1
|
Hasheminya SM, Dehghannya J. Development and characterization of Plantago major L. seeds mucilage - polyvinyl alcohol nano-biocomposite films incorporating Satureja sahendica Bornm. essential oil nanoemulsion and zinc oxide nanoparticles. Int J Biol Macromol 2025; 306:141629. [PMID: 40043967 DOI: 10.1016/j.ijbiomac.2025.141629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 05/03/2025]
Abstract
Nano-biocomposite films of Plantago major L. seeds mucilage (PMSM) - polyvinyl alcohol (PVA) containing Satureja sahendica Bornm. essential oil nanoemulsion (SSEO-NE), zinc oxide nanoparticles (ZnONPs), and their combination were produced and characterized. Main compounds of SSEO-NE were thymol (49.23 %), p-cymene (20.12 %), and γ-terpinene (15.23 %). Although SSEO-NE lowered ultimate tensile strength (UTS) of films (6.45 MPa), ZnONPs (9.12 MPa) and SSEO-NE - ZnONPs (8.48 MPa) intensified UTS compared to control (7.54 MPa). Adding fillers individually and in combination increased thickness (from 0.075 to 0.088 mm), increased contact angle (from 50.49 to 68.50°), reduced water vapor permeability (WVP) (from 6.66 × 10-7 to 4.55 × 10-7 g·m/m2·Pa·h), decreased light transmittance, changed swelling degree, Young's modulus, color parameters, crystallinity index, increased antibacterial characteristics against Staphylococcus aureus (reductions >6 log CFU/cm2) and Escherichia coli (reductions >6 log CFU/cm2), and enhanced antifungal properties for bread preservation during storage. Development of hydrogen bonds was specified in films containing SSEO-NE and SSEO-NE - ZnONPs. Although SSEO-NE reduced storage modulus and glass transition temperature (Tg), ZnONPs and SSEO-NE - ZnONPs increased storage modulus and Tg compared to control. Surface and cross-sectional morphology revealed different changes in film microstructures. Crystalline shape of nanoparticles was preserved in samples containing ZnONPs and SSEO-NE - ZnONPs.
Collapse
Affiliation(s)
| | - Jalal Dehghannya
- Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran.
| |
Collapse
|
2
|
Sun S, Ji Y, McClements DJ, Song H, Liu R, Gao S, Sun C, Hou H, Wang W. Tailoring the hydrophobic structure of starch films: Selective distribution of beeswax via ultrasonication and homogenization. Int J Biol Macromol 2025; 307:142288. [PMID: 40118433 DOI: 10.1016/j.ijbiomac.2025.142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Overcoming the strong water sensitivity of starch films is essential for their widespread application. We previously revealed that the acid-modified starch/beeswax/octenyl succinate starch composite is promising for the fabrication of highly hydrophobic starch films. This work further demonstrated that homogenization and ultrasonication were effective approaches to forming a pseudo-bilayer film with a phase separation structure and an emulsion film with a homogeneous structure, respectively. Homogenization at 15000 rpm for 1 min resulted in the maximum contact angle of 98° with the highest surface roughness; and homogenization followed by ultrasonication for 5 min was beneficial to the integration of the two phases in the matrix, leading to the minimum moisture permeability (1.49 × 10-10·g·m·m-2·s-1·Pa-1), moisture content (10.84 %), and water solubility (10.69 %). In other words, the films with high surface hydrophobicity can be obtained through the design of homogeneous conditions, and ultrasonication was good at improving the water barrier and resistance. Findings provided a reference for the personalized customization of the hydrophobicity of starch films.
Collapse
Affiliation(s)
- Shenglin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China; Baolingbao Biology Co., Ltd., Dezhou, Shandong Province 251200, China
| | - Yuting Ji
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | | | - Haiming Song
- College of Management, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Ruiping Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shan Gao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Chengbin Sun
- Xingquan Oil Co. Ltd., Linyi, Shandong Province 276600, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
3
|
Tabassum N, Khan F, Jeong GJ, Oh DK, Kim YM. Enhanced bioavailability and improved antimicrobial, antibiofilm, and antivirulence activities of fish gelatin-based nanoformulations prepared by coating of maltol-gold nanoparticles. CHEMOSPHERE 2025; 379:144439. [PMID: 40288216 DOI: 10.1016/j.chemosphere.2025.144439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Biofilm formation by a single and multiple microbial species poses a significant challenge to healthcare due to biofilm-related antibiotic resistance. This study aimed to develop a nanoformulation (Mal-AuNP-Gel) by synthesizing gold nanoparticles (AuNPs) with maltol (Mal), and coating them with fish gelatin (Gel) to reduce biofilm formation and virulence characteristics of microbial pathogens. Mal-AuNP-Gel showed increased antibacterial activity against all pathogens studied, including bacterial (Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Listeria monocytogenes, Escherichia coli, and methicillin-resistant S. aureus) and fungal pathogens (e.g., Candida albicans), with MICs up to 2-fold lower than those of Mal-AuNPs. At the sub-MIC level, Mal-AuNPs-Gel, compared to Mal-AuNPs, improved the inhibition of initial-stage biofilm development by a single species of P. aeruginosa, S. aureus, and C. albicans as well as the mixed-species biofilm of S. aureus and C. albicans. Additionally, these nanoparticles significantly inhibited several virulence characteristics such as hemolysis, pyoverdine and pyocyanin production, protease activity, and motility of P. aeruginosa. Furthermore, the expression of genes associated with biofilm formation, quorum sensing, motility, and virulence factors in P. aeruginosa was found to be suppressed by Mal-AuNPs-Gel at a higher level than that of Mal-AuNPs, corroborating the phenotypic effects. The non-cytotoxic effects of Mal-AuNPs and Mal-AuNPs-Gel at sub-MIC levels, as evidenced by results of in vitro cell cytotoxicity and in vivo phytotoxicity tests, further indicated biocompatibility of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do Kyung Oh
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Maciel FS, Assis RQ, Rios ADO, Pertuzatti PB. Açaí powder-enriched biodegradable starch films: Characterization, release in food simulants and protective effect in photodegradation system. Int J Biol Macromol 2025; 308:142420. [PMID: 40174824 DOI: 10.1016/j.ijbiomac.2025.142420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Açaí is an important source of natural pigments with antioxidant capacity, such as anthocyanins. Among the various possibilities for its application is its incorporation into biodegradable films, which can act as carriers of these bioactive compounds. The objective of this study was to develop biodegradable films based on starch with different açaí powder concentrations (5 % and 15 %). The films were developed using the casting technique and evaluated in relation to barrier properties, physicochemical, biodegradability, release to food simulants, and protective effect against photodegradation of β-carotene. The addition of the natural antioxidant led to the development of films with greater color intensity and improved light barrier and mechanical properties (tensile strength and elongation). The retention of açaí powder in the polymer matrix was identified in the FTIR analysis through the intensification of some regions in relation to the control film. The cohesion and interaction between film:active compound showed an improvement in water-related properties, such as reduced permeability and water absorption. Furthermore, the active films showed sustained release of anthocyanins into the food simulant (maximum of 3.04 mg cyanidin 3-glycoside/100 g and 8.06 mg cyanidin 3-glycoside/100 g for films AP5% and AP15%, respectively) and better protection against photodegradation of the β-carotene solution (35-50 % retention when exposed to high light intensity). The rapid biodegradability, thermal stability, and stability at different pH may indicate potential application as packaging for foods susceptible to photodegradation.
Collapse
Affiliation(s)
- Franciele Silva Maciel
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Renato Queiroz Assis
- Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Paula Becker Pertuzatti
- Engenharia de Alimentos, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Instituto de Ciências Exatas e da Terra, Universidade Federal de Mato Grosso, Avenida Valdon Varjão, 6390, CEP 78600-000 Barra Do Garças, Brazil.
| |
Collapse
|
5
|
Sun X, Liu Y, Li X, Chen L, Li M, Sun Q, Wang F, Hao J, Xie F, Wang Y. Curdlan inclusion modifies the rheological properties and the helix-coil transition behavior of gelatin and increases the flexibility of gelatin films. Food Chem 2025; 469:142567. [PMID: 39729661 DOI: 10.1016/j.foodchem.2024.142567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties. Herein, the microstructure and characteristics of gelatin/curdlan film-forming solutions and the resulting films were systematically characterized. Effective interaction between curdlan and gelatin can be shown by a homogeneous phase morphology and increased helix-coil transition temperature. The strong interactions between gelatin and curdlan results in a well-integrated polymer network, significantly influence gelatin's properties. In particular, the samples containing higher proportion of curdlan exhibited increased elongation at break, suggesting enhanced flexibility. Overall, this research presents a promising way for improving gelatin's ductility, enhancing its potential for food-related and broader applications.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yongxin Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinyi Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liya Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fenghuan Wang
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jun Hao
- Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315048, China.
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China.
| |
Collapse
|
6
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
7
|
Xia F, Shi W, Yu Y, Jiang C, Zhang H, Zhang P, Sun W. Intelligent pH-responsive ratiometric fluorescent nanofiber films for visual and real-time seafood freshness monitoring. Food Chem 2025; 466:142240. [PMID: 39616698 DOI: 10.1016/j.foodchem.2024.142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024]
Abstract
In this study, polyvinyl alcohol (PVA)-based ratiometric fluorescence nanofiber films with salicylamide (SA) as the response signal, rhodamine B (RhB) as the internal reference were prepared using electrospinning technique, and reducing their water solubility by glutaraldehyde (G) crosslinked. The RhB and SA were successfully immobilized in the PVA substrate. Moreover, RhB and SA improved the water resistance, water vapor barrier, and mechanical strength of the nanofiber films, among the PVA nanofiber films containing RhB and 400 mg SA (PVA/RhB/4SA-G) showed the best packaging performance. Meanwhile, it exhibited high sensitivity to ammonia (limit of detection was 0.97 ppm), and could effectively distinguish the freshness states of shrimp stored at 4 and 25 °C by displaying a distinct shift from light pink to bright purple fluorescence. Moreover, the migration studies confirmed the safety of PVA/RhB/4SA-G. Therefore, the fabricated PVA/RhB/4SA-G can be utilized as a promising intelligent packaging for monitoring seafood freshness in real-time.
Collapse
Affiliation(s)
- Fei Xia
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wanting Shi
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yaxin Yu
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- Colleage of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
8
|
Bouftou A, Aghmih K, Belfadil D, Rezzouq A, Lakhdar F, Lamine M, Gmouh S, Majid S. Novel food preservation strategy using sprayed PVA/chitosan-based coatings activated by macroemulsions of chamomile essential oil adsorbed on activated carbon. Int J Biol Macromol 2024; 283:137829. [PMID: 39566802 DOI: 10.1016/j.ijbiomac.2024.137829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Active films based on polyvinyl alcohol (PVA) and chitosan (CS) were developed by encapsulating chamomile essential oil using an emulsification process, followed by adsorption onto activated carbon (AC) to stabilize the oil droplets. Microscopic analysis showed that the average size of the micelles was between 0.1 μm and 1.5 μm. The micelles obtained were incorporated into PVA/CS film formulations with different concentrations of chamomile essential oil (5 %, 10 %, 15 % w/w), and the optical, physical, mechanical, antibacterial, and antioxidant properties as well as the release rate of the encapsulated oil were studied to test their application in food packaging. The SEM images showed a homogeneous dispersion of the EO in the polymer matrix containing AC, due to the formation of hydrogen bonds, which is confirmed by the FTIR results and is accompanied by an increase in the viscosity of the film-forming solutions, a decrease in the crystallinity and an improvement in mechanical properties by an increase in elongation at break (15.95 ± 0.10 to 47.02 ± 0.06 %) of the films produced. In addition, some properties of the PVA/CS films were increased by the addition of EO-AC, notably thickness (0.097 ± 0.12 to 0.144 ± 0.01 mm) and opacity (1.632 ± 0.11 to 8.266 ± 0.12), while the water absorption rate and solubility of the films decreased. PVA/CS-EO-AC films exhibit good antioxidant and antibacterial activity against E. coli and S. aureus, high barrier properties (UV-blocking) and a controlled release of bioactive molecules contained in EO. The PVA/CS/EO-AC coating reduced the weight loss of the tested apples to (3.31 ± 0.29 %) compared to apples packaged in polyethylene film, and maintained their appearance after 3 weeks of storage. These results offer the possibility of reducing food waste through this new coating strategy based on the encapsulation of EO.
Collapse
Affiliation(s)
- Abderrahim Bouftou
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Kaoutar Aghmih
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Doha Belfadil
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Asiya Rezzouq
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Fatima Lakhdar
- Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco
| | - Mustapha Lamine
- Laboratory of Mechanics, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Said Gmouh
- Laboratory of Engineering and Materials (LIMAT), Faculty of Sciences ben m'sik, Hassan II University of Casablanca, 7955 Casablanca, Morocco
| | - Sanaa Majid
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco.
| |
Collapse
|
9
|
Hasheminya SM, Dehghannya J. Development and characterization of kefiran-gelatin bio-nanocomposites containing Zhumeria majdae essential oil nanoemulsion to use as active food packaging in sponge cakes. Int J Biol Macromol 2024; 279:135120. [PMID: 39208884 DOI: 10.1016/j.ijbiomac.2024.135120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Active packaging films based on kefiran-gelatin were developed and characterized using Zhumeria majdae essential oil nanoemulsion (ZMEO-NE) at concentrations of 0 (control), 1, 2 and 3 %. The main compounds of the essential oil (EO) of Zhumeria majdae (ZM) plant were linalool (61.44 %) and camphor (20.67 %). Adding the ZMEO-NE to the films decreased permeability to water vapor (from 7.82 × 10-7 to 4.09 × 10-7 g·m/m2·Pa·h), ultimate tensile strength (from 38.44 to 33.48 MPa), percentage of light transmission, and increased thickness (from 0.085 to 0.121 mm), opacity (from 2.11 to 2.79), and elongation at break (from 19.97 to 34.73 %), and changed color parameters. The establishment of hydrogen bonds between the ZMEO-NE and polymer network was confirmed. The ZMEO-NE decreased the storage modulus and glass transition temperature. Distinct variations in the films' surface morphology and a reduction in the crystalline structure were observed due to the presence of the ZMEO-NE. Elevating the concentration of the ZMEO-NE increased antioxidant capabilities of the films. The films incorporating the ZMEO-NE exhibited notable antibacterial efficacy against Staphylococcus aureus (reductions ≥4 log CFU/cm2) and Escherichia coli (reductions ≥2 log CFU/cm2) bacteria. The films also demonstrated suitable antifungal properties during storage of sponge cakes for 16 days.
Collapse
Affiliation(s)
| | - Jalal Dehghannya
- Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran.
| |
Collapse
|
10
|
Hamed YS, Hassan KR, Ahsan HM, Hussain M, Abdullah, Wang J, Zou XG, Bu T, Rayan AM, Yang K. Development of chitosan-based edible film incorporated with purified flavonoids from Moringa oleifera: Structural, thermal, antibacterial activity and application. Food Chem 2024; 457:140059. [PMID: 38905835 DOI: 10.1016/j.foodchem.2024.140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Purified flavonoids (PF) from Moringa oleifera leaves were incorporated in chitosan (CS) polymer at different concentrations (0.5-4%) to produce a novel edible film. The physical, structure, mechanical, and bio-functional characterizations of the film were evaluated. The incorporation of PF significantly (p < 0.05) improved the thickness, solubility, swelling, and color of CS-films. Incorporating 4% of Moringa oleifera purified flavonoids (MOPF) improved the water vapor permeability from 8.85 to 2.47 g-1 s-1 Pa-1, and increased the film surface heterogeneity observed by SEM. Results also indicated that PF enhanced the mechanical properties and thermal stability of CS-films. The FTIR results indicated alterations in the CS-MOPF composite films' characteristics. Additionally, the incorporation of MOPF increased the antioxidation capacity. Furthermore, 4% of MOPF inhibited the activity of pathogenic bacteria in packed beef burgers. These results suggest that CS-MOPF composite films with enhanced technological and bio-functional properties could be industrially applied to increase the shelf-life of packaged foods.
Collapse
Affiliation(s)
- Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt.
| | - Khloud R Hassan
- Agricultural Economics Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Hafiz Muhammad Ahsan
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Xian-Guo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Tingting Bu
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, PR China.
| |
Collapse
|
11
|
Cao Y, Yin L, Li F, Deng Y, Kong B, Liu Q, Wang H, Wang H. Characterization of sodium alginate film containing zein-Arabic gum nanoparticles encapsulated with oregano essential oil for chilled pork packaging. Int J Biol Macromol 2024; 278:134824. [PMID: 39154685 DOI: 10.1016/j.ijbiomac.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chilled pork retains most of its nutrients but is prone to deterioration during the production-to-consumption process. To address this issue this study aimed to develop zein-Arabic gum composite nanoparticles loaded with oregano essential oil (ZAG-OEO) and incorporate them into sodium alginate films to enhance the freshness and shelf life of chilled pork. Sodium alginate, known for its excellent film-forming properties, was selected as the matrix to prepare ZAG-OEO-containing sodium alginate films (SA-ZAG-OEO). The results revealed that the tensile strength and elongation at break of the prepared films were 47.73 ± 2.15 MPa and 6.27 ± 0.21 %, respectively, at a 2.5 % nanoparticle concentration. The water contact angle of the films incorporating nanoparticles reached 81.5 ± 1.95°. The incorporation of nanoparticles enhanced the thermal stability and antibacterial activity of the films. The prepared films were utilized for the storage of chilled pork, and the quality changes were analyzed. The results demonstrate that SA-ZAG-OEO films inhibit microbial growth and lipid oxidation, thereby delaying pork spoilage. This study offers new insights into extending the shelf life of chilled pork and developing advanced meat preservation methods for the future development of the meat industry.
Collapse
Affiliation(s)
- Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lingyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi Deng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
12
|
Bhatia S, Alhadhrami AS, Shah YA, Esatbeyoglu T, Koca E, Aydemir LY, Al-Harrasi A, Mohan S, Najmi A, Khalid A. Examining the potential of peppermint essential oil-infused pectin and kappa-carrageenan composite films for sustainable food packaging. Heliyon 2024; 10:e36895. [PMID: 39286085 PMCID: PMC11403511 DOI: 10.1016/j.heliyon.2024.e36895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Essential oils are key ingredients in the development of edible films and provide a diverse approach to improving food preservation, as well as sensory qualities. The pectin and kappa-carrageenan composite films were obtained by adding peppermint essential oil in different quantities. The films after their fabrication were thoroughly evaluated for their attributes, which included mechanical, barrier, optical, chemical, thermal, and antioxidant properties. The visual assessment of the films demonstrated that PEO-loaded films showed a uniform, homogenous, and slightly yellowish appearance. There was an increase in the thickness (0.045 ± 0.006 to 0.060 ± 0.008 mm), elongation at break (12.73 ± 0.74 to 25.05 ± 1.33 %), and water vapor permeability (0.447 ± 0.014 to 0.643 ± 0.014 (g*mm)/(m2*h*kPa)) was observed with the addition of PEO. However, tensile strength (45.84 ± 3.69 to 29.80 ± 2.10 MPa) and moisture content (25.83 ± 0.046 to 21.82 ± 0.23 %) decreased with the incorporation of PEO. Furthermore, thermal and antioxidant properties were enhanced by the inclusion of PEO. The presented investigation can be employed to synthesize food packaging material with antioxidant properties with potential applications in food packaging.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Aysha Salim Alhadhrami
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, 616, Oman
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, 30167, Hannover, Germany
| | - Esra Koca
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, 01250, Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, 616, Oman
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
13
|
Ni Y, Li Y, Wang M, Li H, Zhang W, Tan L, Zhao J, Xu B. Chitosan-based packaging films with antibacterial-sterilization integrated continuous activity for extending the shelf life of perishable foods. Int J Biol Macromol 2024; 275:133351. [PMID: 38945713 DOI: 10.1016/j.ijbiomac.2024.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The current food packaging films can be preservative but lack the function of combining antibacterial and sterilization which lead to films can not maximize prolong shelf life of perishable foods. This study provided a new strategy to realize prolonging shelf life of perishable foods by integrating antibacterial and sterilization which focused on applying photodynamic inactivation to films with continuous activity, where curcumin (CUR) and sodium copper chlorophyll (SCC) were loaded into chitosan (CS) films. Compared to pure CS films, the barrier capacity (oxygen permeability and water vapor permeability) and mechanical properties of composite films were improved by introducing CUR and SCC. In addition, the composite film can effectively against food-borne pathogenic bacteria and significantly prolong the shelf life of cherries and pork. The provided strategy has potential application prospects in food preservation packaging.
Collapse
Affiliation(s)
- Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| | - Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Mengyi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| |
Collapse
|
14
|
Yosri N, Khalifa SAM, Attia NF, Du M, Yin L, Abolibda TZ, Zhai K, Guo Z, El-Seedi HR. Sustainability in the green engineering of nanocomposites based on marine-derived polysaccharides and collagens: A review. Int J Biol Macromol 2024; 274:133249. [PMID: 38906361 DOI: 10.1016/j.ijbiomac.2024.133249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Nanocomposites are sophisticated materials that incorporate nanostructures into matrix materials, such as polymers, ceramics and metals. Generally, the marine ecosystem exhibits severe variability in terms of light, temperature, pressure, and nutrient status, forcing the marine organisms to develop variable, complex and unique chemical structures to boost their competitiveness and chances of survival. Polymers sourced from marine creatures, such as chitin, chitosan, alginate, sugars, proteins, and collagen play a crucial role in the bioengineering field, contributing significantly to the development of nanostructures like nanoparticles, nanocomposites, nanotubes, quantum dots, etc. These nanostructures offer a wide array of features involving mechanical strength, thermal stability, electrical conductivity, barrier and optical characteristics compared to traditional composites. Notably, marine nanocomposites have distinctive roles in a wide spectrum of applications, among them anti-cancer, anti-microbial, antioxidant, cytotoxic, food packing, tissue engineering and catalytic actions. Sol-gel, hot pressing, chemical vapor deposition, catalytic decomposition, dispersion, melt intercalation, in situ intercalative polymerization, high-energy ball milling and template synthesis are common processes utilized in engineering nanocomposites. According to our literature survey and the Web of Science, chitosan, followed by cellulose, chitin and MAPs emerge as the most significant marine polymers utilized in the construction of nanocomposites. Taken together, the current manuscript underscores the biogenesis of nanocomposites, employing marine polymers using eco-friendly processes. Furthermore, significant emphasis in this area is needed to fully explore their capabilities and potential benefits. To the best of our knowledge, this manuscript stands as the first comprehensive review that discusses the role of marine-derived polymers in engineering nanocomposites for various applications.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden.
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Limei Yin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tariq Z Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Mesgari M, Matin MM, Goharshadi EK, Mashreghi M. Biogenesis of bacterial cellulose/xanthan/CeO 2NPs composite films for active food packaging. Int J Biol Macromol 2024; 273:133091. [PMID: 38878924 DOI: 10.1016/j.ijbiomac.2024.133091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
The increasing significance of biopolymer-based food packaging can be attributed to its biodegradability and independence from petroleum-derived materials. Concurrently, metal oxide nanoparticles (NPs) have gained prominence as effective antimicrobial agents against both wild-type and antibiotic-resistant microbes. In this study, cerium oxide or ceria, CeO2, nanoparticles with an average diameter of 50 nm were synthesized via a green method utilizing Vibrio sp. VLC cell lysate supernatant. The synthesized CeO2 NPs displayed remarkable antimicrobial properties, inhibiting the growth of Escherichia coli and Staphylococcus aureus by 93.7 % and 98 %, respectively. To enhance the potential of bacterial cellulose (BC) for advanced applications, we developed a BC/xanthan/CeO2 nanocomposite using both ex situ and in situ techniques. The integration of CeO2 NPs within the nanocomposite structure not only improved the inherent properties of BC, but also rendered it suitable for use in active food packaging systems. The nanocomposite exhibited no significant cytotoxicity on the human dermal fibroblast (HDF) cells, confirming its safety. Nanocomposites containing biogenically synthesized CeO2 NPs demonstrated exceptional efficacy for reducing microbial contamination. Bread samples coated with nanocomposite films displayed no signs of microbial growth. These results support the application of BC/xanthan/CeO2 nanocomposites as suitable and effective coating materials for antimicrobial food packaging applications.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elaheh K Goharshadi
- Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Nano Research, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
16
|
Fan F, Yue C, Zhai Z, Liao H, Lian X, Xie H. Gelatin/dextran active films incorporated with cinnamaldehyde and α-tocopherol for scallop (Patinopecten yessoensis) adductor muscle preservation. J Food Sci 2024; 89:4047-4063. [PMID: 38778558 DOI: 10.1111/1750-3841.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Scallops are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid but perishable due to their microbial growth and lipid oxidation. In this study, gelatin/dextran films containing cinnamaldehyde and α-tocopherol (0% + 0%, 0.3% + 0.3%, 0.6% + 0.6%, 0.9% + 0.9%, and 1.2% + 1.2%, w/w) as active fillers were developed by solution casting method, and their preservation effects on scallop adductor muscle refrigerated at 4°C for 0, 3, 6, 9, and 12 days were evaluated. Inclusion of the two active fillers did not influence the thermal stability of the films but created heterogenous and discontinuous film microstructure and increased the film hydrophobicity. Increase in the concentrations of active fillers lowered the mechanical properties and water vapor permeability of the films but increased their crystallinity, thickness, water contact angle, opacity, antibacterial property, and antioxidant property. The longest release times for both cinnamaldehyde and α-tocopherol were found in 95% (v/v) ethanol solution. The gelatin/dextran films containing 1.2% (w/w) of active fillers (Gelatin [Ge]/Dextran [Dx]/1.2 film) improved the chemical stability of refrigerated scallop adductor muscle. The total viable count (TVC) of the unpackaged scallop adductor muscle exceeded the recommended limit of 7 lg CFU/g on day 6 (7.07 ± 0.50 lg CFU/g), whereas the TVC of the Ge/Dx/1.2 film-packaged scallop adductor muscle was still below the limit on day 9 (5.60 ± 0.50 lg CFU/g). Thus, the Ge/Dx/1.2 film can extend the shelf life of refrigerated scallop adductor muscle by at least 3 days. Overall, the developed gelatin/dextran active packaging films are promising for the preservation of aquatic food products.
Collapse
Affiliation(s)
- Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Chenlinrui Yue
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zhenni Zhai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Hailu Liao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xiaoni Lian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Hongkai Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
17
|
Corrêa-Filho LC, Santos Junior JRD, Ramos AV, Martinazzo AP, Habert AC, Carvalho CWPD, Soares AG, Tonon RV, Cabral LMC. Chitosan-based nanocomposite films with carnauba wax, rosin resin, and zinc oxide nanoparticles. Food Res Int 2024; 188:114475. [PMID: 38823838 DOI: 10.1016/j.foodres.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
This work aimed to develop edible emulsion-based barriers in the form of chitosan composite films, with a focus on assessing the impacts of carnauba wax, rosin resin, and zinc oxide nanoparticles on their properties. Six films were produced by casting using chitosan as polymer base and glycerol as plasticizer. Acetic acid and polysorbate 80 were also used to facilitate the dissolution and mixing of the components. The six filmogenic solutions contained chitosan at 1.2% w/v, wax or resin content with 0 or 0.6% m/v and ZnO with 0 or 0.05% m/v. The dried films were characterized according to their chemical, barrier, mechanical, thermal and optical properties. All treatments resulted in flexible films. Chitosan films appeared smoother and more uniform under SEM imaging, while carnauba wax films displayed roughness due to their hydrophobic nature. Wax and resin films were less transparent and water soluble than the chitosan-only films. On the other hand, the addition of ZnO in the formulations increased the solubility of the films. The sorption degree was in line with the solubility results, i.e., films with ZnO presented higher sorption degree and solubility values. All treatments showed low or non-light UV transmission, indicating that the films provide good barrier to UV light. In the visible light region, films of resin with ZnO showed the lowest transmittance values, hence offering a good barrier to visible light. Among the evaluated films, chitosan, and resin films with ZnO nanoparticles were more rigid and resistant to deformation. Overall, films produced with rosin resin and ZnO nanoparticles showed potential improvements in barrier, mechanical, thermal, and optical properties, mainly due to their low water solubility, good UV protection and low permeability to water vapor and oxygen, which are suitable for using in formulations, intended to produce edible films and coatings.
Collapse
Affiliation(s)
| | | | - Andresa Viana Ramos
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Ana Paula Martinazzo
- Department of Agribusiness Engineering, Federal Fluminense University, 27255-125 Volta Redonda, RJ, Brazil
| | - Alberto Claudio Habert
- Nanotechnology Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil; Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
18
|
Yang J, Punia Bangar S, Rizwan Khan M, Hammouda GA, Alam P, Zhang W. Biopolymer-based packaging films/edible coatings functionalized with ε-polylysine: New options for food preservation. Food Res Int 2024; 187:114390. [PMID: 38763652 DOI: 10.1016/j.foodres.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gehan A Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
19
|
Baghi F, Gharsallaoui A, Dumas E, Agusti G, Ghnimi S. Characterization of antimicrobial multilayer film based on ethylcellulose-pectin incorporated with nanoemulsions of trans-cinnamaldehyde essential oil. Food Chem X 2024; 22:101261. [PMID: 38486619 PMCID: PMC10937108 DOI: 10.1016/j.fochx.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, polymer solution casting was utilized to fabricate a multilayer film with ethylcellulose (EC) as the outer layers and trans-cinnamaldehyde-loaded pectin as the inner layer. A significant increase in whiteness and UV-visible light blocking capability and a remarkable decrease in total color difference and yellowness of the films were seen via increasing the thickness of EC outer layers. Scanning electronic microscopy observation showed that the inner and outer layers had a smooth and uniform surfaces with clear boundary. The thicker film has better stretchability and strength, but is less flexible than thinner film. Glass transition temperature did not change remarkably with increasing thickness of EC outer layers, but thermal stability was slightly improved. FTIR-ATR spectra revealed the formation of hydrogen bonds between the two adjacent layers. The multilayer films exhibited excellent antimicrobial efficacy against Gram-positive and Gram-negative foodborne pathogens. The results suggested that this multilayer film has potential applications in active food packaging.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
- ISARA, 23 Rue Jean Baldassini, 69007 Lyon, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Sami Ghnimi
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
- ISARA, 23 Rue Jean Baldassini, 69007 Lyon, France
| |
Collapse
|
20
|
Chen X, Lan W, Xie J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (Lateolabrax japonicas) packaging. Food Chem 2024; 441:138343. [PMID: 38211477 DOI: 10.1016/j.foodchem.2023.138343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The poor mechanical properties, low water-resistance, and limited antimicrobial activity of chitosan (CS)/polyvinyl alcohol (PVA) based film limited its application in aquatic product preservation. Herein, bacterial cellulose (BC) was used to load ginger essential oil (GEO). The effects of the addition of BC and different concentrations of GEO on the physicochemical and antimicrobial activities of films were systematically evaluated. Finally, the application of sea bass fillets was investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) analysis indicated dense networks were formed, which was verified by enhanced physical properties. The mechanical properties, barrier properties, and antimicrobial activities enhanced as GEO concentration increased. CPB0.8 (0.8 % GEO) film had better tensile strength (TS) and barrier performance, improved the quality, and extended the shelf-life of sea bass for another 6 days at least. Overall, active films are potential packaging materials for aquatic products.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
21
|
Paul J, Jacob J, Mahmud M, Vaka M, Krishnan SG, Arifutzzaman A, Thesiya D, Xiong T, Kadirgama K, Selvaraj J. A data mining approach to analyze the role of biomacromolecules-based nanocomposites in sustainable packaging. Int J Biol Macromol 2024; 265:130850. [PMID: 38492706 DOI: 10.1016/j.ijbiomac.2024.130850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Recent decades have witnessed a surge in research interest in bio-nanocomposite-based packaging materials, but still, a lack of systematic analysis exists in this domain. Bio-based packaging materials pose a sustainable alternative to petroleum-based packaging materials. The current work employs bibliometric analysis to deliver a comprehensive outline on the role of bio nanocomposites in packaging. India, Iran, and China were revealed to be the top three nations actively engaged in this domain in total publications. Islamic Azad University in Iran and Universiti Putra Malaysia in Malaysia are among the world's best institutions in active research and publications in this field. The extensive collaboration between nations and institutions highlights the significance of a holistic approach towards bio-nanocomposite. The National Natural Science Foundation of China is the leading funding body in this field of research. Among authors, Jong whan Rhim secured the topmost citations (2234) in this domain (13 publications). Among journals, Carbohydrate Polymers secured the maximum citation count (4629) from 36 articles; the initial one was published in 2011. Bio nanocomposite is the most frequently used keyword. Researchers and policymakers focussing on sustainable packaging solutions will gain crucial insights on the current research status on packaging solutions using bio-nanocomposites from the conclusions.
Collapse
Affiliation(s)
- John Paul
- Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Malaysia.
| | - Jeeja Jacob
- Higher Institution Centre of Excellence, UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, Kuala Lumpur, Malaysia.
| | - Md Mahmud
- Phillip M. Drayer Department of Electrical and Computer Engineering, College of Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Mahesh Vaka
- Thermal Energy Storage department, Iberian Energy Storage Research Center (CIIAE), 10003 Caceres, Spain
| | - Syam G Krishnan
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria 3010, Australia
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork, Lee Maltings, Cork T12 R5CP, Ireland
| | | | - Teng Xiong
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 117566, Singapore
| | - K Kadirgama
- Faculty of Mechanical & Automotive Engineering Technology, University Malaysia Pahang Al-Sultan Abdullah, Malaysia; Department of Civil Engineering, College of Engineering, Almaaqal University, Iraq.
| | - Jeyraj Selvaraj
- Higher Institution Centre of Excellence, UM Power Energy Dedicated Advanced Centre (UMPEDAC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Bhatia S, Abbas Shah Y, Al-Harrasi A, Jawad M, Koca E, Aydemir LY. Enhancing Tensile Strength, Thermal Stability, and Antioxidant Characteristics of Transparent Kappa Carrageenan Films Using Grapefruit Essential Oil for Food Packaging Applications. ACS OMEGA 2024; 9:9003-9012. [PMID: 38434887 PMCID: PMC10905581 DOI: 10.1021/acsomega.3c07366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
The trends in food packaging technologies are shifting toward utilizing natural and environmentally friendly materials prepared from biopolymers such as kappa carrageenan to replace synthetic polymers. In the current study, varying amounts (0.1, 0.2, and 0.3%) of grapefruit essential oil (GFO) were incorporated in kappa carrageenan-based edible films to improve their physicochemical properties. The developed film samples were characterized for their barrier, mechanical, morphological, optical, thermal, antioxidant, and biodegradable properties. The results obtained showed that the tensile strength of the carrageenan films enhanced significantly from 65.20 ± 4.71 to 98.21 ± 6.35 MPa with the incorporation of GFO in a concentration-dependent manner. FTIR and SEM analysis confirmed the intermolecular bonding between carrageenan and GFO, resulting in the formation of compact films. Incorporating GFO significantly enhanced the thermal resistance of oil-loaded films, as confirmed by TGA, DSC, and DTG analysis. The addition of GFO led to a substantial increase in the radical scavenging activity of the films, as evidenced by the DPPH and ABTS assays. Furthermore, the developed films were biodegradable in soil and seawater environments, indicating their potential as a sustainable alternative to traditional plastics. Findings demonstrated that GFO can be used as a natural antioxidant agent in kappa carrageenan-based films for potential applications in food packaging.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School
of Health Science, University of Petroleum
and Energy Studies, Dehradun 248007, India
- Saveetha
Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Yasir Abbas Shah
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Muhammad Jawad
- Natural
and Medical Sciences Research Center, University
of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Esra Koca
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department
of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
23
|
Gumus T, Kaynarca GB, Kamer DDA. Optimization of an edible film formulation by incorporating carrageenan and red wine lees into fish gelatin film matrix. Int J Biol Macromol 2024; 258:128854. [PMID: 38123042 DOI: 10.1016/j.ijbiomac.2023.128854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study aimed to use response surface methodology (RSM) to create and understand a novel edible film made from fish gelatin (FG). This film includes wine lees (WL) and carrageenan (CAR). The concentrations of WL (0, 1, 2, and 3 %) and CAR (0, 1, and 3 %) were considered independent variables. The process variable combinations for the optimal response functions were 1.926 % WL and 3 % CAR, forming soft and rigid films with low tensile strength (TS) and high elongation at break (EAB%). Based on the evaluation of each response, FG film had the highest TS value, FG/CAR(3 %) film had the maximum EAB, and FG/WL (3 %)/CAR (3 %) film had the lowest vapor permeability (WVP) and the highest opacity (OP). The incorporation of WL considerably improved the functional properties of these films, enabling strong antioxidant activity and high phenolic content. Characterization of the films with analytical techniques: Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis demonstrated a considerable interaction between WL and FG, indicating a high level of compatibility between the two substances. Our data suggest that the formulation of edible films can be adjusted to fit the specific requirements of the design.
Collapse
Affiliation(s)
- Tuncay Gumus
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | | |
Collapse
|
24
|
Mohebi E, Abbasvali M, Shahbazi Y. Development of biomaterials based on chitosan-gelatin nanofibers encapsulated with Ziziphora clinopodioides essential oil and Heracleum persicum extract for extending the shelf-life of vacuum-cooked beef sausages. Int J Biol Macromol 2023; 253:127258. [PMID: 37802439 DOI: 10.1016/j.ijbiomac.2023.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The aims of the current study were to encapsulate Ziziphora clinopodioides essential oil (ZEO, 0%, 0.15%, and 0.25%) and Heracleum persicum extract (HPE, 0%, 0.25%, and 0.5%) into the chitosan-gelatin (CH-GE) nanofibers through the electrospinning process to improve the shelf-life of vacuum-cooked beef sausages through 70 days of refrigerated storage. Scanning electron microscopy indicated that all nanofibers appeared thin, well-defined, smooth, and possessed uniform thread-like fibers without any beads or nodule formations. The Fourier transform infrared spectroscopy study confirmed the molecular interaction between encapsulated compounds and CH-GE nanofibers. The X-ray diffraction analysis of nanofibers showed an increase in crystallinity after incorporating ZEO and HPE into the polymer. Treated sausages with CH-GE-ZEO 0.25%-HPE 0.25% and CH-GE-ZEO 0.25%-HPE 0.5% showed significantly lower microbial population and lipid oxidation than the control group during the experiment period (P < 0.05). Sausages formulated with designated CH-GE nanofibers had better microbial, chemical, and sensory properties compared to sausages treated with pure ZEO/HPE during refrigerated storage. The findings also showed that treated sausages with CH-GE-ZEO 0.25%-HPE 0.5% had the highest color, odor, texture, and overall acceptability after 70 days of refrigerated storage conditions. Therefore, this treatment could be applicable for the prolonged storage conditions during cooked beef sausage production.
Collapse
Affiliation(s)
- Ehsan Mohebi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Maryam Abbasvali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
25
|
Wu Y, Xu F, Zhao H, Wu H, Sun C, Li Q. Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. Int J Biol Macromol 2023; 253:126883. [PMID: 37709222 DOI: 10.1016/j.ijbiomac.2023.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Considering the growing threats to the environment and human health, such as plastic pollution and food spoilage, the development of naturally antibacterial food packaging materials with biodegradable capabilities has recently attracted considerable attention. This work applies the concept of green environmental protection to packaging technology, and a new type of green edible antibacterial packaging film was developed. The basic idea is to incorporate furoic acid (FA), which possesses excellent antibacterial activity, into the flaxseed gum and konjac glucomannan matrix (FK) as a filler to obtain a series of FK-FA bioactive films. This incorporation simultaneously improves the hydrophobicity and UV-barrier ability by 12.28 % and 42.87 %, respectively. Meanwhile, the diameters of the antibacterial zone of the FK-FA0.4% films (composite FK films containing 0.4 % FA) against E. coli and S. aureus increased to 38.98 mm and 36.29 mm from 24.00 mm of pure FK film, respectively. As a consequence, the grape sample sealed with FK-FA0.4% film remained edible on the 18th day of storage, while those packaged with commercial PE film and pure FK were seriously rotted and lost edible value on the 12th day, further confirming the enhanced preservation capacity. Finally, the as-prepared films were established to be biodegradable and were almost completely degraded within 25 days under simulated environmental conditions. Overall, these promising results show the potential of FK-FA films for replacing plastic packaging materials as eco-friendly edible films with prolonged shelf life for active packaging.
Collapse
Affiliation(s)
- Yi Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fei Xu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongyang Zhao
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Wu
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Li
- College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Liu Y, Kang S, Zhang H, Kai Y, Yang H. Preservative effect of gelatin/chitosan-based films incorporated with lemon essential oil on grass carp (Ctenopharyngodon idellus) fillets during storage. Int J Food Microbiol 2023; 407:110437. [PMID: 37826883 DOI: 10.1016/j.ijfoodmicro.2023.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
The present study investigated the effect of fish gelatin/chitosan-based (FG/CS-based) films incorporated with lemon essential oil (LEO) on grass carp fillets in terms of moisture status, total volatile basic nitrogen (TVB-N), and microbial community succession during chilled (4 °C) and iced (0 °C) storage. Low-field nuclear magnetic resonance (LF-NMR) revealed that the active films remarkably inhibited moisture transformation from being the immobilized to free water in grass carp fillets, accompanied with the reduced T22 relaxation time. Besides, magnetic resonance imaging (MRI) detected a higher density of proton in the treated fish samples, indicating that the active films could improve the water-holding capacity of fish samples. Moreover, high-throughput 16S rRNA sequencing suggested that the FG/CS-based films loaded with LEO efficiently decreased the relative abundance of the bacterial genera Shewanella and Aeromonas in grass carp fillets, with minimal accumulation of TVB-N during storage. Additionally, the low storage temperature (0 °C) could further enhance the preservative effect of the active films on the fish samples, which together prolonged their shelf-life to 18 days. Overall, the combination of the active films and iced storage could provide a promising strategy to preserve grass carp fillets.
Collapse
Affiliation(s)
- Yi Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Shu Kang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Haijuan Zhang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Yi Kai
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
27
|
Wang D, Du L, Sun Z, Liu F, Zhang D, Wang D. Characterisation, slow-release, and antibacterial properties of carboxymethyl chitosan/inulin hydrogel film loaded with novel antilisterial durancin GL. Carbohydr Polym 2023; 318:121143. [PMID: 37479449 DOI: 10.1016/j.carbpol.2023.121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
This paper reports the development of a hydrogel film with antibacterial activity and controlled release characteristics. Carboxymethyl chitosan (CMCS) is grafted onto durancin GL and inulin via a mediated reaction between N-hydroxysuccinimide and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride. Rheology tests, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and lap shear tests confirmed the formation of a stable chemical cross-linking and excellent adhesion hydrogel with 4 % CMCS and 8 % inulin. The CMCS/inulin hydrogel film loaded with durancin GL appears transparent and uniform. FTIR spectroscopy results reveal the interaction mode among CMCS, inulin, durancin GL, and the hydrogel film structure. Cross-linking improved thermal stability and water-vapour barrier performance. The hydrophobicity of CMCS/inulin @Durancin GL increased under a durancin GL concentration of 0.036 g/30 mL, and the release of active substances is prolonged. In-vitro antibacterial capacity and salmon preservation experiments show that the addition of durancin GL enhanced the antibacterial activity of the hydrogel film. Therefore, CMCS/inulin@Durancin GL hydrogel films can be used as fresh-keeping packaging materials in practical applications.
Collapse
Affiliation(s)
- Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
28
|
Brooks AK, Ramsey RG, Zhang N, Yadavalli VK. Tunable Light-Actuated Interpenetrating Networks of Silk Fibroin and Gelatin for Tissue Engineering and Flexible Biodevices. ACS Biomater Sci Eng 2023; 9:5793-5803. [PMID: 37698556 DOI: 10.1021/acsbiomaterials.3c00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Soft materials with tunable properties are valuable for applications such as tissue engineering, electronic skins, and human-machine interfaces. Materials that are nature-derived offer additional advantages such as biocompatibility, biodegradability, low-cost sourcing, and sustainability. However, these materials often have contrasting properties that limit their use. For example, silk fibroin (SF) has high mechanical strength but lacks processability and cell-adhesive domains. Gelatin, derived from collagen, has excellent biological properties, but is fragile and lacks stability. To overcome these limitations, composites of gelatin and SF have been explored. However, mechanically robust self-supported matrices and electrochemically active or micropatterned substrates were not demonstrated. In this study, we present a composite of photopolymerizable SF and photogelatin, termed photofibrogel (PFG). By incorporating photoreactive properties in both SF and gelatin, control over material properties can be achieved. The PFG composite can be easily and rapidly formed into free-standing, high-resolution architectures with tunable properties. By optimizing the ratio of SF to gelatin, properties such as swelling, mechanical behavior, enzymatic degradation, and patternability are tailored. The PFG composite allows for macroscale and microscale patterning without significant swelling, enabling the fabrication of structures using photolithography and laser cutting techniques. PFG can be patterned with electrically conductive materials, making it suitable for cell guidance and stimulation. The versatility, mechanical robustness, bioactivity, and electrochemical properties of PFG are shown for skeletal muscle tissue engineering using C2C12 cells as a model. Overall, such composite biomaterials with tunable properties have broad potential in flexible bioelectronics, wound healing, regenerative medicine, and food systems.
Collapse
|
29
|
Han EJ, Elbegbayar E, Baek Y, Lee JS, Lee HG. Taste masking and stability improvement of Korean red ginseng (Panax ginseng) by nanoencapsulation using chitosan and gelatin. Int J Biol Macromol 2023; 250:126259. [PMID: 37567543 DOI: 10.1016/j.ijbiomac.2023.126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In this study, red ginseng extract (RGE)-loaded nanoparticles (NPs) were prepared by ionic gelation between chitosan (CS) and gelatin (Gel), and the physical characteristics of the RGE-loaded CS-Gel NPs (RGE-CS/Gel NPs), including particle size and polydispersity index (PDI), using different ratios of CS and Gel were examined. The particle size and PDI were 398.1 ± 41.3 nm and 0.433 ± 0.033, respectively for the optimal ratio of CS (0.075 mg/mL) and Gel (0.05 mg/mL). In vitro taste masking test and in vivo sensory evaluation using 10 panelists demonstrated that the CS/Gel NPs significantly reduced the bitter taste of RGE. Additionally, the CS/Gel NPs improved the thermal and acid stabilities, which were almost 6 and 8 times higher than those in the free RGE (p < 0.05), respectively. Likewise, our findings revealed that the RGE-CS/Gel NPs effectively maintain their inhibitory function against platelet aggregation (76.30 %) in an acidic environment. Therefore, the CS/Gel NPs can be used as a potential delivery system to mask the bitterness and improve the stability of RGE, which may enhance its application as a more palatable functional food ingredient with high anti-platelet activity.
Collapse
Affiliation(s)
- Eun Ji Han
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Enkhtsatsral Elbegbayar
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea; Medicine Park, Co., Ltd, A-609, 406 Teheran-ro, Gangnam-gu, Seoul 06192, Republic of Korea.
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
30
|
Ding ZG, Shen Y, Hu F, Zhang XX, Thakur K, Khan MR, Wei ZJ. Preparation and Characterization of Eugenol Incorporated Pullulan-Gelatin Based Edible Film of Pickering Emulsion and Its Application in Chilled Beef Preservation. Molecules 2023; 28:6833. [PMID: 37836676 PMCID: PMC10574067 DOI: 10.3390/molecules28196833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to develop a composite film composed of eugenol Pickering emulsion and pullulan-gelatin, and to evaluate its preservation effect on chilled beef. The prepared composite film was comprehensively evaluated in terms of the stability of emulsion, the physical properties of the film, and an analysis of freshness preservation for chilled beef. The emulsion size (296.0 ± 10.2 nm), polydispersity index (0.457 ± 0.039), and potential (20.1 ± 0.9 mV) proved the success of emulsion. At the same time, the films displayed good mechanical and barrier properties. The index of beef preservation also indicated that eugenol was a better active ingredient than clove essence oil, which led to the rise of potential of hydrogen, chroma and water content, and effectively inhibited microbial propagation, protein degradation and lipid oxidation. These results suggest that the prepared composites can be used as promising materials for chilled beef preservation.
Collapse
Affiliation(s)
- Zhi-Gang Ding
- School of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China (F.H.); (K.T.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
31
|
Li J, Zhao S, Zhu Q, Zhang H. Characterization of chitosan-gelatin cryogel templates developed by chemical crosslinking and oxidation resistance of camellia oil cryogel-templated oleogels. Carbohydr Polym 2023; 315:120971. [PMID: 37230613 DOI: 10.1016/j.carbpol.2023.120971] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
In this study, chitosan-gelatin conjugates were prepared by chemical crosslinking of tannic acid. The cryogel templates were developed through freeze-drying and immersed in camellia oil to construct cryogel-templated oleogels. Chemical crosslinking resulted in apparent colour changes and improved emulsion-related/rheological properties on conjugates. The cryogel templates with different formulas exhibited different microstructures with high porosities (over 96 %), and crosslinked samples might have higher hydrogen bonding strength. Tannic acid crosslinking also led to enhanced thermal stabilities and mechanical properties. Cryogel templates could reach a considerable oil absorption capacity of up to 29.26 g/g and prevent oil from leaking effectively. The obtained oleogels with high tannic acid content possessed outstanding antioxidant abilities. After 8 days of rapid oxidation at 40 °C, Oleogels with a high degree of crosslinking owned the lowest POV and TBARS values (39.74 nmol/kg, and 24.40 μg/g, respectively). This study indicates that the involvement of chemical crosslinking would favor the preparation and the application potential of cryogel-templated oleogels, and the tannic acid in the composite biopolymer systems could act as both the crosslinking agent and the antioxidant.
Collapse
Affiliation(s)
- Jiawen Li
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shunan Zhao
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qinyi Zhu
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
32
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
33
|
Yong Y, Wang S, Li L, Li R, Ahmad HN, Munawar N, Zhu J. A curcumin-crosslinked bilayer film of soy protein isolate and chitosan with enhanced antibacterial property for beef preservation and freshness monitoring. Int J Biol Macromol 2023; 247:125778. [PMID: 37437680 DOI: 10.1016/j.ijbiomac.2023.125778] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In this study, antibacterial and antioxidant bilayer films were prepared by using curcumin (Cur) crosslinked soy rotein isolate (SPI) and chitosan (CS). Molecular docking simulations and multispectral analysis revealed that hydrogen bonding and hydrophobic interactions were the primary driving forces that promoted the self-assembly of the bilayer films. The tensile strength, the UV-blocking properties and the hydrophobicity was greatly improved of the bilayer antimicrobial films. Moreover, water vapor permeability, thermal shrinkage and opacity were all reduced significantly. In addition, the composite films with curcumin demonstrated effective antioxidant activity and a slow release characteristic. Morphology observation of the bacteria by AFM revealed that the antibacterial bilayer film had a significant damaging effect on the cell structures of S. aureus and E. coli due to the dual antibacterial effect of curcumin and chitosan. SPI + Cur-CS antimicrobial bilayer film effectively inhibited the growth of bacteria and extended the shelf life of beef. According to the findings, SPI + Cur-CS antimicrobial bilayer film can be used as an active package material for beef preservation and freshness monitoring.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| |
Collapse
|
34
|
Malarat S, Khongpun D, Limtong K, Sinthuwong N, Soontornapaluk P, Sakdaronnarong C, Posoknistakul P. Preparation of Nanocellulose from Coffee Pulp and Its Potential as a Polymer Reinforcement. ACS OMEGA 2023; 8:25122-25133. [PMID: 37483260 PMCID: PMC10357455 DOI: 10.1021/acsomega.3c02016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Coffee is one of the most valued agricultural products regarding its high commercialization rate. During the production of coffee beans, coffee pulp is obtained as one of the main byproducts with a cellulose content of more than 30% of dry weight. This research focused on the value-added potential of coffee pulp fiber as the reinforcement in composite materials. The nanocellulose coffee pulp (NCP) from the coffee pulp (CP) was prepared and subsequently used as a filler to reinforce the polyvinyl alcohol (PVA) matrix for the improvement of PVA composite properties. The CP was treated via alkali and bleaching treatment before the production of NCP using the acid hydrolysis treatment. The TEM result of NCP showed the successful preparation of NCP with an average diameter of 16.03 ± 4.70 nm with increasing crystallinity size and crystallinity index. The effect of glycerol (G) in the PVA matrix was observed. The result showed that glycerol had a play-role as a plasticizer for increased flexibility and decreased hardness and brittleness of PVA nanocomposite film. The nanocomposite film of PVA/G/NCP was fabricated with various ratios of NCP through the casting method. It was shown that the physical properties were improved with the presence of NCP in the PVA matrix compared to the neat PVA film.
Collapse
|
35
|
Ma Y, Chen S, Liu P, He Y, Chen F, Cai Y, Yang X. Gelatin Improves the Performance of Oregano Essential Oil Nanoparticle Composite Films-Application to the Preservation of Mullet. Foods 2023; 12:2542. [PMID: 37444279 DOI: 10.3390/foods12132542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the addition of oregano oil chitosan nanoparticles (OEO-CSNPs) was conducted to enhance the comprehensive properties of gelatin films (GA), and the optimal addition ratio of nanoparticles was determined for its application in the preservation of mullet. Oregano oil chitosan nanoparticles were organically combined with gelatin at different concentrations (0%, 2%, 4%, 6% and 8%) to obtain oregano oil-chitosan nanoparticle-GA-based composite films (G/OEO-CSNPs), and thereafter G/OEO-CSNPs were characterized and investigated for their preservative effects on mullet. Subsequent analysis revealed that OEO-CSNPs were uniformly dispersed in the GA matrix, and that G/OEO-CSNPs had significantly improved mechanical ability, UV-visible light blocking performance and thermal stability. Furthermore, the nanoparticles exhibited excellent antioxidant and antibacterial properties, and they improved the films' suitability as edible packaging. The attributes of the G/OEO-CSNPs were optimized, the films had the strongest radical scavenging and lowest water solubility, and electron microscopy also showed nanoparticle penetration into the polymer when the concentration of OEO-CSNPs was 6% (thickness = 0.092 ± 0.001, TS = 47.62 ± 0.37, E = 4.06 ± 0.17, water solubility = 48.00 ± 1.11). Furthermore, the GA-based composite film containing 6% OEO-CSNPs was able to inhibit microbial growth, slow fat decomposition and protein oxidation, reduce endogenous enzyme activity, and delay the spoilage of mullet during the refrigeration process, all of which indicate its excellent potential for meat preservation application.
Collapse
Affiliation(s)
- Yuan Ma
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Siqi Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ping Liu
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yezheng He
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang Chen
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifan Cai
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xianqin Yang
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
36
|
Hosseini SF, Mousavi Z, McClements DJ. Beeswax: A review on the recent progress in the development of superhydrophobic films/coatings and their applications in fruits preservation. Food Chem 2023; 424:136404. [PMID: 37257280 DOI: 10.1016/j.foodchem.2023.136404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
Recently, the design and fabrication of bio-inspired superhydrophobic materials using natural lipid additives such as beeswax (BW) have aroused great attention in food packaging as they can minimize the transfer rate of water molecules and have effective moisture barriers. This review discusses the recent progress in the design and fabrication of BW-containing edible films/coatings (e.g., emulsion and blend films, bilayer materials, bionanocomposites, and antimicrobial materials) and their potential applications on the postharvest life and quality attributes of various fruits. Incorporation of BW into polysaccharides- and proteins-based emulsion films effectively improved their hydrophobicity, water vapor, and UV/visible light barrier properties, as well as the film tensile properties. The addition of nanoparticles to BW-based polymeric matrices often results in improved physico-mechanical properties. BW coatings have been also applied to prolong the shelf-life of various climacteric fruits, however, optimization of the wax concentration can be further investigated to develop targeted food storage systems.
Collapse
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran.
| | - Zahra Mousavi
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Mazandaran, Iran
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
37
|
Sarwar MS, Ghaffar A, Huang Q, Khalid M, Anwar A, Alayoubi AM, Latif M. Controlled drug release contenders comprising starch/poly(allylamine hydrochloride) biodegradable composite films. Int J Biol Macromol 2023; 241:124598. [PMID: 37119890 DOI: 10.1016/j.ijbiomac.2023.124598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
The blending of natural polysaccharides with synthetic polymers has attracted much attention in drug delivery models owing to their remarkable biodegradable and biocompatible characteristics. This study focuses on the facile preparation of a sequence of composite films having Starch/Poly(allylamine hydrochloride) (ST/PAH) in different compositions to propose a novel drug delivery system (DDS). ST/PAH blend films were developed and characterized. FT-IR evaluation confirmed the involvement of intermolecular H-bonding between the ST and PAH counterparts in blended films. The water contact angle (WCA) ranged from 71° to 100° indicating that all the films were hydrophobic. TPH-1 (90 % ST and 10 % PAH) was evaluated for in vitro controlled drug release (CDR) at 37 ± 0.5 °C in a time-dependent fashion. CDR was recorded in phosphate buffer saline (PBS) and simulated gastric fluid (SGF). In the case of SGF (pH 1.2), the percentile drug release (DR) for TPH-1 was approximately 91 % in 110 min, while the maximum DR was 95 % in 80 min in PBS (pH 7.4) solution. Our results demonstrate that the fabricated biocompatible blend films can be a promising candidate for a sustained-release DDS for oral drug administration, tissue engineering, wound dressings, and other biomedical applications.
Collapse
Affiliation(s)
- Muhammad Sohail Sarwar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan; Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Abdul Ghaffar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Miraj Khalid
- Fifth Professional, Nishatr Medical University, Multan 66000, Pakistan
| | - Aneela Anwar
- Department of Basic Sciences and Humanities, University of Engineering &Technology, KSK Campus, Lahore 54000, Pakistan.
| | - Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah 42318, Saudi Arabia.
| | - Muhammad Latif
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah 42318, Saudi Arabia; Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42318, Saudi Arabia.
| |
Collapse
|
38
|
Yu X, Yang Y, Liu Q, Jin Z, Jiao A. A hydroxypropyl methylcellulose/hydroxypropyl starch nanocomposite film reinforced with chitosan nanoparticles encapsulating cinnamon essential oil: Preparation and characterization. Int J Biol Macromol 2023; 242:124605. [PMID: 37116838 DOI: 10.1016/j.ijbiomac.2023.124605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Active packaging derived from polysaccharides plays an important role in prolonging the shelf life of food. In this study, cinnamon essential oil (CEO)-loaded chitosan nanoparticles (CNs) were prepared and embedded in hydroxypropyl methylcellulose (HPMC)/hydroxypropyl starch (HPS) blends to enhance the physicochemical and biofunctional properties of the formed films. Different concentrations (25, 50, 75, and 100 μL/mL) of CEOs were encapsulated with CNs to form CEO-CNs, as confirmed by Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD), and scanning electron microscope (SEM) images. The prepared CEO-CNs were incorporated into the HPMC/HPS film-forming matrix to prepare reinforced nanocomposite films. SEM images showed that the CEO-CNs were dispersed in the HPMC/HPS matrix, thus filling the void space in the composite matrix and significantly improving the mechanical and barrier properties of the bio-nanocomposite films. The elongation at break of the reinforced films improved from 8.54 ± 0.53 MPa to 24.81 ± 0.47 MPa, and the water vapor permeability was reduced by nearly 30 %. FTIR and XRD analyses indicated the formation of hydrogen bonds between CEO-CNs and HPMC/HPS polymer molecules. Release studies showed that the nanocomposite film was capable of sustained release of CEO, which imparted antioxidant (radical scavenging activity of 27.66-42.19 %) and antimicrobial properties (inhibition of Escherichia coli and Aspergillus flavus growth). Therefore, these HPMC/HPS nanocomposite films with enhanced properties may have great potential for food preservation.
Collapse
Affiliation(s)
- Xuepeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
39
|
Shen Z, Zhang C, Wang T, Xu J. Advances in Functional Hydrogel Wound Dressings: A Review. Polymers (Basel) 2023; 15:polym15092000. [PMID: 37177148 PMCID: PMC10180742 DOI: 10.3390/polym15092000] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most advanced, promising, and commercially viable research issues in the world of hydrogel dressing is gaining functionality to achieve improved therapeutic impact or even intelligent wound repair. In addition to the merits of ordinary hydrogel dressings, functional hydrogel dressings can adjust their chemical/physical properties to satisfy different wound types, carry out the corresponding reactions to actively create a healing environment conducive to wound repair, and can also control drug release to provide a long-lasting benefit. Although a lot of in-depth research has been conducted over the last few decades, very few studies have been properly summarized. In order to give researchers a basic blueprint for designing functional hydrogel dressings and to motivate them to develop ever-more intelligent wound dressings, we summarized the development of functional hydrogel dressings in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Zihao Shen
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Zhang
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Ting Wang
- Aulin College, Northeast Forestry University, Harbin 150040, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Juan Xu
- National Research Institute for Family Planning, Haidian District, No. 12, Da Hui Si Road, Beijing 100081, China
| |
Collapse
|
40
|
Alves JDS, Canabarro NI, Boeira CP, Melo PTS, Aouada MRDM, da Rosa CS. Design of Biodegradable Films Using Pecan Nut Cake Extracts for Food Packing. Foods 2023; 12:foods12071405. [PMID: 37048226 PMCID: PMC10093672 DOI: 10.3390/foods12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The excessive consumption of plastic packaging and its consequent disposal and accumulation in the environment have aroused the interest of researchers in developing packaging that can cause less harm to nature. In this sense, this article presents research on the addition of antioxidant extracts from pecan nut cake in biodegradable packaging made with a polymeric mixture of gelatin and corn starch. The films produced were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thickness, mechanical properties, water vapor permeability (WVP), solubility, water contact angle, optical properties, in vitro bioactive activity, and biodegradability. A higher concentration of total phenolic compounds (101.61 mg GAE/g) was found for the condition where alcohol content and extraction time were 65% and 20 min, respectively. Pecan nut cake (PNC( extracts did not influence the film’s tensile strength, and elongation at break was tightly increased by adding 10–20% extracts. The film’s characterization pointed to more than 67% solubility, and adding PNC extract implied more hydrophilic surfaces (contact angles lower than 65°). Furthermore, the film opacity showed a linear relation with PNC extract concentration, and a higher luminosity (L*) was observed for the film without extract. Furthermore, the antioxidant activity of the films was enhanced with the addition of PNC extracts, and complete biodegradation was observed until the ninth day. Therefore, biodegradable films prepared from a mixture of gelatin starch and enriched with PNC extracts showed excellent mechanical properties and potential as carriers of antioxidant compounds, allowing us to propose their use as active packing.
Collapse
Affiliation(s)
- Jamila dos Santos Alves
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | | | - Caroline Pagnossim Boeira
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Pamela Thais Sousa Melo
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Marcia Regina de Moura Aouada
- Hybrid Composites and Nanocomposites Group, Department of Physics and Chemistry, Universidade Estadual Paulista (UNESP), Ilha Solteira 15385-000, SP, Brazil
- Correspondence: (J.d.S.A.); (M.R.d.M.A.)
| | - Claudia Severo da Rosa
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
41
|
Huang YL, Wang DM. Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure. Polymers (Basel) 2023; 15:polym15071608. [PMID: 37050223 PMCID: PMC10096936 DOI: 10.3390/polym15071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
In the present study, gelatin-based films incorporating squid pen chitosan obtained by high hydrostatic pressure (HHP chitosan) at varying proportions were prepared and their properties were compared with films containing untreated chitosan. The resulting films were characterized by analyzing the physical, morphological, mechanical and barrier properties. The addition of different ratios of HHP chitosan to the gelatin-based film yielded significant improvements in mechanical and moisture barrier properties. The reason for this might be that HHP chitosan contributed to a regular and dense microstructure of the composite films due to forming a three-dimensional network structure in gelatin-based films with enhanced intermolecular interactions. The FTIR spectra showed no new chemical bond formed by incorporating HHP chitosan into gelatin-based film. The SEM micrographs showed that the gelatin-based film fabricated with three types of chitosan had a homogeneous surface morphology, indicating good compatibility of the materials. Compared to the gelatin-based films containing untreated chitosan, films containing HHP chitosan significantly delayed oxidative deterioration in oil during storage. Therefore, the chitosan obtained by HHP treatment could have a potential application in edible gelatin-based films as packaging materials.
Collapse
Affiliation(s)
- Ya-Ling Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Road, Nan-Tzu District, Kaohsiung 81157, Taiwan
| | - Da-Ming Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei 10617, Taiwan
| |
Collapse
|
42
|
An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications. Int J Biol Macromol 2023; 235:123885. [PMID: 36871690 DOI: 10.1016/j.ijbiomac.2023.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
This work presents the fabrication and characterization of a hybrid nanostructure, Ziziphora clinopodioides essential oils (ZEO)-loaded chitosan nanoparticles (CSNPs-ZEO) embedded into cellulose acetate (CA) nanofibers (CA-CSNPs-ZEO). The CSNPs-ZEO were first synthesized through the ionic gelation method. Then, through simultaneous electrospraying and electrospinning processes, the nanoparticles were embedded in the CA nanofibers. The morphological and physicochemical characteristics of the prepared nanostructures were evaluated using different methods, including scanning electron microscopy (SEM), water vapor permeability (WVP), moisture content (MC), mechanical testing, differential scanning calorimetry (DSC), and release profile studies. The antibacterial activity of the nanostructures was explored on raw beef as a food model during 12 days of storage at 4 °C. The obtained results indicated the successful synthesis of CSNPs-ZEO nanoparticles with an average size of 267 ± 6 nm and their incorporation into the nanofibers matrix. Moreover, the CA-CSNPs-ZEO nanostructure showed a lower water vapor barrier and higher tensile strength compared with ZEO-loaded CA (CA-ZEO) nanofiber. The CA-CSNPs-ZEO nanostructure also exhibited strong antibacterial activity, which effectively extended the shelf-life of raw beef. The results demonstrated a strong potential for innovative hybrid nanostructures in active packaging to maintain the quality of perishable food products.
Collapse
|
43
|
Wen H, Tang D, Lin Y, Zou J, Liu Z, Zhou P, Wang X. Enhancement of water barrier and antimicrobial properties of chitosan/gelatin films by hydrophobic deep eutectic solvent. Carbohydr Polym 2023; 303:120435. [PMID: 36657831 DOI: 10.1016/j.carbpol.2022.120435] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biodegradable chitosan/gelatin (CS/GEL) films have attracted attention as food packaging, but the poor water sensitivity and functional limitations of these films should be addressed. In this study, the hydrophobic deep eutectic solvent (DES, 0-15 %) consisting of thymol and octanoic acid was used to improve the water resistance and antibacterial performance of the CS/GEL composite films. FTIR and SEM analyses revealed a strong interaction between the CS/GEL matrix and DES. The films blended with DES showed increased water contact angle values and thermal stability. Furthermore, the addition of DES resulted in a significant increase in the elasticity and decrease water vapor transmission rate (WVTR). The CS/GEL films blended with 9% DES showed a 38.5% decrease in WVTR compared to those without DES. Additionally, the DES-containing film displayed good antibacterial activity against Staphylococcus aureus and Escherichia coli. Overall, the CS/GEL-DES composite films are expected to contribute an improvement to food packaging.
Collapse
Affiliation(s)
- Haitao Wen
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Jinhao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Zhongyi Liu
- College of Chemical Engineering, Xiangtan University, Hunan, Xiangtan 411105, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, PR China.
| |
Collapse
|
44
|
Pang S, Wang Y, Jia H, Hao R, Jan M, Li S, Pu Y, Dong X, Pan J. The properties of pH-responsive gelatin-based intelligent film as affected by ultrasound power and purple cabbage anthocyanin dose. Int J Biol Macromol 2023; 230:123156. [PMID: 36621736 DOI: 10.1016/j.ijbiomac.2023.123156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
A pH-sensitive intelligent film was prepared using gelatin as base substrate and purple cabbage anthocyanins (PCA) as indicator with the aid of ultrasound. Fourier transforms infrared and X-ray diffraction analysis showed that 600 W ultrasound brought changes to characteristic bands of gelatin and PCA, and flattened diffraction peak around 2θ = 20°. Film prepared with 600 W ultrasound exhibited high tensile strength and elongation at break and showed high transition temperature and surface hydrophobicity by differential scanning calorimetry and contact angle analysis. The incorporation of <0.35 % PCA had no effect on mechanical properties of films, but it improved the antioxidative activity. Films with 0.14 %, 0.21 % and 0.28 % PCA suggested pronounced color difference at pH 5-8, in accordance with the sharp ΔE difference. Films with 0.28 % PCA was applied for monitoring chilled-stored fish quality. It showed visible color change from pink to atrovirens during storage. The difference of ΔE at various days was ≥5 and ΔE highly correlated with total volatile basic nitrogen. Therefore, gelatin along with PCA under appropriate ultrasound treatment could prepare intelligent film to preserve and monitor the quality of chilled-stored fish.
Collapse
Affiliation(s)
- Shiwen Pang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Wang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Jia
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Ruoyi Hao
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Mraz Jan
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice 37005, Czechia
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yizhen Pu
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
45
|
Liu X, Xu Y, Liao W, Guo C, Gan M, Wang Q. Preparation and characterization of chitosan/bacterial cellulose composite biodegradable films combined with curcumin and its application on preservation of strawberries. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Nian L, Wang M, Zeng Y, Jiang J, Cheng S, Cao C. Modified HKUST-1-based packaging with ethylene adsorption property for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Gan M, Guo C, Liao W, Liu X, Wang Q. Development and characterization of chitosan/bacterial cellulose/pullulan bilayer film with sustained release curcumin. Int J Biol Macromol 2023; 226:301-311. [PMID: 36495997 DOI: 10.1016/j.ijbiomac.2022.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
A natural biopolymer bilayer film based on chitosan and bacterial cellulose with a protective layer of pullulan was developed by a two-step solution casting method. Curcumin was incorporated as an active antioxidant and antibacterial agent into the inner layer. The films with different curcumin concentrations were systematically characterized. Fourier transform infrared spectroscopy and X-ray diffraction analyses showed high compatibility between curcumin and the polysaccharide matrix through intermolecular interactions, which was verified by enhanced mechanical and barrier properties. The curcumin incorporation improved the thermal stability by >35.4 %, along with lower visible and ultraviolet light transmittance (< 8.6 %) and water solubility (< 25.1 %). The film had both antibacterial and antioxidant properties, and the sustained release of curcumin was largest (> 58.8 %) in the fatty food simulant lasting for over 155 h. The results suggested that the film containing 0.2 % curcumin had ideal physical and functional properties, suggesting its potential as a novel packaging material for the preservation of high-fat food.
Collapse
Affiliation(s)
- Miaoyu Gan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Caoyu Guo
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Wenying Liao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China
| | - Xiaoli Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, PR China.
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G5C9, Canada
| |
Collapse
|
48
|
An Active Bio-Based Food Packaging Material of ZnO@Plant Polyphenols/Cellulose/Polyvinyl Alcohol: DESIGN, Characterization and Application. Int J Mol Sci 2023; 24:ijms24021577. [PMID: 36675089 PMCID: PMC9865695 DOI: 10.3390/ijms24021577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Active packaging materials protect food from deterioration and extend its shelf life. In the quest to design intriguing packaging materials, biocomposite ZnO/plant polyphenols/cellulose/polyvinyl alcohol (ZnPCP) was prepared via simple hydrothermal and casting methods. The structure and morphology of the composite were fully analyzed using XRD, FTIR, SEM and XPS. The ZnO particles, plant polyphenols (PPL) and cellulose were found to be dispersed in PVA. All of these components share their unique functions with the composite's properties. This study shows that PPL in the composite not only improves the ZnO dispersivity in PVA as a crosslinker, but also enhances the water barrier of PVA. The ZnO, PPL and cellulose work together, enabling the biocomposite to perform as a good food packaging material with only a 1% dosage of the three components in PVA. The light shielding investigation showed that ZnPCP-10 can block almost 100% of both UV and visible light. The antibacterial activities were evaluated by Gram-negative Escherichia coli (E. coli) and Gram-positive staphylococcus aureus (S. aureus), with 4.4 and 6.3 mm inhibition zones, respectively, being achieved by ZnPCP-10. The enhanced performance and easy degradation enables the biocomposite ZnPCP to be a prospect material in the packaging industry.
Collapse
|
49
|
Olawuyi IF, Park JJ, Lee WY. Preparation and film properties of carboxymethyl cellulose from leafstalk waste of Okra: Comparative study of conventional and deep eutectic solvent pulping methods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Soltani Z, Tavakolipour H, Tabari M. The influence of chitosan and titanium dioxide nanoparticles incorporated with polylactic acid on prolonging rye bread shelf life. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|