhibitory effects on MCF-7 cells. ACP-II could also significantly stimulate the proliferation of splenocytes and thymocytes, and enhanced NO production of peritoneal macrophages. These findings suggest that the polysaccharide ACP-II in A. cantoniensis could be served as a novel potential functional food.
Collapse
Affiliation(s)
- Shaowei Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Arshad Mehmood Abbasi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Dong Liu
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Rana Muhammad Aadil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|