1
|
Im JH, Lee MK, Lee HI. Physicochemical and Sensory Properties and Antioxidant Activity of Xylitol Candies Containing Yuja ( Citrus junos) Peels or Pulp. Foods 2024; 13:2396. [PMID: 39123587 PMCID: PMC11311515 DOI: 10.3390/foods13152396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Xylitol candies offer numerous health benefits such as preventing cavities and obesity. However, a preference for them tends to be low due to their distinctive flavor. In this study, we developed xylitol candies containing mature yuja peel (MYP-C), immature yuja peel (IYP-C), and yuja pulp (YP-C). To determine the optimal yuja added to xylitol candy, we compared and analyzed its physicochemical properties, sensory characteristics, and antioxidant activities. IYP-C and MYP-C significantly increased the naringin and hesperidin contents compared to the control and the YP-C. In particular, the IYP-C exhibited the highest content of flavonoids and polyphenols, which contributed to enhancing antioxidant activity such as ferric reducing antioxidant power (FRAP), 1,1 diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-di-2 ethyl-benzothiazoline sulfonate (ABTS+) radical scavenging activities. The IYP-C had the highest crude ash content. The L*, a*, and b* values of MYP-C and IYP-C showed dark red and yellow colors compared to the CON and YP-C groups. The sensory analysis conducted using electronic tongue equipment revealed that IYP-C exhibited high levels of umami, sweetness, and bitterness, while YP-C showed the highest intensity of sourness. In conclusion, these results suggest that IYP-C rather than MYP-C and YP-C provide xylitol candy with good qualities in terms of antioxidant activities and physicochemical characteristics.
Collapse
Affiliation(s)
| | | | - Hae-In Lee
- Food and Nutrition Department, Sunchon National University, Suncheon-si 57922, Republic of Korea; (J.-H.I.); (M.-K.L.)
| |
Collapse
|
2
|
Jeong H, Rani Das P, Kim H, Im AE, Lee BB, Yang KY, Nam SH. A combination of commercial and traditional food-source-derived enzymatic treatment acts as a potential tool to produce functional yuzu ( Citrus junos) powder. Food Chem X 2023; 20:100918. [PMID: 38144855 PMCID: PMC10740101 DOI: 10.1016/j.fochx.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 12/26/2023] Open
Abstract
Enzymatic modifications have been applied in citrus to enhance their physicochemical and biological properties and reduce their bitterness. Notwithstanding, research on the combination of enzyme treatment of yuzu is lacking. In this study, yuzu was treated with a combination of isolated cellulase NY203, pectinase UF, and cellulase KN, and this enzymatic treatment was found to increase monosaccharide, naringenin, and hesperetin levels. In contrast, dietary fiber, cellulose, hemicellulose, lignin, and pectin levels were decreased. Moreover, the enzymes disintegrated the inner and outer surface structures and chemical bonding of yuzu, thus improving its solubility rate, water-holding capacity, oil-adsorption capacity, cholesterol-binding capacity, and water-swelling capacity. Furthermore, NY203 + UF + KN combination treatment reduced the bitterness of treated yuzu by 50 % compared with the control. Additionally, NY203 + UF + KN treatment yielded a 28 % decrease in lipid accumulation and two-fold higher lipolytic activity in 3T3L-1 adipocytes. These findings are potentially beneficial to the food/nutraceutical industries regarding functional yuzu powder production.
Collapse
Affiliation(s)
- Hana Jeong
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Protiva Rani Das
- Plant Science Department, University of Tennessee, Knoxville, TN 37922, USA
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bio-science and Technology, Seoul National University, Pyeonchang-gun, Gangwon-do 25354, Republic of Korea
| | - Ae Eun Im
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, Jeonnam 59021, Republic of Korea
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Hee Nam
- Department of Integrative Food, Bioscience and Biotechnology & Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Yang J, Fan H, Jiang B, Li R, Fan J, Li B, Ge J, Pan S, Liu F. Excipient emulsion prepared with pectin and sodium caseinate to improve the bioaccessibility of carotenoids in mandarin juice: The effect of emulsifier and polymer concentration. Food Chem X 2023; 20:100909. [PMID: 38144841 PMCID: PMC10740091 DOI: 10.1016/j.fochx.2023.100909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/09/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
Excipient emulsions were prepared using different emulsifiers (pectin and sodium caseinate, individually or compositely) to study the emulsifying properties and their co-digested effects on the retention and bioaccessibility of carotenoids in mandarin juice, which is a good source of carotenoids in people's diet. Results showed that both pectin (PC) and pectin-sodium caseinate (PC-SC) emulsion significantly increased the carotenoids retention and bioaccessibility of mandarin juice, with the effects depending on both emulsifiers and polymer concentration. Whether for PC or PC-SC emulsion, lower pectin content accompanied with lower viscosity showed higher carotenoids bioaccessibility. And for the complexed emulsions, appropriate sodium caseinate addition could be more beneficial in improving carotenoids bioaccessibility. It had been found that the viscosity comparing with particle size seemed to play a more important role in affecting carotenoid bioaccessibility during the co-digestion. This study could provide a basis for improving the carotenoids bioaccessibility in the real system of fruits and vegetables with excipient emulsions.
Collapse
Affiliation(s)
- Jinyan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Bing Jiang
- Library, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Jiangtao Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Wei J, Li Y, Ye Z, Li Y, Zhou Z. Citrus Carotenoid Extracts Exert Anticancer Effects through Anti-Proliferation, Oxidative Stress, and Mitochondrial-Dependent Apoptosis in MCF-7 Cells. Foods 2023; 12:3469. [PMID: 37761178 PMCID: PMC10529845 DOI: 10.3390/foods12183469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Citrus is a globally popular fruit crop that contains bioactive compounds with numerous health benefits. Carotenoids are one of the main bioactive compounds present in citrus pulp. They possess exceptional antioxidant and anticancer properties, making them potentially effective in the prevention and treatment of breast cancer. Different citrus species, identified as ZMPG, DFGJ, NFMJ, XY, and ZHQC, were studied for their antioxidant activity and anticancer activity. XY had the highest total carotenoid content (75.30 µg/g FW), and ZHQC (ZH) had the lowest carotenoid content (19.74 µg/g FW). The composition of NFMJ, ZMPG, and DFHJ consisted of the most abundant number of carotenoids, while XY only had three types. The antioxidant capacity of the carotenoid extracts was evaluated, and ZH and DFHJ were identified as good sources of antioxidants. XY and ZH significantly inhibited cell proliferation, migration, and arresting cells during the G0/G1 phase. XY and ZH enhanced the accumulation of reactive oxygen species (ROS); reduced mitochondrial membrane potential (MMP); reduced the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and peroxidase (POD); decreased glutathione (GSH) levels; and increased the malonaldehyde (MDA) content. Apoptosis occurred through the mitochondrial-mediated pathway through the up-regulation of BAX, caspase-3, and caspase-9 and the down-regulation of Bcl-2. In this study, the carotenoid-rich extracts of citrus pulp were found to induce oxidative stress through their pro-oxidant potential and regulate cell apoptosis in MCF-7 cancer cells. These results indicate that citrus carotenoids act as pro-oxidants and have the potential to be utilized for the development of anti-breast cancer products.
Collapse
Affiliation(s)
- Juanjuan Wei
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yurong Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Zimao Ye
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
| | - Yi Li
- Zhejiang Citrus Research Institute, Taizhou 318020, China;
| | - Zhiqin Zhou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei District, Chongqing 400715, China; (J.W.); (Y.L.); (Z.Y.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
5
|
Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
Collapse
|
6
|
Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr 2022; 9:968604. [PMID: 35923210 PMCID: PMC9339955 DOI: 10.3389/fnut.2022.968604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since the dietary regimen rich in fruits is being widely recognized and encouraged, Citrus L. fruits have been growing in popularity worldwide due to their high amounts of health-promoting phytonutrients and bioactive compounds, such as flavonoids, phenolic acids, vitamins, carotenoids, pectins, and fatty acids. The diverse physicochemical properties and multiple utilization of citrus fruits in food industry are associated with their unique chemical compositions. Throughout the world, citrus has been used for producing various value-added and nutritionally enhanced products, including juices, wines, jams, canned citrus, and dried citrus. However, the current studies regarding the phytochemical and nutritional characteristics and food applications of citrus are scattered. This review systematically summarizes the existing bibliography on the chemical characteristics, functional and nutraceutical benefits, processing, and potential applications of citrus. A thorough understanding of this information may provide scientific guidance for better utilizing citrus as a functional fruit and benefit the extension of citrus value chain.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Sciences, Department of Biochemistry, University of Turku, Turku, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Qing Gu
| |
Collapse
|
7
|
Saini MK, Capalash N, Varghese E, Kaur C, Singh SP. A Targeted Metabolomics Approach to Study Secondary Metabolites and Antioxidant Activity in 'Kinnow Mandarin' during Advanced Fruit Maturity. Foods 2022; 11:1410. [PMID: 35626980 PMCID: PMC9141733 DOI: 10.3390/foods11101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the impact of harvest maturity stages and contrasting growing climates on secondary metabolites in Kinnow mandarin. Fruit samples were harvested at six harvest maturity stages (M1−M6) from two distinct growing locations falling under subtropical−arid (STA) and subtropical−humid (STH) climates. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique was employed to identify and quantify secondary metabolites in the fruit juice. A total of 31 polyphenolics and 4 limonoids, with significant differences (p < 0.05) in their concentration, were determined. With advancing maturity, phenolic acids and antioxidant activity were found to increase, whereas flavonoids and limonoids decreased in concentration. There was a transient increase in the concentration of some polyphenolics such as hesperidin, naringin, narirutin, naringenin, neoeriocitrin, rutin, nobiletin and tangeretin, and limonoid aglycones such as limonin and nomilin at mid-maturity stage (M3) which coincided with prevailing low temperature and frost events at growing locations. A higher concentration of limonin and polyphenolics was observed for fruit grown under STH climates in comparison to those grown under STA climates. The data indicate that fruit metabolism during advanced stages of maturation under distinct climatic conditions is fundamental to the flavor, nutrition and processing quality of Kinnow mandarin. This information can help in understanding the optimum maturity stage and preferable climate to source fruits with maximum functional compounds, less bitterness and high consumer acceptability.
Collapse
Affiliation(s)
- Manpreet Kaur Saini
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India;
| | - Charanjit Kaur
- Division of Food Science and Post–Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sukhvinder Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- New South Wales Department of Primary Industries, Ourimbah, NSW 2258, Australia
| |
Collapse
|
8
|
Bureš MS, Maslov Bandić L, Vlahoviček-Kahlina K. Determination of Bioactive Components in Mandarin Fruits: A Review. Crit Rev Anal Chem 2022; 53:1489-1514. [PMID: 35157545 DOI: 10.1080/10408347.2022.2035209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
During the last decade, there has been a continuous rise in the consumption of fresh easy-to-peel mandarins. However, the majority of the knowledge comes from other citrus fruit, like orange, while there are relatively few studies about mandarins and no comprehensive research on literature data about them. One of the most important steps in the analytical process is sample preparation. Its value is evident in analyzing the samples with complex matrices, such as in mandarin fruit. In addition, mandarin contains hundreds to thousands of various compounds and metabolites, some of them present in extremely low concentrations, that interfere with the detection of one another. Hence, mandarin samples are commonly pretreated by extraction to facilitate analysis of bioactive compounds, improve accuracy and quantification levels. There is an abundance of extraction techniques available, depending on the group of compounds of interest. Finally, modern analytical techniques, have been applied to cope with numerous bioactive compounds in mandarins. Considering all the above, this review aims to (i) list the most valuable procedures of sample preparation, (ii) highlight the most important techniques for extraction of bioactive compounds from mandarin fruit, and (iii) summarize current trends in the identification and determination of bioactive compounds in mandarin.
Collapse
Affiliation(s)
| | - Luna Maslov Bandić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
9
|
Kakutani N, Yokota T, Fukushima A, Obata Y, Ono T, Sota T, Kinugasa Y, Takahashi M, Matsuo H, Matsukawa R, Yoshida I, Kakinoki S, Yonezawa K, Himura Y, Yokota I, Yamamoto K, Tsuchihashi-Makaya M, Kinugawa S. Impact of citrus fruit intake on the mental health of patients with chronic heart failure. J Cardiol 2021; 79:719-726. [PMID: 34955372 DOI: 10.1016/j.jjcc.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The full impact of the intake of citrus fruits on the risk of depression in individuals with chronic heart failure (HF) is unknown. Here, we examined the associations between the estimated habitual intakes of citrus fruits and depressive symptoms in patients with chronic HF. METHODS We enrolled 150 stable outpatients with chronic HF who had a history of worsening HF. To assess the patients' daily dietary patterns, we used a brief self-administered diet-history questionnaire to calculate the daily consumption of foods and nutrients. To assess the patients' mental state, we used a nine-item Patient Health Questionnaire (PHQ-9). RESULTS Twelve patients (8%) were identified as having moderate-to-severe depression (PHQ-9 score ≥10). The patients with PHQ-9 ≥10 had lower daily intakes of citrus fruits compared to those with no or mild depressive symptoms (PHQ-9 <10). The daily intakes of various antioxidants, including vitamin C, β-carotene, and β-cryptoxanthin, all of which are abundant in citrus fruits, were reduced in the patients with PHQ-9 ≥10, accompanied by higher serum levels of 8-isoprostane (an oxidative stress marker). A multivariate logistic regression analysis using forward selection showed that a lowered daily intake of citrus fruits was an independent predictor of the comorbidity of moderate-to-severe depression in patients with chronic HF, after adjustment for age, gender, and the hemoglobin value. CONCLUSIONS A lower daily consumption of citrus fruits was associated with higher prevalence of depression in patients with chronic HF. Our findings support the hypothesis that a daily consumption of citrus fruits has a beneficial effect on the prevention and treatment of depression in chronic HF patients.
Collapse
Affiliation(s)
- Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Kita-14 Nishi-5, Kita-Ku, Sapporo 060-8648, Japan.
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taisuke Ono
- Department of Cardiology, Kitami Red Cross Hospital, Kitami, Japan
| | - Takeshi Sota
- Division of Rehabilitation, Tottori University Hospital, Tottori, Japan
| | - Yoshiharu Kinugasa
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Hisashi Matsuo
- Department of Cardiology, Keiwakai Ebetsu Hospital, Ebetsu, Japan
| | - Ryuichi Matsukawa
- Division of Cardiology, Cardiovascular and Aortic Center, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Ichiro Yoshida
- Department of Cardiology, Obihiro Kyokai Hospital, Obihiro, Japan
| | - Shigeo Kakinoki
- Department of Cardiology, Otaru Kyokai Hospital, Otaru, Japan
| | - Kazuya Yonezawa
- Department of Clinical Research, National Hospital Organization Hakodate National Hospital, Hakodate, Japan
| | - Yoshihiro Himura
- Department of Cardiology, Hikone Municipal Hospital, Hikone, Japan
| | - Isao Yokota
- Department of Biostatistics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Anticona M, Blesa J, Lopez-Malo D, Frigola A, Esteve MJ. Effects of ultrasound-assisted extraction on physicochemical properties, bioactive compounds, and antioxidant capacity for the valorization of hybrid Mandarin peels. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
González CM, García AL, Llorca E, Hernando I, Atienzar P, Bermejo A, Moraga G, Quiles A. Carotenoids in dehydrated persimmon: Antioxidant activity, structure, and photoluminescence. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Mou J, Zhang Z, Qiu H, Lu Y, Zhu X, Fan Z, Zhang Q, Ye J, Fernie AR, Cheng Y, Deng X, Wen W. Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. HORTICULTURE RESEARCH 2021; 8:56. [PMID: 33642588 PMCID: PMC7917093 DOI: 10.1038/s41438-021-00472-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 05/20/2023]
Abstract
Deciphering the genetic basis of plant secondary metabolism will provide useful insights for genetic improvement and enhance our fundamental understanding of plant biological processes. Although citrus plants are among the most important fruit crops worldwide, the genetic basis of secondary metabolism in these plants is largely unknown. Here, we use a high-density linkage map to dissect large-scale flavonoid metabolic traits measured in different tissues (young leaf, old leaf, mature pericarp, and mature pulp) of an F1 pseudo-testcross citrus population. We detected 80 flavonoids in this population and identified 138 quantitative trait loci (QTLs) for 57 flavonoids in these four tissues. Based on transcriptional profiling and functional annotation, twenty-one candidate genes were identified, and one gene encoding flavanone 3-hydroxylase (F3H) was functionally verified to result in naturally occurring variation in dihydrokaempferol content through genetic variations in its promoter and coding regions. The abundant data resources collected for diverse citrus germplasms here lay the foundation for complete characterization of the citrus flavonoid biosynthetic pathway and will thereby promote efficient utilization of metabolites in citrus quality improvement.
Collapse
Affiliation(s)
- Jiaolin Mou
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhehui Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiji Qiu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Xiao L, Ye F, Zhou Y, Zhao G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem 2021; 351:129247. [PMID: 33640768 DOI: 10.1016/j.foodchem.2021.129247] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Pomelo peel as a by-product from pomelo consumption is rich in various nutrients and functional compounds, while most of the by-product is disposed as wastes. The utilization of pomelo peels could not only result in valued-added products/ingredients, but also reduce the environmental threats. By mainly reviewing the recent articles, pomelo peels could be directly used to produce candied pomelo peel, tea, jams, etc. Additionally, functional components (essential oils, pectin, polyphenols, etc.) could be extracted from pomelo peels and applied in food, pharmaceutical and chemical fields. The extraction methods exerted important influences on the composition, physicochemical properties, bioactivities and structures of the resultant fractions. Furthermore, pomelo peel was exploited to make adsorbents, bioethanol, etc. For the future investigations, the functionality- or bioactivity-oriented regimes to recovery valuable components from pomelo peel should be developed in an economic, effective and eco-friendly way and their applicability in large-scale production should be addressed.
Collapse
Affiliation(s)
- Li Xiao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Centre for Regional Foods, Chongqing 400715, People's Republic of China.
| |
Collapse
|
15
|
Nam SH, Cho HS, Jeong H, Lee BB, Cho YS, Rameeza F, Eun JB. Physiochemical properties, dietary fibers, and functional characterization of three yuzu cultivars at five harvesting times. Food Sci Biotechnol 2021; 30:117-127. [PMID: 33552623 DOI: 10.1007/s10068-020-00850-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
This research focused on physiochemical and nutritional properties and functional characterization of three cultivars of yuzu-Native, Tadanishiki yuzu, and Namhae1-during different seasons. According to the cultivar and harvest time, yuzu cultivars were analyzed for free sugar, dietary fiber, hesperidin, naringin, and flavonoid content as well as antioxidant and antihypertensive activity. During November, Namhae1 exhibited the highest fruit weight, °Brix/acidity ratio, and total dietary fiber content. Tadanishiki contained the highest fructose and sucrose levels, pectin and cellulose contents, and soluble dietary fiber. Tadanishiki also had the highest hesperidin content in October, while the naringin content and antioxidant activity were the greatest in November. Antihypertensive activity was also the strongest for Tadanishiki, which was picked in October and November. These results indicated that Tadanishiki in October or November was the best for consumption or favorable processing because of its excellent product quality and high levels of nutritional and functional compounds.
Collapse
Affiliation(s)
- Seung-Hee Nam
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186 Korea.,Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Hye-Sung Cho
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, 59021 Jeonnam Korea
| | - Hana Jeong
- Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Bo-Bae Lee
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, 59021 Jeonnam Korea
| | - Youn-Sup Cho
- Fruit Research Institute of Jeollanamdo Agricultural Research and Extension Services, Haenam, 59021 Jeonnam Korea
| | - Fatima Rameeza
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
16
|
Multari S, Licciardello C, Caruso M, Martens S. Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res Int 2020; 134:109228. [DOI: 10.1016/j.foodres.2020.109228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/05/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
|
17
|
Zacarías-García J, Rey F, Gil JV, Rodrigo MJ, Zacarías L. Antioxidant capacity in fruit of Citrus cultivars with marked differences in pulp coloration: Contribution of carotenoids and vitamin C. FOOD SCI TECHNOL INT 2020; 27:210-222. [PMID: 32727209 DOI: 10.1177/1082013220944018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to evaluate the specific contribution of carotenoids and vitamin C to the lipophilic and hydrophilic antioxidant capacity, respectively, of the pulp of citrus fruits using the genetic diversity in pigmentation and in the carotenoid complement. To this end, six citrus varieties were selected: two mandarins, Clemenules (Citrus clementina) and Nadorcott (C. reticulata); two grapefruits (C. paradisi), Marsh and Star Ruby; and two sweet oranges (C. sinensis), Valencia late and Valencia Ruby. Total carotenoid content and composition in the pulp of fruits were very different, in relation to their color singularities. Valencia Ruby and Nadorcott had the highest carotenoid content, accumulating the former large amounts of linear carotenes (phytoene, phytofluene, and lycopene) and Nadorcott of β-cryptoxanthin. Orange fruits contained the highest amount of vitamin C while in Nadorcott mandarin it was substantially lower. Analysis of antioxidant capacity, evaluated by 2,2'-azino-di-(3-ethylbenzthiazoline sulfonate) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, in the pulp of the different fruit varieties indicated a high and positive correlation between vitamin C content and hydrophilic antioxidant capacity. Nevertheless, a weak correlation was observed between carotenoids content and lipophilic antioxidant capacity in the pulp extracts assayed by ABTS. Overall, vitamin C in the pulp of citrus fruit had an important contribution to the hydrophilic antioxidant capacity, whereas that of carotenoids to lipophilic antioxidant capacity was very variable, being the highest that of Valencia Ruby orange, with large concentrations of lycopene and phytoene, followed by Nadorcott mandarin, with high β-cryptoxanthin content.
Collapse
Affiliation(s)
- Jaime Zacarías-García
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Florencia Rey
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José-Vicente Gil
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain.,Food Technology Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María J Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
18
|
Haraoui N, Allem R, Chaouche TM, Belouazni A. In-vitro antioxidant and antimicrobial activities of some varieties citrus grown in Algeria. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00379-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ledesma-Escobar CA, Priego-Capote F, Robles-Olvera VJ, García-Torres R, Reyes De Corcuera JI, Luque de Castro MD. GC-MS study of changes in polar/mid-polar and volatile compounds in Persian lime (Citrus latifolia) during fruit growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1020-1028. [PMID: 30009387 DOI: 10.1002/jsfa.9266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Citrus fruits possess a high content of bioactive compounds whose changes during fruit maturation have not been studied in depth. Fruits were sampled from week 1, after fruit onset (7 days after flowering), to week 14. Volatile compounds isolated by headspace-solid-phase microextraction and polar extracts from all samples were analyzed by gas chromatography-mass spectrometry. RESULTS The relative abundance of 107 identified metabolites allowed differences among samples at different stages of fruit growth to be established. Principal component analysis showed a clear discrimination among samples, and analysis of variance revealed significant differences in 94 out of the 107 metabolites. Among total volatiles, monoterpenes increased their relative abundance from 86% to 94% during fruit growth, d-limonene, γ-terpinene and β-pinene being the most abundant; conversely, sesquiterpenes decreased from 11.5% to 2.8%, β-bisabolene and α-bergamotene being the most concentrated. Sugars, in general, exhibited a gradual increase in abundance, reaching a maximum between weeks 9 and 12. Citric and malic acids, representing approximately 90% of the total identified carboxylic acids, reached a maximum concentration at commercial maturity (week 14). CONCLUSION Of the 107 tentatively identified metabolites during Persian lime growth, sugars, carboxylic acids, and volatiles were those that experienced more significant changes and more clearly created differences among fruit growth stages. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, Annex C-3, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- University of Córdoba Agrifood Excellence Campus, Córdoba, Spain
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Veracruz, Veracruz, Mexico
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex C-3, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- University of Córdoba Agrifood Excellence Campus, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| | - Víctor J Robles-Olvera
- Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Veracruz, Veracruz, Mexico
| | | | - José I Reyes De Corcuera
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - María D Luque de Castro
- Department of Analytical Chemistry, Annex C-3, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- University of Córdoba Agrifood Excellence Campus, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| |
Collapse
|
20
|
Ledesma-Escobar CA, Priego-Capote F, Robles Olvera VJ, Luque de Castro MD. Targeted Analysis of the Concentration Changes of Phenolic Compounds in Persian Lime (Citrus latifolia) during Fruit Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1813-1820. [PMID: 29400054 DOI: 10.1021/acs.jafc.7b05535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Citrus fruits possess a high content of phenolic compounds; however, few studies have focused on the changes occurring during fruit growth. In this study, the changes in the concentration of 20 flavonoids, 4 phenolic acids, and their biosynthetic precursors phenylalanine and tyrosine have been evaluated during fruit maturation (14 weeks). Extracts from all samples, obtained by ultrasound assistance, were analyzed by liquid chromatography coupled to tandem mass spectrometry with a triple quad system (LC-QqQ MS/MS). In general, the concentration of flavanones, which represented over 70% of the studied phenols, and flavones increased during fruit growth, reaching their maximum concentration around week 12. In general, flavanols and phenolic acids exhibited their maximum concentration at week 5 and then decreasing significantly during the rest of maturation. Phenylalanine and tyrosine showed a sinuous behavior during fruit growth. Partial least-squares showed a clear differentiation among fruits belonging to different maturation stages, coumaric acid derivatives being the most influential variables on the projection.
Collapse
Affiliation(s)
- Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba , Annex C-3, Campus of Rabanales, E-14071, Córdoba, Spain
- University of Córdoba Agrifood Campus of International Excellence ceiA3 , Campus of Rabanales, E-14071, Córdoba, Spain
- Tecnológico Nacional de México - Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Av. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91797, México
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba , Annex C-3, Campus of Rabanales, E-14071, Córdoba, Spain
- University of Córdoba Agrifood Campus of International Excellence ceiA3 , Campus of Rabanales, E-14071, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba , E-14014, Córdoba, Spain
| | - Víctor J Robles Olvera
- Tecnológico Nacional de México - Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Av. Miguel Ángel de Quevedo 2779, Veracruz, Ver. 91797, México
| | - María D Luque de Castro
- Department of Analytical Chemistry, University of Córdoba , Annex C-3, Campus of Rabanales, E-14071, Córdoba, Spain
- University of Córdoba Agrifood Campus of International Excellence ceiA3 , Campus of Rabanales, E-14071, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba , E-14014, Córdoba, Spain
| |
Collapse
|
21
|
Gargouri B, Ammar S, Verardo V, Besbes S, Segura-Carretero A, Bouaziz M. RP-HPLC–DAD-ESI-TOF–MS based strategy for new insights into the qualitative and quantitative phenolic profile in Tunisian industrial Citrus Limon by-product and their antioxidant activity. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2904-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Changes in the composition of the polar fraction of Persian lime (Citrus latifolia) during fruit growth by LC-QTOF MS/MS analysis. Food Chem 2017; 234:262-268. [PMID: 28551235 DOI: 10.1016/j.foodchem.2017.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022]
Abstract
Citrus possess a large number of bioactive compounds mainly studied in ripe fruits. Few studies have focused on evolution of metabolites during fruit growth. In this study, fruits were sampled from weeks 1-14 of the ripening process. Polar extracts were obtained from all collected samples and analysed by liquid chromatography-tandem mass spectrometry. Analysis of variance applied to the dataset indicated that the relative concentration of 394 out of 423 molecular entities changed significantly during maturation. Principal component analysis showed a clear separation among samples from different weeks and revealed the main compounds responsible for differentiation. Additionally, 72 metabolites were tentatively identified and changes in their relative concentration during growth were individually analysed. The observed trends in relative concentrations of representative metabolites during the growth process are discussed.
Collapse
|
23
|
Cömert ED, Gökmen V. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Compr Rev Food Sci Food Saf 2017; 16:382-399. [DOI: 10.1111/1541-4337.12263] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Dept. of Food Engineering; Hacettepe Univ.; 06800 Beytepe Ankara Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Dept. of Food Engineering; Hacettepe Univ.; 06800 Beytepe Ankara Turkey
| |
Collapse
|
24
|
Kuraya E, Nakada S, Touyama A, Itoh S. Improving the antioxidant functionality of Citrus junos Tanaka (yuzu) fruit juice by underwater shockwave pretreatment. Food Chem 2017; 216:123-9. [DOI: 10.1016/j.foodchem.2016.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022]
|