1
|
Yang C, Xie T, Cai M, Xu X, Li M, Liu P, Lan X. Investigation of the Interaction Between Angiotensin-Converting Enzyme (ACE) and ACE-Inhibitory Tripeptide from Casein. Int J Mol Sci 2024; 25:13021. [PMID: 39684732 DOI: 10.3390/ijms252313021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches. The Lineweaver-Burk plot indicated the non-competitive inhibition pattern of LLY, suggesting that it binds to the enzyme at the non-active site, and the results were further validated by a molecular docking study. Additionally, multispectral experiments and atomic force microscopy were conducted to further elucidate the underlying mechanism of peptide activity. The findings indicated that LLY could induce a conformational change in ACE, thereby inhibiting its activity. This study contributes to a deeper understanding of the mechanism of action of ACE-inhibitory peptides and bears important significance for drug development in hypertension.
Collapse
Affiliation(s)
- Cuicui Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Tianzhao Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Mengmeng Cai
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaoting Xu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Muzijun Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
2
|
Yang Y, Bao X, Ning J, Huang R, Liang Y, Yan Z, Chen H, Ding L, Shu C. A sensitive and specific LC-MS/MS method for determination of a novel antihypertensive peptide FR-6 in rat plasma and pharmacokinetic study. Heliyon 2024; 10:e26209. [PMID: 38390181 PMCID: PMC10882020 DOI: 10.1016/j.heliyon.2024.e26209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The investigation of peptide drugs has become essential in the development of innovative medications for hypertension. In this study, a sensitive high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method was developed to determine the plasma concentration and stability of the antihypertensive peptide FR-6 in rats. An isotopically labeled peptide (with an unchanged sequence) was utilized as an internal standard (IS) for validation purposes. Subsequently, this assay was employed to examine the pharmacokinetics of different administration methods (tail vein and gavage) in Sprague Dawley (SD) rats. Extracted plasma samples underwent sample preparation through methanol protein precipitation, followed by elution of FR-6 on Wondasil C18 Superb column (4.6 × 150 mm, 5 μm), using a mobile phase consisting of formic acid (0.1%) in water (A) and formic acid (0.125%)-ammonium formate (2 mM) in methanol (B). Ion pairs corresponding to FR-6 and IS were monitored via multiple reaction monitoring (MRM) under positive ion mode: m/z 400.7 → 285.1 for FR-6 and m/z 406.1 → 295.1 for IS detection respectively. The method exhibited excellent linearity with respect to FR-6 concentrations. In addition, the inter-day and intra-day precision were 0.61-6.85% and 1.76-11.75%; the inter-day and intra-day accuracy were -7.28-0.13% and -7.20-2.28%, respectively. In conclusion, the matrix effect, extraction recovery, and stability data were validated according to FDA recommended acceptance criteria for bioanalytical methods. This validated method serves as a reliable tool for determining the concentration of antihypertensive peptide FR-6, and has been successfully applied in pharmacokinetic studies involving rats.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingyan Bao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangyue Ning
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Liang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zelong Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haotian Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
3
|
Wang Y, Chen S, Shi W, Liu S, Chen X, Pan N, Wang X, Su Y, Liu Z. Targeted Affinity Purification and Mechanism of Action of Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides from Sea Cucumber Gonads. Mar Drugs 2024; 22:90. [PMID: 38393061 PMCID: PMC10890666 DOI: 10.3390/md22020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 μmol·L-1, HDWWKER with an IC50 value of 583.6 μmol·L-1, and THDWWKER with an IC50 value of 1291.8 μmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.
Collapse
Affiliation(s)
- Yangduo Wang
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 202206, China; (Y.W.); (W.S.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Shicheng Chen
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL 60015, USA;
| | - Wenzheng Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 202206, China; (Y.W.); (W.S.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Xiaoting Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Xiaoyan Wang
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (X.C.); (N.P.); (X.W.)
| |
Collapse
|
4
|
Zhu WY, Wang YM, Ge MX, Wu HW, Zheng SL, Zheng HY, Wang B. Production, identification, in silico analysis, and cytoprotection on H 2O 2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Front Nutr 2023; 10:1197382. [PMID: 37502715 PMCID: PMC10369073 DOI: 10.3389/fnut.2023.1197382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Exceeding 50% tuna catches are regarded as byproducts in the production of cans. Given the high amount of tuna byproducts and their environmental effects induced by disposal and elimination, the valorization of nutritional ingredients from these by-products receives increasing attention. Objective This study was to identify the angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) peptides from roe hydrolysate of Skipjack tuna (Katsuwonus pelamis) and evaluate their protection functions on H2O2-induced human umbilical vein endothelial cells (HUVECs). Methods Protein hydrolysate of tuna roes with high ACEi activity was prepared using flavourzyme, and ACEi peptides were isolated from the roe hydrolysate using ultrafiltration and chromatography methods and identified by ESI/MS and Procise Protein/Peptide Sequencer for the N-terminal amino acid sequence. The activity and mechanism of action of isolated ACEi peptides were investigated through molecular docking and cellular experiments. Results Four ACEi peptides were identified as WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12), respectively. The affinity of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) with ACE was -8.590, -9.703, -9.325, and -8.036 kcal/mol, respectively. The molecular docking experiment elucidated that the significant ACEi ability of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) was mostly owed to their tight bond with ACE's active sites/pockets via hydrophobic interaction, electrostatic force and hydrogen bonding. Additionally, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could dramatically elevate the Nitric Oxide (NO) production and bring down endothelin-1 (ET-1) secretion in HUVECs, but also abolish the opposite impact of norepinephrine (0.5 μM) on the production of NO and ET-1. Moreover, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could lower the oxidative damage and apoptosis rate of H2O2-induced HUVECs, and the mechanism indicated that they could increase the content of NO and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the generation of reactive oxygen species (ROS) and malondialdehyde (MDA). Conclusion WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) are beneficial ingredients for healthy products ameliorating hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wang-Yu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hua-Wei Wu
- Ningbo Today Food Co., Ltd., Ningbo, China
| | - Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huai-Yu Zheng
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
5
|
Zou L, Zhou Y, Yu X, Chen C, Xiao G. Angiotensin I-Converting Enzyme Inhibitory Activity of Two Peptides Derived from In Vitro Digestion Products of Pork Sausage with Partial Substitution of NaCl by KCl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406188 DOI: 10.1021/acs.jafc.3c01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 μM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| |
Collapse
|
6
|
Wang Z, Zhou Q, Liu S, Liao D, Liu P, Lan X. Anchoring of Polymer Loops on Enzyme-Immobilized Mesoporous ZIF-8 Enhances the Recognition Selectivity of Angiotensin-Converting Enzyme Inhibitory Peptides. Molecules 2023; 28:molecules28073117. [PMID: 37049880 PMCID: PMC10095817 DOI: 10.3390/molecules28073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Immobilized angiotensin-converting enzyme (ACE) is a promising material for the rapid screening of antihypertensive drugs, but the nonspecific adsorption is a serious problem in separation processes involving complex biological products. In this study, triblock copolymers with dopamine (DA) block as anchors and PEG block as the main body (DA-PEGx-DA) were attached to an immobilized ACE (ACE@mZIF-8/PDA, AmZP) surface via the “grafting to” strategy which endowed them with anti-nonspecific adsorption. The influence of DA-PEGx-DA chain length on nonspecific adsorption was confirmed. The excellent specificity and reusability of the obtained ACE@mZIF-8/PDA/DA-PEG5000-DA (AmZPP5000) was validated by screening two known ACE inhibitory peptides Val-Pro-Pro (VPP, competitive inhibitory peptides of ACE) and Gly-Met-Lys-Cys-Ala-Phe (GF-6, noncompetitive inhibitory peptides of ACE) from a mixture containing active and inactive compounds. These results demonstrate that anchored polymer loops are effective for high-recognition selectivity and AmZPP5000 is a promising compound for the efficient separation of ACE inhibitors in biological samples.
Collapse
Affiliation(s)
- Zefen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Institute of Biological Manufacturing Technology Co., Ltd., Guangxi Institute of Industrial Technology, Nanning 530002, China
| | - Qian Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Siyuan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengru Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
- Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
- Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
7
|
A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes. J Pharm Biomed Anal 2023; 226:115250. [PMID: 36657352 DOI: 10.1016/j.jpba.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
In this study, a L-asparagine (L-Asn) imprinted membranes (L-Asn-MIPs) were synthesized via molecular imprinting for selective and efficient removal of L-Asn. The L-Asn-MIP membrane was prepared by using acrylamide (AAm) and hydroxyethyl methacrylate (HEMA) as a functional monomer and a comonomer, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The L-Asn adsorption capacity of the membrane was investigated in detail. The maximum L-Asn adsorption capacity was determined as 408.2 mg/g at pH: 7.2, 24 °C. Determination of L-Asn binding behaviors of L-Asn-MIPs also shown with Scatchard analyses. The effect of pH on L-Asn adsorption onto the membrane and also the selectivity and reusability of the L-Asn-MIPs for L-Asn adsorption were determined through L-asparaginase (L-ASNase) enzyme activity measurements. The selectivity of the membrane was investigated by using two different ternary mixtures; L-glycine (L-Gly)/L-histidine (L-His)/L-Asn and L-tyrosin (L-Tyr)/L-cystein(L-Cys)/L-Asn. The obtained results showed that the L-Asn-MIP membranes have a high selectivity towards L-Asn.
Collapse
|
8
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
9
|
Guo J, Lu A, Sun Y, Liu B, Zhang J, Zhang L, Huang P, Yang A, Li Z, Cao Y, Miao J. Purification and identification of antioxidant and angiotensin converting enzyme-inhibitory peptides from Guangdong glutinous rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe 3O 4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022; 64:1110-1138. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.
Collapse
Affiliation(s)
- Lina Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Surface Functionalized Magnetic Nanoparticles as a Selective Sorbent for Affinity Fishing of PPAR-γ Ligands from Choerospondias axillaris. Molecules 2022; 27:molecules27103127. [PMID: 35630609 PMCID: PMC9144117 DOI: 10.3390/molecules27103127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/25/2023] Open
Abstract
Coronary heart disease (CHD), which has developed into one of the major diseases, was reported to be treated by the target of peroxisome proliferators-activate receptor γ (PPAR-γ). As a natural medicine long used in the treatment of CHD, there are few studies on how to screen the target active compounds with high specific activity from Choerospondias axillaris. To advance the pace of research on target-specific active compounds in natural medicines, we have combined magnetic ligand fishing and functionalized nano-microspheres to investigate the active ingredients of PPAR-γ targets in Choerospondias axillaris. The PPAR-γ functionalized magnetic nano-microspheres have been successfully synthesized and characterized by vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The specificity, reusability, and reproducibility of the nano-microspheres were investigated with the help of the specific binding of rosiglitazone to PPAR-γ. In addition, the incubation temperature and the pH of the buffer solution in the magnetic ligand fishing were optimized to improve the specific adsorption efficiency of the analytes. Finally, with the aid of ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS/MS), the 16 active ligands including 9 organic acids, 5 flavonoids, and 2 phenols were found in the ethanolic extracts of Choerospondias axillaris. Therefore, the study can provide a successful precedent for realizing the designated extraction and rapid isolation of target-specific active ingredient groups in the complex mixtures.
Collapse
|
12
|
LI H, CHEN X, GUO Y, HOU T, HU J. A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haitao LI
- Zhejiang Pharmaceutical College, China
| | | | - Yan GUO
- Zhejiang Pharmaceutical College, China
| | - Tao HOU
- Huazhong Agricultural University, China
| | - Jun HU
- Huazhong Agricultural University, China
| |
Collapse
|
13
|
Lu Y, Wu Y, Hou X, Lu Y, Meng H, Pei S, Dai Z, Wu S. Separation and identification of ACE inhibitory peptides from lizard fish proteins hydrolysates by metal affinity-immobilized magnetic liposome. Protein Expr Purif 2021; 191:106027. [PMID: 34838725 DOI: 10.1016/j.pep.2021.106027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Purification of peptides responsible for angiotensin I-converting enzyme (ACE) inhibitory activity from highly complex protein hydrolysates is difficult. Affinity chromatography is a powerful method for purification of peptides. In this study, a metal affinity-immobilized magnetic liposome (MA-IML) was prepared using lipid, N-hexadecyl iminodiacetic acid (HIDA) and magnetic nanoparticles made of FeCl3·6H2O and FeCl2·4H2O as main materials. MA-IML was used to adsorb ACE inhibitory peptides from lizard fish proteins hydrolysates. The optimal pH of adsorption solution was 8.5. The peptide sample adsorbed by MA-IML was separated by reverse phase-high performance liquid chromatography (RP-HPLC). Upon amino acid sequence analysis and verification, an ACE inhibitory peptide with IC50 value of 108 μM was identified to be VYP. Molecular docking results indicated that VYP bound to ACE via multiple binding sites. The present study demonstrated that MA-IML might be a useful tool for separating ACE inhibitory peptides from proteins hydrolysates.
Collapse
Affiliation(s)
- Yuan Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yujing Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Xuhe Hou
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yuting Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hualin Meng
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Shicheng Pei
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zhihang Dai
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
14
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
15
|
Chen R, Miao Y, Hao X, Gao B, Ma M, Zhang JZ, Wang R, Li S, He X, Zhang L. Investigation on the characteristics and mechanisms of ACE inhibitory peptides by a thorough analysis of all 8000 tripeptides via binding free energy calculation. Food Sci Nutr 2021; 9:2943-2953. [PMID: 34136162 PMCID: PMC8194939 DOI: 10.1002/fsn3.2253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides represent a potential source of new antihypertensive. However, their characteristics and binding mechanisms were not well understood. In this study, novel energy calculation and experimentation were combined to elucidate the characteristics and mechanisms of ACE inhibitory tripeptides. ACE inhibitory activity of all 8,000 tripeptides was investigated by in silico experiments. IC50 values of the five top-rated tripeptides ranged from 5.86 to 21.84 μM. Five hundred top-ranked tripeptides were chosen for detailed structure-activity analysis, and a significant preference for aromatic amino acids at both C- and N-terminus was found. By binding free energy analysis of nine representative tripeptides via MM/GBSA, electrostatic energy was found to be the leading energy that contributed to the binding of ACE with its high affinity tripeptides. Besides, S355, V380, and V518, three residues positioned around the classical binding pockets of ACE, also played a key role in ACE's binding. Therefore, for tripeptides, their binding pockets in ACE were redefined. In conclusion, the characteristics of ACE inhibitory peptides were more deeply illustrated by the thorough analysis of all tripeptides. The energy analysis allows a better understanding of the binding mechanisms of ACE inhibitory peptides, which could be used to redesign the ACE inhibitors for stronger inhibitory activity.
Collapse
Affiliation(s)
- Ruiyao Chen
- State Key Laboratory of Bioreactor EngineeringSchool of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Xuan Hao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Bei Gao
- State Key Laboratory of Bioreactor EngineeringSchool of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Mingzhe Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - John Z.H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
- Department of ChemistryNew York UniversityNew YorkNYUSA
| | - Rui Wang
- College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Sha Li
- College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
| |
Collapse
|
16
|
Li J, Su J, Chen M, Chen J, Ding W, Li Y, Yin H. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: identification, screening and inhibitory mechanisms. RSC Adv 2021; 11:12172-12182. [PMID: 35423777 PMCID: PMC8696521 DOI: 10.1039/d0ra10476k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to discover potent angiotensin-converting enzyme (ACE) inhibitory (ACEI) peptides from Pinctada fucata (P. fucata) for treating hypertension and to characterize them using in silico analysis. The P. fucata proteins were hydrolyzed by Alcalase®, a serine endopeptidase with broad selectivity, at various times (0, 2, 4, 6, 8, 10 h). The degree of hydrolysis (DH) and ACEI activity of the different hydrolysates were measured. Considering the molecular weight and ACEI activity, the 10 h hydrolysate was purified by a series of traditional separation methods, including ultrafiltration, gel G-25 chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC), with ACEI activity as a guide. The results showed two fractions, C17 and C18, eluted by means of semi-preparative RP-HPLC, and showed the highest ACEI activities of 80.33 ± 2.70% and 81.66 ± 0.29%, respectively, at 1 mg mL-1. The two fractions were then identified using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and their MS/MS spectra data were subjected to de novo sequencing. Subsequently, the potential ACEI peptides were screened by in silico methods, namely, to analyze the average local confidence (ALC) value obtained from the sequencing software and the P-value from the Pepsite 2. In total, 13 potential ACEI peptide sequences were obtained and identified from the two fractions by LC-ESI-MS/MS, and two novel tetrapeptides, FRVW (607.3314 Da) and LPYY (555.2881 Da), were screened for synthesis according to the in silico analysis. The in vitro ACEI tests indicated that FRVW and LPYY had IC50 values of 18.34 and 116.26 μM, respectively. The Lineweaver-Burk plot showed that FRVW was a noncompetitive inhibitor, and LPYY was shown to be a mixed-mode type inhibitor. A stability study against ACE indicated that both peptides were hydrolyzed by ACE to some extent, the higher ACEI activity following incubation with ACE indicating that they should be classified as pro-drug substrates. Molecular docking results showed that hydrophobic amino acids (HAAs) within peptides formed vital interactions including hydrogen bonds, electrostatic forces, van der Waals forces and Pi-Pi interactions with ACE residues, which stabilized the enzyme-peptide complex. Furthermore, the docking results accorded with the inhibition kinetic mode. Our study demonstrated that FRVW and LPYY isolated from P. fucata have potential applications as antihypertensive agents.
Collapse
Affiliation(s)
- Jiao Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jilei Su
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210028 China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine Nanjing 210028 China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou 511458 China
| |
Collapse
|
17
|
Feng X, Liao D, Sun L, Wu S, Lan P, Wang Z, Li C, Zhou Q, Lu Y, Lan X. Affinity Purification of Angiotensin Converting Enzyme Inhibitory Peptides from Wakame (Undaria Pinnatifida) Using Immobilized ACE on Magnetic Metal Organic Frameworks. Mar Drugs 2021; 19:177. [PMID: 33807119 PMCID: PMC8004985 DOI: 10.3390/md19030177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/25/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from marine organism have shown a blood pressure lowering effect with no side effects. A new affinity medium of Fe3O4@ZIF-90 immobilized ACE (Fe3O4@ZIF-90-ACE) was prepared and used in the purification of ACE inhibitory peptides from Wakame (Undaria pinnatifida) protein hydrolysate (<5 kDa). The Fe3O4@ZIF-90 nanoparticles were prepared by a one-pot synthesis and crude ACE extract from pig lung was immobilized onto it, which exhibited excellent stability and reusability. A novel ACE inhibitory peptide, KNFL (inhibitory concentration 50, IC50 = 225.87 μM) was identified by affinity purification using Fe3O4@ZIF-90-ACE combined with reverse phase-high performance liquid chromatography (RP-HPLC) and MALDI-TOF mass spectrometry. Lineweaver-Burk analysis confirmed the non-competitive inhibition pattern of KNFL, and molecular docking showed that it bound at a non-active site of ACE via hydrogen bonds. This demonstrates that affinity purification using Fe3O4@ZIF-90-ACE is a highly efficient method for separating ACE inhibitory peptides from complex protein mixtures and the purified peptide KNFL could be developed as a functional food ingredients against hypertension.
Collapse
Affiliation(s)
- Xuezhen Feng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Zefen Wang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Chunzhi Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Qian Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (X.F.); (L.S.); (Z.W.); (C.L.); (Q.Z.)
| | - Yuan Lu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China; (S.W.); (Y.L.)
| | - Xiongdiao Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| |
Collapse
|
18
|
Sedlar T, Čakarević J, Tomić J, Popović L. Vegetable By-Products as New Sources of Functional Proteins. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:31-36. [PMID: 33245466 DOI: 10.1007/s11130-020-00870-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 04/24/2023]
Abstract
Vegetable by-products, obtained from cauliflower (CA), broccoli (BRL), cabbage (CB) and beetroot (BR) can be a potentially good source of proteins. The proteins were obtained from leaves (LPs) of vegetables with alkaline extraction at pH 10, and their isoelectric precipitation at pH 4. Protein contents were in the range of 39.76 - 53.33%, and the molecular weights of fractions were mostly about 45, 25 and 14 kDa. Their solubility is higher in the alkaline environment, where they reach the highest solubility at pH 10 (9.7 mg/mL for CALP, 8.45 for BRLP, 5.35 mg/mL for CBLP, 5.5 mg/mL for BELP). Moreover, they showed favorable emulsifying abilities, water absorption capacities (0.62 to 1.61 g/g) and foaming capacity (86.3 to 92%) as well as stability (48.57 to 79.30%). Digestibility was studied using gastrointestinal proteases (pepsin and pancreatin), and all four LPs can easily be digested. The biologically active potential of the digests was evaluated measuring antioxidant capacity by two complementary methods - DPPH+ and ABTS+ radical cation scavenging activity. The values for DPPH+ and ABTS+ were in the range from 59 to 65.1% at 0.1 and 0.3 mg/ml to 0.22 mg/ml IC50 values, respectively. Therefore, it can be indicated from these results, that obtained LPs, owing to their good functional properties, may be considered as potential ingredients of health-promoting food and cosmetic products.
Collapse
Affiliation(s)
- Tea Sedlar
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000, Serbia.
| | - Jelena Čakarević
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000, Serbia
| | - Jelena Tomić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000, Serbia
| | - Ljiljana Popović
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000, Serbia
| |
Collapse
|
19
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
20
|
Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples. Mikrochim Acta 2020; 187:400. [DOI: 10.1007/s00604-020-04323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/14/2020] [Indexed: 11/25/2022]
|
21
|
Liu P, Lan X, Yaseen M, Chai K, Zhou L, Sun J, Lan P, Tong Z, Liao D, Sun L. Immobilized metal affinity chromatography matrix modified by poly (ethylene glycol) methyl ether for purification of angiotensin I-converting enzyme inhibitory peptide from casein hydrolysate. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122042. [PMID: 32172172 DOI: 10.1016/j.jchromb.2020.122042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Purification of small bioactive peptides from complex biological samples is a difficult task due to the interference of concentrated large biomolecules. In this study, a magnetic immobilized metal affinity chromatography matrix modified by poly (ethylene glycol) methyl ether (IMACM@mPEG) was prepared and applied for the rapid purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate. The proposed IMACM@mPEG considerably reduced the non-specific adsorption of large proteins and exhibited improved purification efficiency towards ACE inhibitory peptides. A novel peptide with moderate ACE inhibitory activity (IC50 value of 274 ± 5 μM) was identified as LLYQEPVLGPVR. Lineweaver-Burk plot confirmed the non-competitive inhibition pattern of LLYQEPVLGPVR. The purified peptide was digested after simulated gastrointestinal digestion and produced shorter peptides which contributed to enhanced ACE inhibitory activity. These results indicated that the IMACM@mPEG is an effective method for the prepurification of ACE inhibitory peptide and the purified peptide LLYQEPVLGPVR may have potential as nutraceutical ingredient in functional foods for hypertension treatments.
Collapse
Affiliation(s)
- Pengru Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Muhammad Yaseen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Institute of Chemical Sciences, University of Peshawar, KP 25120, Pakistan
| | - Kungang Chai
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liqin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
22
|
Chen J, Ryu B, Zhang Y, Liang P, Li C, Zhou C, Yang P, Hong P, Qian ZJ. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:315-324. [PMID: 31525262 DOI: 10.1002/jsfa.10041] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In order to utilize tilapia skin gelatin hydrolysate protein, which is normally discarded as industrial waste in the process of fish manufacture, we study the in vivo and in vitro angiotensin-I-converting enzyme (ACE) inhibitory activity of the peptide Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP). The aim was to provide a pharmacological basis of the development of minimal side effects of ACE inhibitors by comparative analysis with captopril in molecular docking. RESULTS This peptide from protein-rich wastes showed excellent ACE inhibitory activity (IC50 = 2.577 μmol L-1 ) and exhibited a mixed noncompetitive inhibitory pattern with Lineweaver-Burk plots. Furthermore, LSGYGP and captopril groups both showed significant decreases in blood pressure after 6 h and maintained good digestive stability over 4 h. Molecular bond interactions differentiate competitive captopril upon hydrogen bond interactions and Zn(II) interaction. The C-terminal Pro generates three interactions (hydrogen bonds, hydrophilic interactions and Van der Waals interactions) in the peptide and effectively interacts with the S1 and S2 pockets of ACE. CONCLUSION LSGYGP, with an IC50 value of 2.577 μmol L-1 , has an antihypertensive effect in spontaneously hypertensive rats. Through comparison with captopril, this study revealed that LSGYGP may be a potential food-derived ACE inhibitory peptide and could act as a functional food ingredient to prevent hypertension. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiali Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Bomi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - YuanYuan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Peng Liang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Chengyong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, PR China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Ping Yang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Zhong-Ji Qian
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, PR China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| |
Collapse
|
23
|
Taheri A, Bakhshizadeh G A. Antioxidant and ACE Inhibitory Activities of Kawakawa (Euthynnus affinis) Protein Hydrolysate Produced by Skipjack Tuna Pepsin. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1707924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Taheri
- Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
| | | |
Collapse
|
24
|
De Oliveira TV, Polêto MD, De Oliveira MR, Silva TJ, Barros E, Guimarães VM, Baracat-Pereira MC, Eller MR, Coimbra JSDR, De Oliveira EB. Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09616-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Tianrui Z, Bingtong L, Ling Y, Liping S, Yongliang Z. ACE inhibitory activity in vitro and antihypertensive effect in vivo of LSGYGP and its transepithelial transport by Caco-2 cell monolayer. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
26
|
Liu P, Lan X, Yaseen M, Wu S, Feng X, Zhou L, Sun J, Liao A, Liao D, Sun L. Purification, Characterization and Evaluation of Inhibitory Mechanism of ACE Inhibitory Peptides from Pearl Oyster ( Pinctada fucata martensii) Meat Protein Hydrolysate. Mar Drugs 2019; 17:E463. [PMID: 31398788 PMCID: PMC6723713 DOI: 10.3390/md17080463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from natural products have shown a blood pressure lowering effect with no side effects. In this study, two novel ACE inhibitory peptides (His-Leu-His-Thr, HLHT and Gly-Trp-Ala, GWA) were purified from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate with alkaline protease by ultrafiltration, polyethylene glycol methyl ether modified immobilized metal ion affinity medium, and reverse-phase high performance liquid chromatography. Both peptides exhibited high ACE inhibitory activity with IC50 values of 458.06 ± 3.24 μM and 109.25 ± 1.45 μM, respectively. Based on the results of a Lineweaver-Burk plot, HLHT and GWA were found to be non-competitive inhibitor and competitive inhibitor respectively, which were confirmed by molecular docking. Furthermore, the pearl oyster meat protein hydrolysate exhibited an effective antihypertensive effect on SD rats. These results conclude that pearl oyster meat protein is a potential resource of ACE inhibitory peptides and the purified peptides, HLHT and GWA, can be exploited as functional food ingredients against hypertension.
Collapse
Affiliation(s)
- Pengru Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Shanguang Wu
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Xuezhen Feng
- Medical College, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Liqin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Anping Liao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Dankui Liao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
27
|
Pujiastuti DY, Ghoyatul Amin MN, Alamsjah MA, Hsu JL. Marine Organisms as Potential Sources of Bioactive Peptides that Inhibit the Activity of Angiotensin I-Converting Enzyme: A Review. Molecules 2019; 24:molecules24142541. [PMID: 31336853 PMCID: PMC6680877 DOI: 10.3390/molecules24142541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a paramount therapeutic target to treat hypertension. ACE inhibitory peptides derived from food protein sources are regarded as safer alternatives to synthetic antihypertensive drugs for treating hypertension. Recently, marine organisms have started being pursued as sources of potential ACE inhibitory peptides. Marine organisms such as fish, shellfish, seaweed, microalgae, molluscs, crustaceans, and cephalopods are rich sources of bioactive compounds because of their high-value metabolites with specific activities and promising health benefits. This review aims to summarize the studies on peptides from different marine organisms and focus on the potential ability of these peptides to inhibit ACE activity.
Collapse
Affiliation(s)
- Dwi Yuli Pujiastuti
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Muhamad Nur Ghoyatul Amin
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
28
|
Lei L, Liu J, Ma X, Yang H, Lei Z. A novel strategy to synthesize dual-responsive polymeric nanocarriers for investigating the activity and stability of immobilized pectinase. Biotechnol Appl Biochem 2019; 66:376-388. [PMID: 30715751 DOI: 10.1002/bab.1734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
A dual-stimuli-responsive support material for pectinase immobilization through ionic bonding was prepared. Specifically, polystyrene-b-polymethylacrylic (PS-b-PMAA), light- and pH-sensitive polystyrene-(5-propargylether-2-nitrobenzyl bromoisobutyrate)-b-poly(diethylamino)ethyl methacrylate-b-poly(polyethylene glycol methacrylate) (PS-ONB-PDEAEMA-b-PPEGMA) were synthesized through atom transfer radical polymerization, click chemistry, and hydrolysis. The two parts could self-assemble into the micelles in an aqueous solution. The micelles shrunk at a higher pH, and their size reduced under UV irradiation. The stimuli-responsive properties of micelles were characterized by dynamic light scattering and transmission electron microscopy. It has been found that this support was able to adsorb 10 U/mL of immobilized pectinase (approximately 223 mg/g) at pH 5.0 and 60 °C for 60 Min. Meanwhile, the highest relative activity of immobilized pectinase was up to approximately 95% at pH 5.0 and 60 °C. The immobilized pectinase retained more than 50% of the initial activity after eight cycles. The relative activity of the pectinase immobilized on the supports without UV irradiation was approximately 3% lower than that after UV irradiation at 60 °C, indicating that tailoring of enzyme activity was achieved by changing environmental conditions. Apparently, the original enzymatic support material had a great application prospect on enzyme immobilization.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jiangtao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Hong Yang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
29
|
Ling Y, Liping S, Yongliang Z. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking. Food Funct 2019; 9:5251-5259. [PMID: 30229250 DOI: 10.1039/c8fo00569a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tilapia skin gelatin was hydrolyzed by successive simulated gastrointestinal digestion, and the hydrolysates were further separated by transport across a Caco-2 cell monolayer. Angiotensin-I-converting enzyme inhibitory (ACEI) peptides were separated by successive chromatographic steps from the transport hydrolysates. We have identified two key ACEI peptides, namely VGLPNSR (741.4133 Da) and QAGLSPVR (826.4661 Da) with IC50 values of ACEI activity of 80.90 and 68.35 μM, respectively. Lineweaver-Burk plots indicated that the inhibitory ACE kinetics of the two peptides were noncompetitive. Molecular docking simulation showed that the two peptides could interact with the ACE site via hydrogen bonds with high binding power. However, the hydrogen bonds were not formed with the key amino acid residues in the active site of ACE. This finding was in accordance with the noncompetitive inhibition. This study established a novel approach to identify key ACEI peptides and suggested the use of tilapia peptides as functional food ingredients to prevent hypertension.
Collapse
Affiliation(s)
- Yuan Ling
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | | | | |
Collapse
|
30
|
Lan X, Sun L, Muhammad Y, Wang Z, Liu H, Sun J, Zhou L, Feng X, Liao D, Wang S. Studies on the Interaction between Angiotensin-Converting Enzyme (ACE) and ACE Inhibitory Peptide from Saurida elongata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13414-13422. [PMID: 30511571 DOI: 10.1021/acs.jafc.8b04303] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Angiotensin-converting enzyme (ACE) inhibitory peptides derived from food protein exhibited antihypertensive effects by inhibiting ACE activity. In this work, the interaction between ACE inhibitory peptide GMKCAF (GF-6) and ACE was studied by isothermal titration calorimetry (ITC), molecular docking, ultraviolet absorption spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy. Experimental results revealed that the binding of GF-6 to ACE was a spontaneous exothermic process driven by both enthalpy and entropy. The interaction occurred via a static quenching mechanism and involved the alteration of the conformation of ACE. In addition, ITC and molecular docking results indicated binding of GF-6 to ACE via multiple binding sites on the protein surface. This study could be deemed helpful for the better understanding of the inhibitory mechanism of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Xiongdiao Lan
- School of Chemistry and Chemical Engineering , Guangxi University for Nationalities , Nanning , Guangxi 530008 , People's Republic of China
| | | | - Yaseen Muhammad
- Institute of Chemical Sciences , University of Peshawar , Peshawar , Khyber Pakhtunkhwa 25120 , Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tang W, Jia B, Zhou J, Liu J, Wang J, Ma D, Li P, Chen J. A method using angiotensin converting enzyme immobilized on magnetic beads for inhibitor screening. J Pharm Biomed Anal 2018; 164:223-230. [PMID: 30391811 DOI: 10.1016/j.jpba.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Angiotensin converting enzyme (ACE), fusing with FLAG tag, was overexpressed in human embryonic kidney 293T cells. This recombinant FLAG-tagged ACE was immobilized on anti-FLAG antibody coated magnetic beads by affinity method in crude cell lysate for the first time. The enzyme-immobilized magnetic beads (ACE-MB), without further cleavage procedure, were used directly to establish a cost-effective and reliable method for screening ACE inhibitors by coupling with fluorescence detection. The enzymatic activity of the ACE-MB was validated based on its Michaelian kinetic behavior towards hippuryl-histidyl-leucine by UHPLC-MS/MS method firstly. Then, several conditions were optimized including amount of magnetic beads, incubation temperature and time in the procedure of ACE immobilization and amount of ACE-MB in the microplate operation. Moreover, this screening assay was validated with Z' factors between 0.71 and 0.81 using four known ACE inhibitors (captopril, lisinopril, fosinopril and fosinoprilat). The developed method was applied for the screening of ACE inhibitors from a small compound library of 45 natural products. As a result, epiberberine and fangchinoline with certain ACE inhibitory activities were screened out in the assay and validated. The results demonstrate the usefulness of this screening method using ACE immobilized on magnetic beads and the advantage of great efficiency with respect to both time and reagents for screening ACE inhibitors.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bingjie Jia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jie Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jing Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jiancheng Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
32
|
Krichen F, Sila A, Caron J, Kobbi S, Nedjar N, Miled N, Blecker C, Besbes S, Bougatef A. Identification and molecular docking of novel ACE inhibitory peptides from protein hydrolysates of shrimp waste. Eng Life Sci 2018; 18:682-691. [PMID: 32624948 DOI: 10.1002/elsc.201800045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/12/2022] Open
Abstract
The effect of enzymatic hydrolysis by Savinase on the interfacial properties and antihypertensive activity of shrimp waste proteins was evaluated. The physicochemical characterization, interfacial tension, and surface characteristics of shrimp waste protein hydrolysates (SWPH) using different enzyme/substrate (E/S) (SWPH5 (SWPH using E/S = 5), SWPH15 (SWPH using E/S = 15), and SWPH40 (SWPH using E/S = 40)) were also studied. SWPH5, SWPH15, and SWPH40 had an isoelectric pH around 2.07, 2.17, and 2.54 respectively. SWPH5 exhibited the lowest interfacial tension (68.96 mN/m) followed by SWPH15 (69.36 mN/m) and SWPH40 (70.29 mN/m). The in vitro ACE inhibitory activity of shrimp waste protein hydrolysates showed that the most active hydrolysate was obtained using an enzyme/substrate of 15 U/mg (SWPH15). SWPH15 had a lower IC50 value (2.17 mg/mL) than that of SWPH5 and SWPH40 (3.65 and 5.7 mg/mL, respectively). This hydrolysate was then purified and characterized. Fraction F1 separated by Sephadex G25 column which presents the best ACE inhibition activity was then separated by reversed-phase high performance liquid chromatography. Four ACE inhibitory peptides were identified and their molecular masses and amino acid sequences were determined using ESI-MS and ESI-MS/MS, respectively. The structures of the most potent peptides were SSSKAKKMP, HGEGGRSTHE, WLGHGGRPDHE, and WRMDIDGDIMISEQEAHQR. The structural modeling of anti-ACE peptides from shrimp waste through docking simulations results showed that these peptides bound to ACE with high affinity.
Collapse
Affiliation(s)
- Fatma Krichen
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources Université de Sfax Sfax Tunisia
| | - Assaâd Sila
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources Université de Sfax Sfax Tunisia
| | - Juliette Caron
- Institut Régional de Recherche en Agroalimentaire et Biotechnologie: Charles Violette Equipe ProBioGEM, Université de Lille 1 France
| | - Sabrine Kobbi
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources Université de Sfax Sfax Tunisia.,Institut Régional de Recherche en Agroalimentaire et Biotechnologie: Charles Violette Equipe ProBioGEM, Université de Lille 1 France
| | - Naima Nedjar
- Institut Régional de Recherche en Agroalimentaire et Biotechnologie: Charles Violette Equipe ProBioGEM, Université de Lille 1 France
| | - Nabil Miled
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS Université de Sfax Sfax Tunisia
| | - Christophe Blecker
- Gembloux Agro Bio-Tech Unité de Technologie des Industries Agro-Alimentaires Université de Liège Gembloux Belgium
| | - Souhail Besbes
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire Valorisation, Analyse et Sécurité des Aliments Université de Sfax Sfax Tunisia
| | - Ali Bougatef
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources Université de Sfax Sfax Tunisia
| |
Collapse
|
33
|
Liao P, Lan X, Liao D, Sun L, Zhou L, Sun J, Tong Z. Isolation and Characterization of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from the Enzymatic Hydrolysate of Carapax Trionycis (the Shell of the Turtle Pelodiscus sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7015-7022. [PMID: 29916239 DOI: 10.1021/acs.jafc.8b01558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carapax Trionycis (the shell of the turtle Pelodiscus sinensis) was hydrolyzed by six different commercial proteases. The hydrolysate prepared from papain showed stronger inhibitory activity against angiotensin I-converting enzyme (ACE) than other extracts. Two noncompetitive ACE inhibitory peptides were purified successively by ultrafiltration, gel filtration chromatography, ion exchange column chromatography, and high-performance liquid chromatography (HPLC). The amino acid sequences of them were identified as KRER and LHMFK, with IC50 values of 324.1 and 75.6 μM, respectively, confirming that Carapax Trionycis is a potential source of active peptides possessing ACE inhibitory activities. Besides, both enzyme kinetics and isothermal titration calorimetry (ITC) assay showed that LHMFK could form more stable complex with ACE than KRER, which is in accordance with the better inhibitory activity of LHMFK.
Collapse
Affiliation(s)
- Pengying Liao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning 530200 , Guangxi , P. R. China
| | - Xiongdiao Lan
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Dankui Liao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Lixia Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Liqin Zhou
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Jianhua Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| | - Zhangfa Tong
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , Guangxi , P. R. China
| |
Collapse
|
34
|
U G Y, Bhat I, Karunasagar I, B S M. Antihypertensive activity of fish protein hydrolysates and its peptides. Crit Rev Food Sci Nutr 2018. [PMID: 29533693 DOI: 10.1080/10408398.2018.1452182] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rising interest to utilize nutritionally exorbitant fish proteins has instigated research activities in fish waste utilization. The development of newer technologies to utilize fish waste has fostered use of bioactive value-added products for specific health benefits. Enzymatically obtained Fish Protein Hydrolysate (FPH) is a rich source of biologically active peptides possessing anti-oxidant, anticancer, antimicrobial and anti-hypertensive activity. Isolating natural remedies to combat alarming negative consequences of synthetic drugs has been the new trend in current research promoting identification of antihypertensive peptides from FPH. In this review, we aim to culminate data available to produce antihypertensive peptides from FPH, its composition and potential to be used as a therapeutic agent. These purified peptides are known to be rich in arginine, valine and leucine. Reports reveal peptides with low molecular weight (<1 kDa) and shorter chain length (<20 amino acids) exhibited higher antihypertensive activity. As these peptides have proven Angiotensin Converting Enzyme - I inhibitory activity in vitro and in vivo, their potential to be used as antihypertensive drugs is outrageous. However, current focus on research in the field of molecular docking is necessary to have improved understanding of interaction of the peptides with the enzyme.
Collapse
Affiliation(s)
- Yathisha U G
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Ishani Bhat
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Iddya Karunasagar
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| | - Mamatha B S
- a Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University) , Paneer Campus, Deralakatte, Mangalore , Karnataka , India
| |
Collapse
|
35
|
Yu Z, Wu S, Zhao W, Ding L, Shiuan D, Chen F, Li J, Liu J. Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide. Food Funct 2018; 9:364-370. [DOI: 10.1039/c7fo01558e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this work was to identify a novel ACE inhibitory peptide from myosin using a number of in silico methods.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
- Department of Food Science and Human Nutrition
| | - Sijia Wu
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Long Ding
- Lab of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- P.R. China
| | - David Shiuan
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Feng Chen
- Department of Food Science and Human Nutrition
- Clemson University
- Clemson
- USA
| | - Jianrong Li
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- P.R. China
| |
Collapse
|
36
|
Tao M, Sun H, Liu L, Luo X, Lin G, Li R, Zhao Z, Zhao Z. Graphitized Porous Carbon for Rapid Screening of Angiotensin-Converting Enzyme Inhibitory Peptide GAMVVH from Silkworm Pupa Protein and Molecular Insight into Inhibition Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8626-8633. [PMID: 28871778 DOI: 10.1021/acs.jafc.7b03195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel hydrophobic hexapeptide with high angiotensin-converting enzyme (ACE) inhibitory activity was screened from silkworm pupa protein (SPP) hydrolysate via graphitized porous carbon and reverse-phase high-performance liquid chromatography methods. Graphitized porous carbon derived from dopamine, possessing high surface area and high graphitic carbon, was used to rapidly screen and enrich hydrophobic peptides from SPP hydrolysate. The ACE inhibition pattern and mechanism of the purified peptide were also systematically studied by the classic Lineweaver-Burk model and by molecular docking/dynamic simulation. The novel hydrophobic hexapeptide was identified as Gly-Ala-Met-Val-Val-His (GAMVVH, IC50 = 19.39 ± 0.21 μM) with good thermal/antidigestive stabilities. Lineweaver-Burk plots revealed that GAMVVH behaved as a competitive ACE inhibitor. It formed hydrogen bonds with S1 and S2 pockets of ACE and established competitive coordination with Zn(II) of ACE. The synergy of hydrogen bonds with active pockets and Zn(II) coordination efficiently changed the three-dimensional structure of ACE and thus inhibited bioactivity of ACE.
Collapse
Affiliation(s)
- Mengliang Tao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Huaju Sun
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Long Liu
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Xuan Luo
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Guoyou Lin
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Renbo Li
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Zhenxia Zhao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| | - Zhongxing Zhao
- Guangxi Colleges and Universities Key Laboratory of New Technology and Application in Resource Chemical Engineering, School of Chemistry and Chemical Engineering, Guangxi University , Nanning 530004, China
| |
Collapse
|
37
|
Chen L, Wang S. Preparation of an ACE-inhibitory peptide from Perinereis aibuhitensis protein. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1370983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Li Chen
- Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, PR China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, PR China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, PR China
| | - Shujun Wang
- Jiangsu Marine Resources Development Research Institute, Huaihai Institute of Technology, Lianyungang, PR China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, PR China
| |
Collapse
|
38
|
Sun ML, Zhang Q, Ma Q, Fu YH, Jin WG, Zhu BW. Affinity purification of angiotensin-converting enzyme inhibitory peptides from Volutharpa ampullacea perryi protein hydrolysate using Zn-SBA-15 immobilized ACE. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Wu S, Feng X, Lu Y, Lu Y, Liu S, Tian Y. Purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate by IMAC-Ni 2. Amino Acids 2017; 49:1787-1791. [PMID: 28791512 DOI: 10.1007/s00726-017-2475-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Casein proteins were hydrolyzed by papain to identify inhibitory peptides of angiotensin I-converting enzyme (ACE). The hydrolysate was fractionized by immobilized metal affinity chromatography (IMAC-Ni2+). The fraction with high ACE inhibitory activity was enriched and further chromatographed on a reverse-phase column to yield four fractions. Among the fractions, the L4 fraction exhibited the highest ACE inhibitory activity and was identified by sequence analysis as Trp-Tyr-Leu-His-Tyr-Ala (WYLHYA), with IC50 value of 16.22 ± 0.83 µM in vitro. This peptide was expected to be applied as an ingredient for preventing hypertension and IMAC-Ni2+ may provide a simple method for purification of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Shanguang Wu
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China.
| | - Xuezhen Feng
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Yuan Lu
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Yuting Lu
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Saisai Liu
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Yuhong Tian
- Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
40
|
A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chem 2017; 221:114-122. [DOI: 10.1016/j.foodchem.2016.10.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
|
41
|
Yao J, Sun N, Wang J, Xie Y, Deng C, Zhang X. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/14/2017] [Accepted: 02/02/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jizong Yao
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| | - Nianrong Sun
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| | - Jiawen Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| | - Yiqin Xie
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development; Fudan University; Shanghai P. R. China
| |
Collapse
|
42
|
Tao M, Wang C, Liao D, Liu H, Zhao Z, Zhao Z. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Lee SY, Hur SJ. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem 2017; 228:506-517. [PMID: 28317757 DOI: 10.1016/j.foodchem.2017.02.039] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Bioactive peptides from food proteins exert beneficial effects on human health, such as angiotensin-converting enzyme (ACE) inhibition and antihypertensive activity. Several studies have reported that ACE-inhibitory peptides can come from animal products, marine organisms, and plants-derived by hydrolyzing enzymes such as pepsin, chymotrypsin, and trypsin-and microbial enzymes such as alcalase, thermolysin, flavourzyme, and proteinase K. Different ACE-inhibitory effects are closely related with different peptide sequences and molecular weights. Sequences of ACE-inhibitory peptides are composed of hydrophobic (proline) and aliphatic amino acids (isoleucine and leucine) at the N-terminus. As result of this review, we assume that low molecular weight peptides have a greater ACE inhibition because lower molecular weight peptides have a higher absorbency in the body. Therefore, the ACE-inhibitory effect is closely related with the degree of enzymatic hydrolysis and the composition of the peptide sequence.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, Republic of Korea
| | - Sun Jun Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
44
|
de Almeida FG, Vanzolini KL, Cass QB. Angiotensin converting enzyme immobilized on magnetic beads as a tool for ligand fishing. J Pharm Biomed Anal 2016; 132:159-164. [PMID: 27728854 DOI: 10.1016/j.jpba.2016.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Angiotensin converting enzyme (ACE) presents an important role in blood pressure regulation, since that converts angiotensin I to the vasoconstrictor angiotensin II. Some commercially available ACE inhibitors are captopril, lisinopril and enalapril; due to their side effects, naturally occurring inhibitors have been prospected. In order to endorse this research field we have developed a new tool for ACE ligand screening. To this end, ACE was extracted from bovine lung, purified and chemically immobilized in modified ferrite magnetic beads (ACE-MBs). The ACE-MBs have shown a Michaelian kinetic behavior towards hippuryl-histidyl-leucine. Moreover, as proof of concept, the ACE-MBs was inhibited by lisinopril with a half maximal inhibitory concentration (IC50) of 10nM. At the fishing assay, ACE-MBs were able not only to fish out the reference inhibitor, but also one peptide from a pool of tryptic digested BSA. In conclusion, ACE-MBs emerge as new straightforward tool for ACE kinetics determination, inhibition and binder screening.
Collapse
Affiliation(s)
- Fernando G de Almeida
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil
| | - Kenia L Vanzolini
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil
| | - Quezia B Cass
- SEPARARE Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
45
|
Xu Y, Bao T, Han W, Chen W, Zheng X, Wang J. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from cauliflower by-products protein hydrolysate. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Irondi EA, Agboola SO, Oboh G, Boligon AA. Inhibitory effect of leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes involved in obesity and hypertension in vitro. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:396-402. [PMID: 27757270 PMCID: PMC5061483 DOI: 10.5455/jice.20160814112756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 11/29/2022]
Abstract
Aim: To evaluate the phenolics composition and inhibitory effect of the leaves extracts of Ocimum basilicum and Ocimum gratissimum on two key enzymes (pancreatic lipase [PL] and angiotensin 1-converting enzyme [ACE]) involved in obesity and hypertension in vitro. Materials and Methods: The phenolics (flavonoids and phenolic acids) were quantified using high-performance liquid chromatography coupled with diode array detection. PL and ACE inhibitory effects; DPPH* and ABTS*+ scavenging activities of the extracts were tested using spectrophotometric methods. Results: O. basilicum had the following major phenolics: Rutin, quercetin, and quercitrin (flavonoids); caffeic, chlorogenic, and gallic acids (phenolic acids); while O. gratissimum had the following major phenolics: Rutin, quercitrin, and luteolin (flavonoids); ellagic and chlorogenic acids (phenolic acids). “Extracts of both plants inhibited PL and ACE; scavenged DPPH* in a dose-dependent manner”. O. gratissimum extract was more potent in inhibiting PL (IC50: 20.69 µg/mL) and ACE (IC50: 29.44 µg/mL) than O. basilicum (IC50: 52.14 µg/mL and IC50: 64.99 µg/mL, against PL and ACE, respectively). O. gratissimum also scavenged DPPH* and ABTS*+ more than O. basilicum. Conclusion: O. basilicum and O. gratissimum leaves could be used as functional foods for the management of obesity and obesity-related hypertension. However, O. gratissimum may be more effective than O. basilicum.
Collapse
Affiliation(s)
- Emmanuel Anyachukwu Irondi
- Department of Biosciences and Biotechnology, Biochemistry Unit, Kwara State University, Malete, P.M.B. 1530, Ilorin, Nigeria
| | - Samson Olalekan Agboola
- Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Ibadan, Ibadan, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit, Federal University of Technology, Akure, Nigeria P.M.B., 704, Akure 340001, Nigeria
| | - Aline Augusti Boligon
- Department of Industrial Pharmacy, Phytochemical Research Laboratory, Federal University of Santa Maria, Building 26, Room 1115, Santa Maria, CEP 97105-900, Brazil
| |
Collapse
|
47
|
Yao J, Sun N, Deng C, Zhang X. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Talanta 2016; 150:296-301. [DOI: 10.1016/j.talanta.2015.12.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 01/07/2023]
|