1
|
Merghany RM, Salem MA, Ezzat SM, Moustafa SFA, El-Sawi SA, Meselhy MR. A comparative UPLC-orbitrap-MS-based metabolite profiling of three Pelargonium species cultivated in Egypt. Sci Rep 2024; 14:22765. [PMID: 39353957 PMCID: PMC11445532 DOI: 10.1038/s41598-024-72153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Several Pelargonium species are cultivated mainly to produce essential oils used in perfume industry and for ornamental purposes. Although the chemical composition and biological activities of their essential oils were extensively investigated, there is limited information about the chemical composition of their non-volatile constituents. In this study, we report an Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS)-based metabolomics approach for the annotation and analysis of various metabolites in three species; P. graveolens, P. denticulatum, and P. fragrans utilizing The Global Natural Product Social Molecular Networking (GNPS) and multivariate data analyses for clustering of the metabolites. A total of 154 metabolites belonging to different classes were annotated. The three species are good sources of coumarins, benzoic acid derivatives, organic acids, fatty acids, and phospholipids. However, the highest level of flavonols (mono- and di-O-glycosides) and cinnamic acid derivatives was found in P. graveolens and P. denticulatum, whereas tannins and flavone C-glycosides were abundant in P. fragrans. The metabolic profiles clarified here provide comprehensive information on the non-volatile constituents of the three Pelargonium species and can be employed for their authentication and possible therapeutic applications.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., Cairo, 12622, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibîn el Kôm, 32511, Menoufia, Egypt
- The BioActives Lab, Biological and Environment Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El Buhouth St., Cairo, 12622, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Deschamps E, Durand-Hulak M, Castagnos D, Hubert-Roux M, Schmitz I, Froelicher Y, Afonso C. Metabolite Variations during the First Weeks of Growth of Immature Citrus sinensis and Citrus reticulata by Untargeted Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Metabolomics. Molecules 2024; 29:3718. [PMID: 39202798 PMCID: PMC11357260 DOI: 10.3390/molecules29163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Immature citruses are an important resource for the pharmaceutical industry due to their high levels of metabolites with health benefits. In this study, we used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to investigate the changes associated with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus sinensis 'Navel', Citrus sinensis 'Valencia', and Citrus sinensis 'Valencia Late') and a mandarin (Citrus reticulata Blanco 'Fremont') were separated into eight fruit sizes, extracted, and analyzed. Statistical analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites, with an additional separation between the 'Navel' orange and the 'Valencia' and 'Valencia Late' oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus maturation studies.
Collapse
Affiliation(s)
- Estelle Deschamps
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Marie Durand-Hulak
- EARL DURAND Olivier, Domaine de la Triballe, 34820 Guzargues, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France;
| | - Marie Hubert-Roux
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Isabelle Schmitz
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Carlos Afonso
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| |
Collapse
|
3
|
Huang X, Liu X, Wang Q, Zhou Y, Deng S, He Q, Han H. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'tomentosa'. PeerJ 2024; 12:e16881. [PMID: 38410798 PMCID: PMC10896087 DOI: 10.7717/peerj.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Exocarpium Citri Grandis is a popular Chinese herbal medicine prepared from Citrus grandis 'tomentosa', and it is rich in several bioactive compounds, including flavonoids, coumarins, and volatile oils. However, studies are yet to elucidate the mechanisms of synthesis and regulation of these active components. Therefore, the present study examined the profiles of flavonoids and volatile oil bioactive compounds in plant petals, fruits, and tender leaves, and then performed RNA sequencing on different tissues to identify putative genes involved in the synthesis of bioactive compounds. The results show that the naringin, naringenin, and coumarin contents of the fruitlets were significantly higher than those of the tender leaves and petals, whereas the tender leaves had significantly higher levels of rhoifolin and apigenin. A total of 49 volatile oils, of which 10 were mainly found in flowers, 15 were mainly found in fruits, and 18 were mainly found in leaves, were identified. RNA sequencing identified 9,942 genes that were differentially expressed in different tissues. Further analysis showed that 20, 15, and 74 differentially expressed genes were involved in regulating flavonoid synthesis, regulating coumarin synthesis, and synthesis and regulation of terpenoids, respectively. CHI1 (Cg7g005600) and 1,2Rhat gene (Cg1g023820) may be involved in the regulation of naringin synthesis in C. grandis fruits. The HDR (Cg8g006150) gene, HMGS gene (Cg5g009630) and GGPS (Cg1g003650) may be involved in the regulation and synthesis of volatile oils in C. grandis petals. Overall, the findings of the present study enhance our understanding of the regulatory mechanisms of secondary metabolites in C. grandis, which could promote the breeding of C. grandis with desired characteristics.
Collapse
Affiliation(s)
- Xinmin Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoli Liu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qi Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Yanqing Zhou
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Shiting Deng
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qinqin He
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
| | - Hanbing Han
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
4
|
Liang X, Wang H, Xu W, Liu X, Zhao C, Chen J, Wang D, Xu S, Cao J, Sun C, Wang Y. Metabolome and Transcriptome Analysis Revealed the Basis of the Difference in Antioxidant Capacity in Different Tissues of Citrus reticulata 'Ponkan'. Antioxidants (Basel) 2024; 13:243. [PMID: 38397841 PMCID: PMC10886001 DOI: 10.3390/antiox13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Citrus is an important type of fruit, with antioxidant bioactivity. However, the variations in the antioxidant ability of different tissues in citrus and its metabolic and molecular basis remain unclear. Here, we assessed the antioxidant capacities of 12 tissues from Citrus reticulata 'Ponkan', finding that young leaves and root exhibited the strongest antioxidant capacity. Secondary metabolites accumulated differentially in parts of the citrus plant, of which flavonoids were enriched in stem, leaf, and flavedo; phenolic acids were enriched in the albedo, while coumarins were enriched in the root, potentially explaining the higher antioxidant capacities of these tissues. The spatially specific accumulation of metabolites was related to the expression levels of biosynthesis-related genes such as chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), O-methyltransferase (OMT), flavonoid-3'-hydroxylase (F3'H), flavonoid-6/8-hydroxylase (F6/8H), p-coumaroyl CoA 2'-hydroxylase (C2'H), and prenyltransferase (PT), among others, in the phenylpropane pathway. Weighted gene co-expression network analysis (WGCNA) identified modules associated with flavonoids and coumarin content, among which we identified an OMT involved in coumarin O-methylation, and related transcription factors were predicted. Our study identifies key genes and metabolites influencing the antioxidant capacity of citrus, which could contribute to the enhanced understanding and utilization of bioactive citrus components.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Huixin Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Dengliang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou 324000, China;
| | - Shuting Xu
- Hangzhou Agriculture Technology Extension Center, Hangzhou 310058, China;
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| |
Collapse
|
5
|
Liao Z, Liu X, Zheng J, Zhao C, Wang D, Xu Y, Sun C. A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus. PLANT PHYSIOLOGY 2023; 192:2049-2066. [PMID: 37086474 PMCID: PMC10315319 DOI: 10.1093/plphys/kiad249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Polymethoxylated flavones (PMFs) have received extensive attention due to their abundant bioactivities. Citrus peels specifically accumulate abundant PMFs, and methylation modification is a key step in PMF biosynthesis; however, the function of reported O-methyltransferase (OMT) in citrus is insufficient to elucidate the complete methylation process of PMFs. In this study, we analyzed the accumulation pattern of PMFs in the flavedo of the sweet orange (Citrus sinensis) cultivar "Bingtangcheng" at different developmental stages. We found that accumulation of PMFs was completed at the early stage of fruit development (60-d after flowering). Furthermore, we characterized a true caffeoyl-CoA O-methyltransferase (named CsCCoAOMT1) from C. sinensis. Functional analysis in vitro showed that CsCCoAOMT1 preferred flavonoids to caffeoyl-CoA and esculetin. This enzyme efficiently methylated the 6-, 7- 8-, and 3'-OH of a wide array of flavonoids with vicinal hydroxyl groups with a strong preference for quercetin (flavonol) and flavones. The transient overexpression and virus-induced gene silencing experiments verified that CsCCoAOMT1 could promote the accumulation of PMFs in citrus. These results reveal the function of true CCoAOMTs and indicate that CsCCoAOMT1 is a highly efficient multifunctional O-methyltransferase involved in the biosynthesis of PMFs in citrus.
Collapse
Affiliation(s)
- Zhenkun Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Juan Zheng
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou 324000, China
| | - Yang Xu
- Xiangshan Country Agricultural Economic Specialty Technology Extension Center, Ningbo 315799, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
6
|
Wan H, Liu Y, Wang T, Jiang P, Wen W, Nie J. Comparative transcriptome and metabolome analysis identifies a citrus ERF transcription factor CsERF003 as flavonoid activator. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111762. [PMID: 37295731 DOI: 10.1016/j.plantsci.2023.111762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Transcription factor (TF) modulation is a promising strategy for plant flavonoid improvement. Here, we observed evident decreases in some major flavones and flavonols and the expression of some key related genes in a 'Newhall' navel orange mutant (MT) relative to the wild type (WT). A consistently downregulated ERF TF CsERF003 in MT could increase the contents of major flavonoids and the precursor phenylalanine when transiently overexpressed in citrus fruit. Overexpression of CsERF003 in 'Micro-Tom' tomato (OE) resulted in a darker and redder fruit color than wild type 'Micro-Tom' (WTm). Two major flavonoids, naringeninchalcone and kaempferolrutinoside, were averagely induced by 7.99- and 36.83-fold in OEs, respectively, while little change was observed in other polyphenols, such as caffeic acid, ferulic acid, and gallic acid. Key genes involved in the initiation of phenylpropanoid (PAL, 4CH, and 4CL) and flavonoid (CHS and CHI) biosynthesis were up-regulated, while most genes participating in the biosynthesis of other polyphenols, such as HCT and CCR, were down-regulated in OEs. Therefore, it could be concluded that carbon flux floods into the phenylpropanoid biosynthetic pathway and is then specifically directed for flavonoid biosynthesis. CsERF003 may be a potentially promising gene for fruit quality improvement and engineering of natural flavonoid components.
Collapse
Affiliation(s)
- Haoliang Wan
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Liu
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Tongtong Wang
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Peng Jiang
- Qingdao Agriculture Products Quality and Safety Center, Qingdao, 266035, China
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China.
| |
Collapse
|
7
|
Chen L, Lin Y, Yan X, Ni H, Chen F, He F. 3D-QSAR studies on the structure-bitterness analysis of citrus flavonoids. Food Funct 2023; 14:4921-4930. [PMID: 37158134 DOI: 10.1039/d3fo00601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their important bioactivities, the unpleasant bitter taste of citrus derived flavonoids limits their applications in the food industry, and the structure-bitterness relationship of flavonoids is still far from clear. In this study, 26 flavonoids were characterized by their bitterness threshold and their common skeleton using sensory evaluation and molecular superposition, respectively. The quantitative conformational relationship of the structure-bitterness of flavonoids was explored using 3D-QSAR based on comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The results showed that increases of a hydrogen bond donor at A-5 or B-3', a bulky group at A-8, or an electron-withdrawing group at B-4' would enhance the bitterness of flavonoids. The bitterness of some flavonoids was predicted and evaluated, and the results were similar to the bitter intensity of the counterparts from the 3D-QSAR and contour plots, confirming the validation of 3D-QSAR. This study explains the theory of the structure-bitterness relationship of flavonoids, by showing potential information for understanding the bitterness in citrus flavonoids and developing a debittering process.
Collapse
Affiliation(s)
- Lufang Chen
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Xing Yan
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Fan He
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| |
Collapse
|
8
|
Wang Z, Mei X, Chen X, Rao S, Ju T, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Wang Z, Yang B, Chen X, Huang P, Chen K, Ma Y, Agarry IE, Kan J. Optimization and comparison of nonconventional extraction techniques for soluble phenolic compounds from brocade orange (
Citrus sinensis
) peels. J Food Sci 2022; 87:4917-4929. [DOI: 10.1111/1750-3841.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Zhirong Wang
- College of Food Science Southwest University Beibei Chongqing PR China
- School of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | - Bing Yang
- College of Food Science and Technology Hebei Agricultural University Baoding Hebei PR China
| | - Xuhui Chen
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Pimiao Huang
- College of Food Science Southwest University Beibei Chongqing PR China
| | - Kewei Chen
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| | - Yuan Ma
- School of Food and Bioengineering Xihua University Chengdu PR China
| | | | - Jianquan Kan
- College of Food Science Southwest University Beibei Chongqing PR China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products on Storage and Preservation (Chongqing) Ministry of Agriculture Chongqing PR China
| |
Collapse
|
10
|
Zacarías-García J, Pérez-Través L, Gil JV, Rodrigo MJ, Zacarías L. Bioactive Compounds, Nutritional Quality and Antioxidant Capacity of the Red-Fleshed Kirkwood Navel and Ruby Valencia Oranges. Antioxidants (Basel) 2022; 11:1905. [PMID: 36290628 PMCID: PMC9598057 DOI: 10.3390/antiox11101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kirkwood Navel and Ruby Valencia are two spontaneous bud-mutations of the ordinary Washington Navel and Valencia late oranges characterized by the red coloration of their flesh. The purpose of this study was to analyze the physiological features, internal fruit quality, contents of relevant bioactive compounds and antioxidant capacity in the pulps of the red-fleshed fruits compared with the ordinary oranges during late development and maturation. In general, the content of sugars, organic acids, vitamin C, tocopherols, total phenolics and flavonoids, the hydrophilic antioxidant capacity and their changes during maturation were similar in the red-fleshed oranges and in the corresponding blond oranges. However, the mature Ruby fruits contained lower concentrations of sugars, malic and succinic acid and higher levels of citric acid than the ordinary Valencia. The major difference between the pulps of the Kirkwood and Ruby oranges and those of the ordinary oranges was the higher lipophilic antioxidant capacity and SOAC (singlet oxygen absorption capacity) of the former. Together, the high and unique content and composition of carotenoids in Kirkwood and Ruby may contribute to an enhanced antioxidant capacity without any detrimental effects on other fruit-quality attributes, making these varieties good sources of phytochemicals for the fresh-fruit and juice-processing citrus industries.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Laura Pérez-Través
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - José-Vicente Gil
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
- Food Technology Area, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - María-Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| |
Collapse
|
11
|
TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy. Nat Commun 2022; 13:5658. [PMID: 36163196 PMCID: PMC9513094 DOI: 10.1038/s41467-022-33402-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.
Collapse
|
12
|
Gupta AK, Das S, Sahu PP, Mishra P. Design and development of IDE sensor for naringin quantification in pomelo juice: An indicator of citrus maturity. Food Chem 2022; 377:131947. [PMID: 34998150 DOI: 10.1016/j.foodchem.2021.131947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
Maturity determination of pomelo fruits having health-benefiting attributes is an important issue to enhance the quality of harvesting. Here, an interdigitated electrode (IDE) based sensor is introduced to detect its maturity by determining the naringin content. The sensor was made by depositing amberlite IRA-400 as a sensing layer on IDE patterned PCB substrate at room temperature with hydrothermal and spin-coating techniques. The sensor exhibits excellent selectivity for naringin, high sensitivity of 0.008 µA for 10 ppb of naringin, and reusability up to 3-4 times for naringin quantification in maturity testing of fruits. The pomelo fruits start to mature when maximum values of current response and naringin content are found at 140 DAFS. The naringin content decreases as maturity progresses and maximum phytochemical attributes were obtained at 180-220 DAFS. The IDE sensor assures an appropriate period of plucking of pomelo fruits improving harvesting practices and trade of citrus fruits.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Satyajit Das
- Department of Electronics and Communication Engineering, Tezpur University, Assam 784028, India
| | - Partha Pratim Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Assam 784028, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
13
|
Saini MK, Capalash N, Varghese E, Kaur C, Singh SP. A Targeted Metabolomics Approach to Study Secondary Metabolites and Antioxidant Activity in 'Kinnow Mandarin' during Advanced Fruit Maturity. Foods 2022; 11:1410. [PMID: 35626980 PMCID: PMC9141733 DOI: 10.3390/foods11101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the impact of harvest maturity stages and contrasting growing climates on secondary metabolites in Kinnow mandarin. Fruit samples were harvested at six harvest maturity stages (M1−M6) from two distinct growing locations falling under subtropical−arid (STA) and subtropical−humid (STH) climates. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique was employed to identify and quantify secondary metabolites in the fruit juice. A total of 31 polyphenolics and 4 limonoids, with significant differences (p < 0.05) in their concentration, were determined. With advancing maturity, phenolic acids and antioxidant activity were found to increase, whereas flavonoids and limonoids decreased in concentration. There was a transient increase in the concentration of some polyphenolics such as hesperidin, naringin, narirutin, naringenin, neoeriocitrin, rutin, nobiletin and tangeretin, and limonoid aglycones such as limonin and nomilin at mid-maturity stage (M3) which coincided with prevailing low temperature and frost events at growing locations. A higher concentration of limonin and polyphenolics was observed for fruit grown under STH climates in comparison to those grown under STA climates. The data indicate that fruit metabolism during advanced stages of maturation under distinct climatic conditions is fundamental to the flavor, nutrition and processing quality of Kinnow mandarin. This information can help in understanding the optimum maturity stage and preferable climate to source fruits with maximum functional compounds, less bitterness and high consumer acceptability.
Collapse
Affiliation(s)
- Manpreet Kaur Saini
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India;
| | - Charanjit Kaur
- Division of Food Science and Post–Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sukhvinder Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- New South Wales Department of Primary Industries, Ourimbah, NSW 2258, Australia
| |
Collapse
|
14
|
Distribution and natural variation of free, esterified, glycosylated, and insoluble-bound phenolic compounds in brocade orange (Citrus sinensis L. Osbeck) peel. Food Res Int 2022; 153:110958. [DOI: 10.1016/j.foodres.2022.110958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
|
15
|
Li W, Li G, Yuan Z, Li M, Deng X, Tan M, Ma Y, Chen J, Xu J. Illustration of the variation in the content of flavanone rutinosides in various citrus germplasms from genetic and enzymatic perspectives. HORTICULTURE RESEARCH 2022; 9:6510704. [PMID: 35040975 PMCID: PMC8788359 DOI: 10.1093/hr/uhab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 06/12/2023]
Abstract
In citrus, 1,6-rhamnosytransferase (1,6RhaT) and 1,2-rhamnosytransferase (1,2RhaT) catalyze flavanone-7-O-glucosides to form nonbitter flavanone rutinosides (FRs) and bitter flavanone neohesperidosides (FNs), respectively. As revealed in this study of fruit peels from 36 citrus accessions, FRs varied from undetectable levels in pummelo and kumquat to being the dominant flavonoids in sweet orange and loose-skin mandarins. Furthermore, a previously annotated full-length 1,6RhaT-like gene was identified as another 1,6RhaT-encoding gene by in vitro experiments. In total, 28 alleles of full-length 1,6RhaTs were isolated and classified into A, B and C types with only type A alleles encoding a functional protein. Coincidently, only the accessions that contained FRs harbored type A alleles, as was further verified in two F1 hybrid populations. Moreover, the inferior substrate conversion efficiency of 1,6RhaTs in comparison with that of 1,2RhaT in vitro might partly explain the lower proportions of FRs to total flavanone disaccharides in citrus hybrids harboring both functional rhamnosyltransferases. Our findings provide a better understanding of FR content variations among citrus and are meaningful for a mechanistic illustration of citrus flavonoid metabolism and fruit quality improvement practices.
Collapse
Affiliation(s)
- Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, No.1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Gu Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Mingyue Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Meilian Tan
- The Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No.2 Xudong Second Road, Wuchang District, Wuhan 430062, China
| | - Yuhua Ma
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, No.1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| |
Collapse
|
16
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Chen J, Li G, Zhang H, Yuan Z, Li W, Peng Z, Shi M, Ding W, Zhang H, Cheng Y, Yao JL, Xu J. Primary Bitter Taste of Citrus is Linked to a Functional Allele of the 1,2-Rhamnosyltransferase Gene Originating from Citrus grandis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9869-9882. [PMID: 34410124 DOI: 10.1021/acs.jafc.1c01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
1,2-Rhamnosyltransferase (1,2RhaT) catalyzes the final step of production of flavanone neohesperidoside (FNH) that is responsible for the primary bitter taste of citrus fruits. In this study, species-specific flavonoid profiles were determined in 87 Citrus accessions by identifying eight main flavanone glycosides (FGs). Accumulation of FNHs was completely correlated to the presence of the 1,2RhaT gene in 87 citrus accessions analyzed using a novel 1,2RhaT-specific DNA marker. Pummelo (Citrus grandis) was identified as the genetic origin for a function allele of 1,2RhaT that underpinned FNH-bitterness in modern citrus cultivars. In addition, genes encoding six MYB and five bHLH transcription factors were shown to coexpress with 1,2RhaT and other flavonoid pathway genes related to FNH accumulation, indicating that these transcription factors may affect the fruit taste of citrus. This study provides a better understanding of bitterness formation in Citrus varieties and a genetic marker for the early selection of nonbitterness lines in citrus breeding programs.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Gu Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenyu Ding
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huixian Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
18
|
Liu C, Zhang H, He M, Liu X, Chen S, He Z, Ye J, Xu J. Lycopene Accumulation in Cara Cara Red-flesh Navel Orange Is Correlated with Weak Abscisic Acid Catabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8236-8246. [PMID: 34255521 DOI: 10.1021/acs.jafc.1c03766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lycopene is the main pigment in red-flesh citrus fruits, and its formation is a research hotspot. To explore the basis of lycopene accumulation in red-flesh mutants, we profiled the terpenoid metabolites. Compared with their respective wild types, Cara Cara (Cara) [and Red-Anliu (R-An)] oranges showed increased carotenoid and limonoid aglycone contents and decreased contents of abscisic acid (ABA) catabolites, monoterpenoid volatiles, and sesquiterpenoid volatiles. Cara contained less than half of the amount of ABA glucose ester (ABAGE), the main ABA derivative in oranges. Parallel lower transcript levels of NCED and ABA glucosyltransferase in Cara were detected at the mature green stage. These results document the changes in terpenoid profiles in Cara and show that the red flesh of citrus color mutants is related to weak ABA catabolism, especially ABAGE, and decreased transcript levels of two genes encoding uridine diphosphate (UDP)-glycosyltransferases that catalyze ABAGE biosynthesis.
Collapse
Affiliation(s)
- Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450000, China
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Chen
- Agricultural Bureau of Yichang District, Yichang 443310, China
| | - Zhenyu He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem 2021; 354:129499. [PMID: 33752115 DOI: 10.1016/j.foodchem.2021.129499] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Citrus fruits are the main dietary source of polymethoxylated flavones (PMFs) with significant effects on consumer health. In this study, eleven main PMFs were evaluated in the fruit flavedo or leaves of 116 citrus accessions via UPLC-DAD-ESI-QTOF-MS/MS combined with HPLC-DAD analysis, which revealed significant species-specific and spatiotemporal characteristics. All Citrus reticulata and their natural or artificial hybrids were found to have detectable PMFs, especially in the fruit flavedo of the wild or early-cultivated mandarins at early fruit development stages. However, PMFs were not detected in citrons, pummelos, kumquats, trifoliata oranges, papedas, Chinese box oranges and 'Mangshanyegan'. The results enlightened that PMF accumulation only in mandarins and mandarin hybrids is a phenotype inherited from mandarin ancestors. This study provides a comprehensive PMF profile in various citrus germplasms and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
|
20
|
Zhang H, Chen J, Peng Z, Shi M, Liu X, Wen H, Jiang Y, Cheng Y, Xu J, Zhang H. Integrated Transcriptomic and Metabolomic analysis reveals a transcriptional regulation network for the biosynthesis of carotenoids and flavonoids in 'Cara cara' navel Orange. BMC PLANT BIOLOGY 2021; 21:29. [PMID: 33413111 PMCID: PMC7792078 DOI: 10.1186/s12870-020-02808-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/20/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Carotenoids and flavonoids are important secondary metabolites in plants, which exert multiple bioactivities and benefits to human health. Although the genes that encode carotenogenesis and flavonoid biosynthetic enzymes are well characterized, the transcriptional regulatory mechanisms that are related to the pathway genes remain to be investigated. In this study, 'Cara cara' navel orange (CNO) fruit at four development stages were used to identify the key genes and TFs for carotenoids and flavonoids accumulation. RESULTS In this study, CNO was used to investigate the profiles of carotenoids and flavonoids by a combination of metabolomic and transcriptomic analyses. The important stage for the accumulation of the major carotenoid, lycopene was found to be at 120 days after florescence (DAF). The transcripts of five carotenogenesis genes were highly correlated with lycopene contents, and 16, 40, 48, 24 and 18 transcription factors (TFs) were predicted to potentially bind 1-deoxy-D-xylulose-5-phosphate synthase (DXS1), deoxyxylulose 5-phosphate reductoisomerase (DXR), geranylgeranyl diphosphate synthase (GGPPS2), phytoene synthase (PSY1) and lycopene β-cyclase (LCYB) promoters, respectively. Narirutin was the most abundant flavonoid in the flesh at the early stages, 60 DAF was the most important stage for the accumulation of flavonoids, and 17, 22, 14, 25, 24 and 16 TFs could potentially bind phenylalanine ammonia-lyase (PAL-1 and PAL-4), 4-Coumarate-CoA ligase (4CL-2 and 4CL-5), chalcone synthase (CHS-1) and chalcone isomerase (CHI) promoters, respectively. Furthermore, both sets of 15 candidate TFs might regulate at least three key genes and contribute to carotenoids/flavonoids accumulation in CNO fruit. Finally, a hierarchical model for the regulatory network among the pathway genes and TFs was proposed. CONCLUSIONS Collectively, our results suggest that DXS1, DXR, GGPPS2, PSY1 and LCYB genes were the most important genes for carotenoids accumulation, while PAL-1, PAL-4, 4CL-2, 4CL-5, CHS-1 and CHI for flavonoids biosynthesis. A total of 24 TFs were postulated as co-regulators in both pathways directly, which might play important roles in carotenoids and flavonoids accumulation in CNO fruit.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Xiao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Youwu Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
21
|
Lim SJ, Jeong DY, Jin YD, Ro JH. Monitoring and risk assessment of tepraloxydim in banana (Musa paradisiaca) and sweet orange (Citrus sinensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33882-33889. [PMID: 32535830 DOI: 10.1007/s11356-020-09350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to analyze the residue levels of tepraloxydim in banana and sweet orange. Successive liquid-liquid extraction and cartridge clean-up method for tepraloxydim determination in banana and sweet orange were developed and validated by HPLC. The developed method was validated, and the recovery and LOQ of tepraloxydim were 79.3-99.5% and 0.02 mg kg-1, respectively. Among the 48 banana and 34 sweet orange samples, tepraloxydim was detected in two (0.03 mg kg-1) and four samples (0.03-0.05 mg kg-1), respectively. A risk assessment of tepraloxydim in banana and sweet orange was conducted by calculating the percent ratio of estimated daily intake (EDI) and acceptable daily intake (ADI). The ADI of tepraloxydim was 0.05 mg kg-1 day-1, and the EDIs of it from banana and sweet orange were 6.3 × 10-6 and 5.1-8.5 × 10-6, respectively. The percent of EDI to ADI of tepraloxydim was 0.013 and 0.010-0.017%, respectively. These results showed that the tepraloxydim levels in this study might not be harmful to human beings.
Collapse
Affiliation(s)
- Sung-Jin Lim
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Du-Yun Jeong
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Yong-Duk Jin
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea
| | - Jin-Ho Ro
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Korea.
| |
Collapse
|
22
|
Multari S, Licciardello C, Caruso M, Martens S. Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res Int 2020; 134:109228. [DOI: 10.1016/j.foodres.2020.109228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
|
23
|
Zhang Y, Ye J, Liu C, Xu Q, Long L, Deng X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1306-1321. [PMID: 31728522 PMCID: PMC7031078 DOI: 10.1093/jxb/erz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs; or condensed tannins) are a major class of flavonoids that contribute to citrus fruit quality. However, the molecular mechanism responsible for PA biosynthesis and accumulation in citrus remains unclear. Here, we identify a PH4-Noemi regulatory complex that regulates proanthocyanidin biosynthesis in citrus. Overexpression of PH4 or Noemi in citrus calli activated the expression of PA biosynthetic genes and significantly increased the PA content. Interestingly, Noemi was also shown to be up-regulated in CsPH4-overexpressing lines compared with wild-type calli. Simultaneously, CsPH4 partially complemented the PA-deficient phenotype of the Arabidopsis tt2 mutant and promoted PA accumulation in the wild-type. Further analysis revealed that CsPH4 interacted with Noemi, and together these proteins synergistically activated the expression of PA biosynthetic genes by directly binding to the MYB-recognizing elements (MRE) of the promoters of these genes. Moreover, CsPH4 could directly bind to the promoter of Noemi and up-regulate the expression of this gene. These findings explain how the CsPH4-Noemi regulatory complex contributes to the activation of PA biosynthetic genes via a positive feedback loop and provide new insights into the molecular mechanisms underlying PA biosynthesis, which can be effectively employed for metabolic engineering to improve citrus fruit quality.
Collapse
Affiliation(s)
- Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lichang Long
- Agriculture Bureau of Hongjiang City, Hongjiang, Hunan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
24
|
Zhang H, Chen M, Wen H, Wang Z, Chen J, Fang L, Zhang H, Xie Z, Jiang D, Cheng Y, Xu J. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC PLANT BIOLOGY 2020; 20:7. [PMID: 31906915 PMCID: PMC6945444 DOI: 10.1186/s12870-019-2222-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/30/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Previous reports have mainly focused on the volatiles in citrus fruits, and there have been few reports about the volatiles in citrus leaves and flowers. However, citrus leaves and flowers are also rich in volatile compounds with unique aromas. Here, to investigate the volatiles in citrus leaves and flowers, volatile profiling was performed on leaves from 62 germplasms and flowers from 25 germplasms. RESULTS In total, 196 and 82 volatile compounds were identified from leaves of 62 citrus germplasms and flowers of 25 citrus germplasms, respectively. The dominant volatile terpenoids were more diverse in citrus leaves than in peels. A total of 34 volatile terpenoids were commonly detected in the leaves of at least 20 germplasms, among which 31 were overaccumulated in the leaves of wild or semiwild germplasms. This result was consistent with the high expression levels of five genes and one key gene of the mevalonate and 2-C-methyl-D-erythritol-4-phosphate (MEP) biosynthetic pathways, respectively, as well as the low expression levels of geranylgeranyl diphosphate synthase of the MEP pathway, relative to the levels in cultivars. Fully open flowers showed increased levels of four terpene alcohols and a decrease in sabinene content compared with balloon-stage flowers, especially in sweet orange. A monoterpene synthase gene was identified and functionally characterized as a sabinene synthase in vitro. CONCLUSIONS Collectively, our results suggest that 31 important terpenoids are abundant in wild or semiwild citrus germplasms, possibly because of a negative effect of domestication on the volatiles in citrus leaves. The sweet smell of fully open flowers may be attributed to increased levels of four terpene alcohols. In addition, a sabinene synthase gene was identified by combined transcriptomic and metabolomic analyses.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Mengjun Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhenhua Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liu Fang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dong Jiang
- Citrus Research Institute of Southwest University, National Citrus Germplasm Repository, Chongqing, 400712 People’s Republic of China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
25
|
Volatile Compounds in Fruit Peels as Novel Biomarkers for the Identification of Four Citrus Species. Molecules 2019; 24:molecules24244550. [PMID: 31842378 PMCID: PMC6943597 DOI: 10.3390/molecules24244550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
The aroma quality of citrus fruit is determined by volatile compounds, which bring about different notes to allow discrimination among different citrus species. However, the volatiles with various aromatic traits specific to different citrus species have not been identified. In this study, volatile profiles in the fruit peels of four citrus species collected from our previous studies were subjected to various analyses to mine volatile biomarkers. Principal component analysis results indicated that different citrus species could almost completely be separated. Thirty volatiles were identified as potential biomarkers in discriminating loose-skin mandarin, sweet orange, pomelo, and lemon, while 17 were identified as effective biomarkers in discriminating clementine mandarins from the other loose-skin mandarins and sweet oranges. Finally, 30 citrus germplasms were used to verify the classification based on β-elemene, valencene, nootkatone, and limettin as biomarkers. The accuracy values were 90.0%, 96.7%, 96.7%, and 100%, respectively. This research may provide a novel and effective alternative approach to identifying citrus genetic resources.
Collapse
|
26
|
Liu C, He M, Wang Z, Xu J. Integrative Analysis of Terpenoid Profiles and Hormones from Fruits of Red-Flesh Citrus Mutants and Their Wild Types. Molecules 2019; 24:molecules24193456. [PMID: 31547628 PMCID: PMC6804237 DOI: 10.3390/molecules24193456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/21/2022] Open
Abstract
In citrus color mutants, the levels of carotenoid constituents and other secondary metabolites are different in their corresponding wild types. Terpenoids are closely related to coloration, bitterness, and flavor. In this study, terpenoid profiles and hormones in citrus fruits of two red-flesh mutants—Red Anliu orange and Red-flesh Guanxi pummelo—and their corresponding wild types were investigated using GC/MS, HPLC, and LC-MS/MS. Results showed that Red Anliu orange (high in carotenoids) and Anliu orange (low in carotenoids) accumulated low levels of limonoid aglycones but high levels of monoterpenoids; conversely, Red-flesh Guanxi pummelo (high in carotenoids) and Guanxi pummelo (deficient in carotenoids) accumulated high levels of limonoid aglycones but low levels of monoterpenoids. However, isopentenyl diphosphate was present at similar levels. A correlation analysis indicated that jasmonic and salicylic acids might play important roles in regulating terpenoid biosynthesis. Additionally, the similarities of carotenoid and volatile profiles between each mutant and its corresponding wild type were greater than those between the two mutants or the two wild types. The flux balance of terpenoid metabolism in citrus fruit tends toward stability among various citrus genera that have different terpenoid profiles. Bud mutations could influence metabolite profiles of citrus fruit to a limited extent.
Collapse
Affiliation(s)
- Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
27
|
Zhang H, Liu C, Yao JL, Deng CH, Chen S, Chen J, Wang Z, Yu Q, Cheng Y, Xu J. Citrus mangshanensis Pollen Confers a Xenia Effect on Linalool Oxide Accumulation in Pummelo Fruit by Enhancing the Expression of a Cytochrome P450 78A7 Gene CitLO1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9468-9476. [PMID: 31379158 DOI: 10.1021/acs.jafc.9b03158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aroma quality of citrus fruit is determined by volatiles that are present at extremely low levels in the citrus fruit juice sacs; it can be greatly improved by increasing volatiles. In this study, we showed that the contents of cis- and trans-linalool oxides were significantly increased in the juice sacs of three pummelos artificially pollinated with the Citrus mangshanensis (MS) pollen. A novel cytochrome P450 78A7 gene (CitLO1) was significantly upregulated in the juice sacs of Huanong Red pummelo pollinated with MS pollen in comparison to that with open pollination. Compared to wild-type tobacco Bright-Yellow2 cells, transgenic cells overexpressing CitLO1 promoted a 3- to 4-fold more conversion of (-)-linalool to cis- and trans-linalool oxides. Overall, our results suggest that MS pollen has a xenia effect on pummelo fruit aroma quality, and CitLO1 is a linalool oxide synthase gene that played an important role in the xenia effect.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Cuihua Liu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , P. R. China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 92169 , Auckland 1142 , New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant & Food Research Limited , Private Bag 92169 , Auckland 1142 , New Zealand
| | - Shilin Chen
- Agricultural Bureau of Yichang District , Yiling 443310 , P. R. China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Zhenhua Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Qiaoming Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| |
Collapse
|
28
|
Chen J, Yuan Z, Zhang H, Li W, Shi M, Peng Z, Li M, Tian J, Deng X, Cheng Y, Deng CH, Xie Z, Zeng J, Yao JL, Xu J. Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2759-2771. [PMID: 30840066 PMCID: PMC6506761 DOI: 10.1093/jxb/erz081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/14/2019] [Indexed: 05/19/2023]
Abstract
Neohesperidosides are disaccharides that are present in some flavonoids and impart a bitter taste, which can significantly affect the commercial value of citrus fruits. In this study, we identified three flavonoid-7-O-di-glucosyltransferase (dGlcT) genes closely related to 1,2-rhamnosyltransferase (1,2RhaT) in citrus genomes. However, only 1,2RhaT was directly linked to the accumulation of neohesperidoside, as demonstrated by association analysis of 50 accessions and co-segregation analysis of an F1 population derived from Citrus reticulata × Poncirus trifoliata. In transgenic tobacco BY2 cells, over-expression of CitdGlcTs resulted in flavonoid-7-O-glucosides being catalysed into bitterless flavonoid-7-O-di-glucosides, whereas over-expression of Cit1,2RhaT converted the same substrate into bitter-tasting flavonoid-7-O-neohesperidoside. Unlike 1,2RhaT, during citrus fruit development the dGlcTs showed an opposite expression pattern to CHS and CHI, two genes encoding rate-limiting enzymes of flavonoid biosynthesis. An uncoupled availability of dGlcTs and substrates might result in trace accumulation of flavonoid-7-O-di-glucosides in the fruit of C. maxima (pummelo). Past human selection of the deletion and functional mutation of 1,2RhaT has led step-by-step to the evolution of the flavor-related metabolic network in citrus. Our research provides the basis for potentially improving the taste in citrus fruit through manipulation of the network by knocking-out 1,2RhaT or by enhancing the expression of dGlcT using genetic transformation.
Collapse
Affiliation(s)
- Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Zhaoxin Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Mingyue Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Jing Tian
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag, Auckland, New Zealand
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
| | - Jiwu Zeng
- Guangdong Fruit Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag, Auckland, New Zealand
- Correspondence: or
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, PR China
- Correspondence: or
| |
Collapse
|
29
|
Zhao C, Wang F, Lian Y, Xiao H, Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr 2018; 60:566-583. [DOI: 10.1080/10408398.2018.1544885] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Lian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Baldi P, Orsucci S, Moser M, Brilli M, Giongo L, Si-Ammour A. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening. PLANTA 2018; 248:1143-1157. [PMID: 30066220 DOI: 10.1007/s00425-018-2962-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/25/2018] [Indexed: 05/20/2023]
Abstract
A coordinated regulation of different metabolic pathways was highlighted leading to the accumulation of important compounds that may contribute to the final quality of strawberry fruit. Strawberry fruit development and ripening involve complex physiological and biochemical changes, ranging from sugar accumulation to the production of important volatiles compounds that contribute to the final fruit flavor. To better understand the mechanisms controlling fruit growth and ripening in cultivated strawberry (Fragaria × ananassa), we applied a molecular approach combining suppression subtractive hybridization and next generation sequencing to identify genes regulating developmental stages going from fruit set to full ripening. The results clearly indicated coordinated regulation of several metabolic processes such as the biosynthesis of flavonoid, phenylpropanoid and branched-chain amino acids, together with glycerolipid metabolism and pentose and glucuronate interconversion. In particular, genes belonging to the flavonoid pathway were activated in two distinct phases, the first one at the very early stages of fruit development and the second during ripening. The combination of expression analysis with metabolomic data revealed that the functional meaning of these two inductions is different, as during the early stages gene activation of flavonoid pathway leads to the production of proanthocyanidins and ellagic acid-derived tannins, while during ripening anthocyanins are the main product of flavonoid pathway activation. Moreover, the subtractive approach allowed the identification of different members of the same gene family coding for the same or very similar enzymes that in some cases showed opposite regulation during strawberry fruit development. Such regulation is an important trait that can help to understand how plants specifically channel metabolic intermediates towards separate branches of a biosynthetic pathway or use different isoforms of the same enzyme in different organs or developmental stages.
Collapse
Affiliation(s)
- Paolo Baldi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| | - Saverio Orsucci
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Mirko Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Matteo Brilli
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Lara Giongo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Azeddine Si-Ammour
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| |
Collapse
|
31
|
Li H, Zeng H, He D, Wang M, Liu L, Liang W, Shu Y, Zhao S, Sun G, Lv C, Xiao C, Liu Y. A new approach to examining the extraction process of Zhishi and Zhiqiao considering the synergistic effect of complex mixtures by PAMPA. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:10-17. [PMID: 30236780 DOI: 10.1016/j.jchromb.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022]
Abstract
Zhishi (ZS) and Zhiqiao (ZQ) are two important traditional Chinese medicines (TCMs) that exert various pharmacological functions due to their active ingredients. However, the oral absorption of these ingredients requires further study. At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay (PAMPA) is one of the most frequently used to predict transcellular passive absorption in in-vitro models. This study aims to establish a new approach to examine an optimal extraction process that can take into account not only the concentration of active ingredients but also the overall absorption properties of the mixtures extracted from TCMs. A high-performance liquid chromatography triple-quadrupole mass spectrometry (HPLC-QqQ-MS/MS) method was validated for the determination of the effective permeability value (Pe) applied to the above experimental medium. The PAMPA experiment showed that certain active ingredients such as diosmin, rhoifolin, eriocitrin, narirutin, naringin, hesperidin and neohesperidin were not detected in the permeability assay of mono-constituents but were well detected and achieved a better absorption in the permeability assay of the mixture, indicating that certain unknown ingredients may act as cosolvents to improve the solubility or permeability of other ingredients. Furthermore, solid phase extraction (SPE) as an enrichment and purification process enhances absorption. In the present study, a novel in vitro approach was developed to decipher the potential role of TCMs in global absorption, and the extraction process for complex TCMs was described and systematically optimized.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Honglian Zeng
- Center for Certification and Evaluation, Guangdong Food and Drug Administration, Guangdong 510080, China
| | - Dan He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yisong Shu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyu Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Guangdong 521000, China
| | - Cheng Lv
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
32
|
Yan F, Shi M, He Z, Wu L, Xu X, He M, Chen J, Deng X, Cheng Y, Xu J. Largely different carotenogenesis in two pummelo fruits with different flesh colors. PLoS One 2018; 13:e0200320. [PMID: 29985936 PMCID: PMC6037374 DOI: 10.1371/journal.pone.0200320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/23/2018] [Indexed: 02/03/2023] Open
Abstract
Carotenoids in citrus fruits have health benefits and make the fruits visually attractive. Red-fleshed ‘Chuhong’ (‘CH’) and pale green-fleshed ‘Feicui’ (‘FC’) pummelo (Citrus maxima (Burm) Merr.) fruits are interesting materials for studying the mechanisms of carotenoid accumulation. In this study, particularly high contents of linear carotenes were observed in the albedo tissue, segment membranes and juice sacs of ‘CH’. However, carotenoids, especially β-carotene and xanthophylls, accumulated more in the flavedo tissue of ‘FC’ than in that of ‘CH’. Additionally, the contents of other terpenoids such as limonin, nomilin and abscisic acid significantly differed in the juice sacs at 150 days postanthesis. A dramatic increase in carotenoid production was observed at 45 to 75 days postanthesis in the segment membranes and juice sacs of ‘CH’. Different expression levels of carotenogenesis genes, especially the ζ-carotene desaturase (CmZDS), β-carotenoid hydroxylase (CmBCH) and zeaxanthin epoxidase (CmZEP) genes, in combination are directly responsible for the largely different carotenoid profiles between these two pummelo fruits. The sequences of eleven genes involved in carotenoid synthesis were investigated; different alleles of seven of eleven genes might also explain the largely different carotenogenesis observed between ‘CH’ and ‘FC’. These results enhance our understanding of carotenogenesis in pummelo fruits.
Collapse
Affiliation(s)
- Fuhua Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Zhenyu He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Lianhai Wu
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Xianghua Xu
- Forestry Science Academy of Lishui, Lishui, Zhejiang, P.R. China
| | - Min He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, P.R. China
- * E-mail:
| |
Collapse
|
33
|
Lu Q, Lv S, Peng Y, Zhu C, Pan S. Characterization of phenolics and antioxidant abilities of red navel orange “Cara Cara” harvested from five regions of China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1485030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Qi Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyi Lv
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Ying Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Chunhua Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
34
|
Wang S, Yang C, Tu H, Zhou J, Liu X, Cheng Y, Luo J, Deng X, Zhang H, Xu J. Characterization and Metabolic Diversity of Flavonoids in Citrus Species. Sci Rep 2017; 7:10549. [PMID: 28874745 PMCID: PMC5585201 DOI: 10.1038/s41598-017-10970-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
Flavonoids are widely distributed in plants and play important roles in many biological processes. Citrus fruits are rich dietary sources of flavonoids. However, there have been very few reports about the comprehensive metabolic profile and natural diversity of flavonoids in different tissues of various Citrus cultivars. In this study, based on the 7416 metabolic signals detected with non-targeted metabolomics approach, Principal Component Analysis revealed the flavedo has the largest differences from other tissues in metabolite levels; as many as 198 flavonoid signals were then detected in 62 Citrus germplasms from 5 species mainly cultivated worldwide, while 117 flavonoids were identified, including 39 polymethoxylated flavonoids (PMFs), 7 flavones, 10 C-O-glycosylflavonoids, 44 O-glycosylflavonoids, 10 C-glycosylflavonoids and 7 newly annotated O-glycosylpolymethoxylated flavonoids. Tissue-specific accumulations were observed: O-glycosylated flavonoids were abundant in all fruit tissues, while PMFs were accumulated preferentially in the flavedo. Among different species, mandarins had the highest levels of PMFs and O-glycosylpolymethoxylated flavonoids, followed by sweet oranges. Based on the flavonoid profiles, 62 germplasms could be clearly grouped into five distinct clusters via hierarchical clustering analysis, which were perfectly matched with their species, with sweet oranges and mandarins clustering closely and being further away from other three species.
Collapse
Affiliation(s)
- Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Tu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Hu Y, Zhang W, Ke Z, Li Y, Zhou Z. In vitro release and antioxidant activity of Satsuma mandarin (Citrus reticulata
Blanco cv. unshiu) peel flavonoids encapsulated by pectin nanoparticles. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yan Hu
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400716 China
| | - Wenlin Zhang
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400716 China
| | - Zunli Ke
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400716 China
| | - Yan Li
- College of Food Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture; Southwest University; Chongqing 400716 China
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing); Ministry of Agriculture; Citrus Research Institute; Southwest University; Chongqing 400715 China
| |
Collapse
|
36
|
Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chem 2017; 225:114-124. [DOI: 10.1016/j.foodchem.2016.12.098] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 01/24/2023]
|
37
|
Zhang H, Xie Y, Liu C, Chen S, Hu S, Xie Z, Deng X, Xu J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 2017; 230:316-326. [PMID: 28407917 DOI: 10.1016/j.foodchem.2017.03.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shilin Chen
- Agricultural Bureau of Yichang District, Yiling 443310, PR China.
| | - Shuangshuang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
38
|
Li W, Liu C, He M, Li J, Cai Y, Ma Y, Xu J. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type. BMC PLANT BIOLOGY 2017; 17:36. [PMID: 28158965 PMCID: PMC5291992 DOI: 10.1186/s12870-017-0988-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Niurouhong (Citrus reticulata Blanco. Niurouhong) (NRH) is a spontaneous beef-red flesh mutant with distinctive flavor compared with its wild type orange-red flesh Zhuhongju (ZHJ). To illustrate the biochemical mechanism of its special flesh color and flavor, fruits at commercial mature stage were used to profile the volatiles in the flavedo and determine the levels of carotenoids, limonoid aglycones and phytohormones in the juice sacs in two seasons. RESULTS Our results showed the content of total volatile terpenoids in NRH was 1.27-fold that in ZHJ. The components of volatiles were found to be common between the two tangerines. This result indicates that the distinctive flavor of NRH might not be derived from the presence/absence of specific volatiles; instead, it was derived from the altered concentrations or balance of α-citral, β-citral, 2-cyclohexen-1-one, (S)-3-methyl-6-(1-methylethenyl) and n-hexadecanoic acid. Analyses of the contents of total and specific carotenoids indicated that the beef-red color of NRH flesh might be largely attributed to the over accumulation of β-cryptoxanthin and β-carotene. However, lower ABA level was found in NRH than in ZHJ, reflecting a possible feedback regulation of ABA biosynthesis on carotenogenesis and the balance in the metabolism among terpenoids. CONCLUSIONS Collectively, our study suggested that the MEP pathway was enhanced in NRH tangerine. However, a certain unknown co-regulatory mechanism might be present in the metabolism pathway of secondary metabolites (especially terpenoids) in beef-red flesh mutant. Our study provides new insights into the regulatory network of terpenoid metabolism and mutation mechanism of red-fleshed citrus.
Collapse
Affiliation(s)
- Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Cuihua Liu
- College of Horticulture, Northwest A & F University, Yangling, Shanxi Province 712100 China
| | - Min He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinqiang Li
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yongqiang Cai
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Yuhua Ma
- Guizhou Fruit Institute,Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province 550006 China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
39
|
Chaudhary PR, Bang H, Jayaprakasha GK, Patil BS. Variation in Key Flavonoid Biosynthetic Enzymes and Phytochemicals in 'Rio Red' Grapefruit (Citrus paradisi Macf.) during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9022-9032. [PMID: 27808514 DOI: 10.1021/acs.jafc.6b02975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the current study, the phytochemical contents and expression of genes involved in flavonoid biosynthesis in Rio Red grapefruit were studied at different developmental and maturity stages for the first time. Grapefruit were harvested in June, August, November, January, and April and analyzed for the levels of carotenoids, vitamin C, limonoids, flavonoids, and furocoumarins by HPLC. In addition, genes encoding for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and 1,2-rhamnosyltransferase (2RT) were isolated, and their expression in grapefruit juice vesicles was studied. Fruit maturity had significant influence on the expression of the genes, with PAL, CHS, and CHI having higher expression in immature fruits (June), whereas 2RT expression was higher in mature fruits (November and January). The levels of flavonoids (except naringin and poncirin), vitamin C, and furocoumarins gradually decreased from June to April. Furthermore, limonin levels sharply decreased in January. Lycopene decreased whereas β-carotene gradually increased with fruit maturity. Naringin did not exactly follow the pattern of 2RT or of PAL, CHS, and CHI expression, indicating that the four genes may have complementary effects on the level of naringin. Nevertheless, of the marketable fruit stages, early-season grapefruits harvested in November contained more beneficial phytochemicals as compared to mid- and late-season fruits harvested in January and April, respectively.
Collapse
Affiliation(s)
- Priyanka R Chaudhary
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| | - Haejeen Bang
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| | | | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University , College Station, Texas 77845, United States
| |
Collapse
|
40
|
Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones. Food Chem 2016; 207:68-74. [DOI: 10.1016/j.foodchem.2016.03.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 12/23/2022]
|
41
|
Liu C, Long J, Zhu K, Liu L, Yang W, Zhang H, Li L, Xu Q, Deng X. Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis. Sci Rep 2016; 6:25352. [PMID: 27162196 PMCID: PMC4861916 DOI: 10.1038/srep25352] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 11/26/2022] Open
Abstract
Flavonols and hydroxycinnamic acids are important phenylpropanoid metabolites in plants. In this study, we isolated and characterized a citrus R2R3-MYB transcription factor CsMYBF1, encoding a protein belonging to the flavonol-specific MYB subgroup. Ectopic expression of CsMYBF1 in tomato led to an up-regulation of a series of genes involved in primary metabolism and the phenylpropanoid pathway, and induced a strong accumulation of hydroxycinnamic acid compounds but not the flavonols. The RNAi suppression of CsMYBF1 in citrus callus caused a down-regulation of many phenylpropanoid pathway genes and reduced the contents of hydroxycinnamic acids and flavonols. Transactivation assays indicated that CsMYBF1 activated several promoters of phenylpropanoid pathway genes in tomato and citrus. Interestingly, CsMYBF1 could activate the CHS gene promoter in citrus, but not in tomato. Further examinations revealed that the MYBPLANT cis-elements were essential for CsMYBF1 in activating phenylpropanoid pathway genes. In summary, our data indicated that CsMYBF1 possessed the function in controlling the flavonol and hydroxycinnamic acid biosynthesis, and the regulatory differences in the target metabolite accumulation between two species may be due to the differential activation of CHS promoters by CsMYBF1. Therefore, CsMYBF1 constitutes an important gene source for the engineering of specific phenylpropanoid components.
Collapse
Affiliation(s)
- Chaoyang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jianmei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Linlin Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
42
|
|
43
|
Wang J, Sun L, Xie L, He Y, Luo T, Sheng L, Luo Y, Zeng Y, Xu J, Deng X, Cheng Y. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:131-44. [PMID: 26795158 DOI: 10.1016/j.plantsci.2015.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/18/2023]
Abstract
Fruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism. The results demonstrated that cutin accumulation is synchronous with fruit expansion, while wax synthesis is synchronous with fruit maturation. Metabolic profile of fruits peel revealed that transition of metabolism of fruit peel occurred from 120 to 150 DAF and ABA was predicted to regulate citrus wax synthesis during the development of Newhall fruits. RNA-seq analysis of the peel from the above two stages manifested that the genes involved in photosynthesis were repressed, while the genes involved in the biosynthesis of wax, cutin and lignin were significantly induced at later stages. Further real-time PCR predicted that MYB transcription factor GL1-like regulates citrus fruits wax synthesis. These results are valuable for improving the fruit quality during development and storage.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Tao Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ling Sheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yi Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
44
|
Jang YK, Jung ES, Lee HA, Choi D, Lee CH. Metabolomic Characterization of Hot Pepper (Capsicum annuum "CM334") during Fruit Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9452-60. [PMID: 26465673 DOI: 10.1021/acs.jafc.5b03873] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Non-targeted metabolomic analysis of hot pepper (Capsicum annuum "CM334") was performed at six development stages [16, 25, 36, 38, 43, and 48 days post-anthesis (DPA)] to analyze biochemical changes. Distinct distribution patterns were observed in the changes of metabolites, gene expressions, and antioxidant activities by early (16-25 DPA), breaker (36-38 DPA), and later (43-48 DPA) stages. In the early stages, glycosides of luteolin, apigenin, and quercetin, shikimic acid, γ-aminobutyric acid (GABA), and putrescine were highly distributed but gradually decreased over the breaker stage. At later stages, leucine, isoleucine, proline, phenylalanine, capsaicin, dihydrocapsaicin, and kaempferol glycosides were significantly increased. Pathway analysis revealed metabolite-gene interactions in the biosynthesis of amino acids, capsaicinoids, fatty acid chains, and flavonoids. The changes in antioxidant activity were highly reflective of alterations in metabolites. The present study could provide useful information about nutrient content at each stage of pepper cultivation.
Collapse
Affiliation(s)
- Yu Kyung Jang
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Doil Choi
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University , 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|