1
|
Zeng S, Li B, Yang L, Lv W, Xiao H. Effects of innovative dry-blanching on moisture, cell wall structure, physicochemical properties and volatile compounds of microwave infrared coupled dried ginger (Zingiber officinale roscoe). Food Chem 2025; 475:143231. [PMID: 39938266 DOI: 10.1016/j.foodchem.2025.143231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
In this study, various innovative dry-blanching methods (infrared, microwave, hot air, microwave-infrared, and microwave-hot air) were employed to process ginger prior to microwave-infrared coupled drying. The effects of dry-blanching on drying kinetics, moisture characteristics, ultrastructure, cell wall components, physicochemical properties, volatile compounds, and antioxidant activity of ginger were investigated. The study found that dry-blanching led to the destruction of the cellular structure and promoted moisture migration and evaporation. Concurrently, the process induced the release of phenolic compounds, thereby enhancing antioxidant activity. Dry-blanching accelerated the drying process. Furthermore, enzyme activity was inactivated, and the browning value was reduced by 0.29-10.87 % following dry-blanching. Infrared dry-blanching increased volatile compounds by 30.31 %, resulting in the highest levels of terpenes and the best preservation of flavor components. This research can serve as a reference for developing new pretreatment methods in drying.
Collapse
Affiliation(s)
- Shiyu Zeng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Bingzheng Li
- Guangxi Key laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liling Yang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Zhao X, Lai B, Jiang Y, Sun X, Luo Z, Ge Q, Chen J, Yu H. Characterization of flavor profiles of water-boiled pork meatballs at different ultrasonic powers using solid-phase microextraction gas chromatography-mass spectrometry combined with electronic nose. Meat Sci 2025; 222:109756. [PMID: 39836999 DOI: 10.1016/j.meatsci.2025.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
The objective of this study was to evaluate the flavor profiles of water-boiled pork meatballs at different ultrasonic powers (0, 150, 300, 450, 600, and 750 W) using solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) combined with electronic nose (E-nose). A total of 36 volatile compounds were determined by SPME-GC-MS, including alcohols, aromatic hydrocarbons, aldehydes, terpenes, alkanes, phenols, ketones, and other. With the appropriate ultrasound treatment, the type and relative content of volatile compounds were significantly increased (P < 0.05), and the ultrasound treatment at 450 W had the better effect on the flavor characteristics of pork meatballs. E-nose analysis also showed that the 450 W ultrasound treatment had the highest response values of W1S, W6S, and W2S sensors (sensitive to hydrocarbons, alcohols, aldehydes, and ketones) to volatile compounds of pork meatballs. The characteristic flavor compounds of pork meatballs, including m-cresol, limonene, nonanal, and linalool, were further confirmed by comparing the content, partial least squares discriminant analysis (PLS-DA), and odor activity value (OAV). Overall, appropriate ultrasound-assisted cooking (especially at 450 W) could be a promising approach to enhance the flavor profiles of pork meatballs.
Collapse
Affiliation(s)
- Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Bangcheng Lai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yunling Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiankun Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zixin Luo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiaxin Chen
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
3
|
Li H, Liu G, Liu Y, Yuan P, Liu S, Yan M, Zou Y, Wang H, Zhang T, Duan S, Ma C. Effects of Different Drying Processes on Bioactive Components, Volatile Compounds, and In Vitro Inhibition of Starch Digestion in Mulberry Leaf Extracts. Foods 2025; 14:998. [PMID: 40232039 PMCID: PMC11941107 DOI: 10.3390/foods14060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
The significant demand for medicinal plants with special efficacy has prompted us to adopt appropriate processing methods to enhance the nutritional quality and flavor of raw materials. This study evaluated the impacts of freeze-drying (FD), hot-air drying (HAD), and spray drying (SD) on the bioactive compounds, flavor characteristics, and inhibition of starch digestion in mulberry leaf ethanol extract (MLE). Results indicated that FDMLE exhibited the highest total alkaloids content (TAC: 0.14 ± 0.02 mg/g) and total flavonoid content (TFC: 19.32 ± 0.58 mg/g), along with significant inhibitory effects on starch hydrolysis at 180 min (starch hydrolysis rate <50%). The microstructure of HADMLE was closest to that of the mulberry leaf powder (ML), but SD better preserved the color of ML (ΔE = 1.55 ± 0.04). Combined with the electronic nose and gas chromatography-ion mobility spectrometry (GC-IMS) found HAD processing facilitated the conversion of flavor precursors in ML into Ethyl formate, rose oxide, and (Z)-3-hexenol (M). SDMLE contained higher levels of pentanal, (E)-2-hexenal (D), (E)-2-pentanone, 3-Methyl-2-butenal (D), ethyl butyrate, and 1-penten-3-one (D). FDMLE exhibited the highest diversity of novel volatile compounds (VOCs), with 18 newly identified species. In conclusion, FD is a potential method to effectively reduce the degradation of quality and efficacy of MLE during the drying process.
Collapse
Affiliation(s)
- Haizhi Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Guoyu Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Yifeng Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Shiwei Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Mengqing Yan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Yan Zou
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Haotian Wang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Tianyu Zhang
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China; (G.L.); (Y.L.); (P.Y.); (S.L.); (M.Y.); (Y.Z.); (H.W.); (T.Z.)
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China;
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Liang Y, Wu K, He D, Ou C, Lin J, Chai X, Xiang Y, Duan X, Cha Q, Zhang X, Xie W, Wang C, An Q, Wei S. Physicochemical and functional properties of cinnamon essential oil emulsions stabilized by galactomannan-rich aqueous extract from Gleditsia sinensis seeds and soy protein isolate. Int J Biol Macromol 2025; 295:139601. [PMID: 39788257 DOI: 10.1016/j.ijbiomac.2025.139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method. The extracted aqueous extracts from Gleditsia sinensis seeds was combined with soy protein isolate to prepare a cinnamon essential oil emulsion, followed by physicochemical characterization and stabilization mechanism studies. The emulsions demonstrated excellent storage stability at 4 °C, along with robust ionic, pH, temperature, and freeze-thaw stability. Furthermore, the emulsions exhibited significant antioxidant activity and effectively inhibited the growth of Staphylococcus aureus and Listeria monocytogenes, highlighting their potential for application in food preservation. Preservation trials with orange juice confirmed that our emulsion achieved preservation comparable to that of the commercial food preservative potassium sorbate. These findings provide valuable insights for developing stable and functional natural food emulsifiers.
Collapse
Affiliation(s)
- Yinglin Liang
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Kegang Wu
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyangvb Center, Guangdong University of Technology, Jieyang City 522000, People's Republic of China
| | - Dong He
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyangvb Center, Guangdong University of Technology, Jieyang City 522000, People's Republic of China.
| | - Cansheng Ou
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Jiawei Lin
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xianghua Chai
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yujuan Xiang
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xuejuan Duan
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Qin Cha
- Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, People's Republic of China
| | - Xiangyu Zhang
- Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, People's Republic of China
| | - Wei Xie
- Guizhou Province, Bijie City, Zhijin County, Maochang Town, Qianzhi Mingguang Soaphorn Rice Processing Base, Bijie City 552103, People's Republic of China
| | - Chenghua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Qiang An
- Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China
| | - Shengjian Wei
- Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China
| |
Collapse
|
5
|
Yang F, Chen E, Fu A, Liu Y, Bi S. Formation of key aroma compounds in Agrocybe aegerita during hot air drying: Amino acids and reducing sugars identified as flavor precursors. Food Chem 2025; 465:141975. [PMID: 39541680 DOI: 10.1016/j.foodchem.2024.141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Agrocybe aegerita is a type of mushroom widely popular among consumers for its unique flavor. In this study, aroma properties and key aroma-active compounds (AACs) in fresh and dried A. aegerita were identified by molecular sensory science. The flavor characteristics are more abundant in A. aegerita submitted to hot air drying (HAD), especially nutty, roasted, smoky and meaty, while raw mushroom and earthy were significantly reduced, which can be attributed to the shift of key AACs from aldehydes and ketones to heterocyclic and sulfur-containing compounds during HAD. Pearson correlation analysis and validation experiments showed that the Maillard reaction between methionine (Met) and ribose was the main pathway for producing "meaty" compounds like dimethyl trisulfide and 3-methylthiopropanal. Moreover, dimethyl trisulfide and 3-methylthiopropanal production showed a nonlinear fit with increasing Met and ribose contents. The study provides a theoretical basis for A. aegerita as a novel meat flavor condiment.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Erbao Chen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Anzhen Fu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shuang Bi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Sun H, Yang M, Olajide TM, Wang M, Qian M, He Y, Liao X, Huang J. Evaluating the impact of different processing methods on the flavor characteristics of Gorgon Euryale seeds using electronic tongue, electronic nose, gas chromatography-mass spectrometry, and gas chromatography-ion mobility spectrometry. J Food Sci 2025; 90:e70019. [PMID: 39898925 DOI: 10.1111/1750-3841.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
This study evaluated the volatile organic compounds (VOCs) and taste properties of Gorgon Euryale seeds processed by five methods (steaming, boiling, microwaving, roasting, and stir-frying) using electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). A total of 44 and 40 VOCs were identified by GC-MS and GC-IMS, respectively. Pyrazines (2-ethyl-3,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine) and furans (2-pentylfuran, 2-ethylfuran) played a major role in the baked aroma characteristics of roasted and stir-fried Gorgon Euryale seeds. Six and seven marker compounds were identified by Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) models for GC-MS and GC-IMS based on 12 VOCs with odor activity value > 1 and 18 VOCs with relative odor activity value > 0.1, respectively. OPLS-DA and principal component analysis score plots of the E-tongue and E-nose demonstrated that samples could be effectively distinguished in terms of flavor. This research provides a comprehensive basis for evaluating the impact of processing methods on the changes in flavor of Gorgon Euryale seeds. PRACTICAL APPLICATION: This work demonstrates that the use of E-tongue, E-nose, HS-SPME-GC-MS, and GC-IMS has the capability to thoroughly analyze the flavor profile of Gorgon Euryale seeds at both macro and micro levels. This approach effectively distinguishes Gorgon Euryale products subjected to different processing treatments and provides a reliable reference for evaluating and identifying the flavor quality of Gorgon Euryale seeds.
Collapse
Affiliation(s)
- Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Mingzhu Wang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Mingji Qian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Wen H, Yang M, Xu Z, Yang T, Zhang J. Characterization of Aroma Composition of Amomum tsaoko During the Drying Process Based on GC-MS. Food Sci Nutr 2025; 13:e4726. [PMID: 39803287 PMCID: PMC11717005 DOI: 10.1002/fsn3.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Amomum tsaoko is an important spice and medicinal plant widely utilized in East and Southeast Asia. Non-targeted metabolomics techniques were employed to study the variations in the content and composition of essential oil from A. tsaoko during drying at different temperatures: 40°C, 50°C, 60°C, and 70°C. A total of 260 metabolites were detected using gas chromatography-mass spectrometry (GC-MS), mainly terpenoids and aldehydes. Cineole, the most important component, accumulated abundantly in samples dried at 50°C. A higher temperature (70°C) was conducive to the accumulation of aldehydes. Overall, the optimal drying condition for A. tsaoko was determined to be 50°C for 50 h. In addition, nine differential metabolites were screened using variable important in projection and p value (VIP > 1 and p < 0.05), which may serve as potential flavor markers to differentiate various drying treatments of A. tsaoko. This study provides a novel perspective on understanding the dynamic metabolites changes during the drying process, and establishes a theoretical foundation for the refinement and high-quality processing of A. tsaoko.
Collapse
Affiliation(s)
- Hui Wen
- Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingChina
- School of AgricultureYunnan UniversityKunmingChina
| | - Meiquan Yang
- Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingChina
| | - Zongliang Xu
- Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingChina
| | - Tianmei Yang
- Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingChina
| | - Jinyu Zhang
- Institute of Medicinal PlantsYunnan Academy of Agricultural SciencesKunmingChina
| |
Collapse
|
8
|
Barroetaveña C, González GC, Tejedor-Calvo E, Toledo C, Pildain MB. Sensory Characteristics and Volatile Organic Compound Profile of Wild Edible Mushrooms from Patagonia, Argentina. Foods 2024; 13:3447. [PMID: 39517231 PMCID: PMC11545633 DOI: 10.3390/foods13213447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The Andean-Patagonian forests of South America offer a great variety of wild edible mushrooms, many with ancestral use and others linked to new mycogastronomic offers. However, their sensory properties and detailed characterizations have not yet been deeply explored and described, nor have their alterations due to cold storage. The aims of this work were to perform a sensory characterization through a trained panel evaluation, perform target volatile compounds analysis and evaluate post-harvest preservation methods effects on nine species of wild edible mushrooms with different trophic habits (Cortinarius magellanicus, Panus dusenii, Fistulina antarctica, F. endoxantha, Gloeosoma vitellinum, Grifola gargal, Lepista nuda, Ramaria patagonica, and Cyttaria hariotii). The sensory description of dehydrated specimens through quantitative descriptive analysis showed that panelists were a significant source of variation; F. antarctica and R. patagonica registered distinct sweet flavor/spice odor and wood/sweet flavor, respectively, and different textures. Refrigeration produced a rapid loss of sensory characteristics, whereas freezer conservation satisfactorily maintained the characteristics in F. anctartica, R. patagonica, G. vitellinum, and C. hariotti for at least four months. A total of 60 target volatile organic compounds were detected, corresponding to grass, mushroom, alkane, and pungent odors in F. anctartica, R. patagonica, and G. vitellinum. The detailed sensory characterization and post-harvest conservation options of these novel products constitute crucial information to promote their sustainable use and local development through innovative activities linked to tourism, such as mushroom gastronomy and mycotourism.
Collapse
Affiliation(s)
- Carolina Barroetaveña
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires 2290, Argentina; (C.B.); (C.T.); (M.B.P.)
- Área de Fitopatología y Microbiología Aplicada, Centro de Investigaciones y Extensión Forestal Andino Patagónico (CIEFAP), Ruta Nacional 259 Km 16, Esquel 9200, Argentina
- Engineering Faculty, Universidad Nacional de la Patagonia S. J. Bosco, Ruta 259 Km 4, Esquel 9200, Argentina
| | - Gabriela C. González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires 2290, Argentina; (C.B.); (C.T.); (M.B.P.)
- Área de Fitopatología y Microbiología Aplicada, Centro de Investigaciones y Extensión Forestal Andino Patagónico (CIEFAP), Ruta Nacional 259 Km 16, Esquel 9200, Argentina
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Av. Montañana, 930, 50059 Zaragoza, Spain
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carolina Toledo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires 2290, Argentina; (C.B.); (C.T.); (M.B.P.)
| | - Maria B. Pildain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, Buenos Aires 2290, Argentina; (C.B.); (C.T.); (M.B.P.)
- Área de Fitopatología y Microbiología Aplicada, Centro de Investigaciones y Extensión Forestal Andino Patagónico (CIEFAP), Ruta Nacional 259 Km 16, Esquel 9200, Argentina
- Natural and Heatlh Science Faculty, Universidad Nacional de la Patagonia S. J. Bosco, Ruta 259 Km 4, Esquel 9200, Argentina
| |
Collapse
|
9
|
Zheng C, Li J, Liu H, Wang Y. Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics. Curr Res Food Sci 2024; 9:100819. [PMID: 39234276 PMCID: PMC11372843 DOI: 10.1016/j.crfs.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024] Open
Abstract
Edible wild mushrooms are one of the popular ingredients due to their high quality and unique flavor and nutrients. To gain insight into the effect of drying temperature on its composition, 86 Boletus bainiugan were divided into 5 groups and dried at different temperatures. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for the identification of volatile organic compounds (VOCs) of Boletus bainiugan. The 21 differential VOCs that distinguish different drying temperatures of Boletus bainiugan were identified. 65 °C retained more VOCs. There were differences in their types and content at different temperatures, proteins, polysaccharides, crude fibers, and fats. Fourier transform near-infrared (FT-NIR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy (2DCOS) images were successfully characterized for differences in the chemical composition of Boletus bainiugan. Partial least squares discriminant analysis (PLS-DA) verified the variability in the chemical composition of Boletus bainiugan with the coefficient of determination (R2) = 0.95 and predictive performance (Q2) = 0.75 with 92.31% accuracy. Next, infrared spectroscopy provides a fast and efficient assessment of the content of Boletus bainiugan nutrients (proteins, polysaccharides, crude fibers, and fats).
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, Yunnan, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| |
Collapse
|
10
|
Zhang F, Lu B, He X, Yu F. Flavor Variations in Precious Tricholoma matsutake under Different Drying Processes as Detected with HS-SPME-GC-MS. Foods 2024; 13:2123. [PMID: 38998629 PMCID: PMC11241261 DOI: 10.3390/foods13132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
By employing headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), this study displayed the compositional changes in volatile organic compounds (VOCs) in Tricholoma matsutake samples subjected to hot-air drying (HAD) and vacuum freeze-drying (VFD) processes from their fresh samples. A total of 99 VOCs were detected, including 2 acids, 10 aldehydes, 10 alcohols, 13 esters, 12 ketones, 24 alkanes, 14 olefins, 7 aromatic hydrocarbons, and 7 heterocyclic compounds. Notably, the drying process led to a decrease in most alcohols and aldehydes, but an increase in esters, ketones, acids, alkanes, olefins, aromatic, and heterocyclic compounds. Venn diagram (Venn), principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) analyses enabled an easy and rapid distinction between the VOC profiles of T. matsutake subjected to different drying methods. Among the identified VOCs, 30 were designated as marker VOCs indicative of the employed drying process. And the VFD method was more capable of preserving the VOCs of fresh T. matsutake samples than the HAD method. Benzaldehyde, 1-Octen-3-ol, 3-Octanol, and (E)-2-Octen-1-ol were identified as markers for FRESH T. matsutake. Conversely, (E)-3-Hexene, lavender lactone, and α-Pinene were associated with VFD T. matsutake. For HAD T. matsutake, olefins, pyrazine, and esters, particularly ocimene, 2,5-Dimethyl-pyrazine, and methyl cinnamate, significantly contributed to its particularities. The results from this present study can provide a practical guidance for the quality and flavor control of volatile organic compounds in preciously fungal fruiting bodies by using drying processes.
Collapse
Affiliation(s)
- Fengming Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Z.); (B.L.); (X.H.)
| | - Bin Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Z.); (B.L.); (X.H.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Ministry of Education, Kunming 650224, China
| | - Xinhua He
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Z.); (B.L.); (X.H.)
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fuqiang Yu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Z.); (B.L.); (X.H.)
| |
Collapse
|
11
|
Yin X, Zhang M, Wang S, Wang Z, Wen H, Sun Z, Zhang Y. Characterization and discrimination of the taste and aroma of Tibetan Qingke baijiu using electronic tongue, electronic nose and gas chromatography-mass spectrometry. Food Chem X 2024; 22:101443. [PMID: 38846797 PMCID: PMC11154201 DOI: 10.1016/j.fochx.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Consumers rely on flavor characteristics to distinguish different types of Qingke Baijiu (QKBJ). Clarifying QKBJ's traits enhances its recognition and long-term growth. Thus, this study analyzed eight QKBJ samples from different regions of Tibet (Lhasa, Sannan, Shigatse, and Qamdo) using GC-MS, electronic nose and electronic tongue. The radar charts of the electronic tongue and electronic nose revealed highly similar profiles for all eight samples. Fifteen common compounds were found in all samples, with the main alcohol compounds being 3-Methyl-1-butanol, 1-hexanol, isobutanol, 1-butanol, 1-nonanol, and phenylethyl alcohol, imparting fruity, floral, and herbal aromas. However, the Sannan samples had higher total alcohol content than total ester content, emphasizing bitterness. Lhasa1 exhibited the most prominent sweetness, Lhasa2 the most noticeable sourness, and Qamdo the most pronounced umami. Lhasa3 and Lhasa4 had total acid content second only to total ester content. Tyd had the highest alkanes, while Lhasa had most aldehydes among samples.
Collapse
Affiliation(s)
- Xiaoqing Yin
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Man Zhang
- Sicuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, China
| | - Shanshan Wang
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225001, China
| | - Huaying Wen
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| | - Zhiwei Sun
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Yuhong Zhang
- Institute of Food Processing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa 850000, China
| |
Collapse
|
12
|
Wang Y, Wang J, Cai Z, Sang X, Deng W, Zeng L, Zhang J. Combined of plasma-activated water and dielectric barrier discharge atmospheric cold plasma treatment improves the characteristic flavor of Asian sea bass (Lates calcarifer) through facilitating lipid oxidation. Food Chem 2024; 443:138584. [PMID: 38306903 DOI: 10.1016/j.foodchem.2024.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
To explore the combination effects of plasma-activated water and dielectric barrier discharge (PAW-DBD) cold plasma treatment on the formation of volatile flavor and lipid oxidation in Asian sea bass (ASB), the volatile flavor compounds and lipid profiles were characterized by gas chromatography-ion mobility spectrometry and LC-MS-based lipidomics analyses. In total, 38 volatile flavor compound types were identified, and the PAW-DBD group showed the most kinds of volatile components with a significant (p < 0.05) higher content in aldehydes, ketones, and alcohols. A total of 1500 lipids was detected in lipidomics analysis, phosphatidylcholine was the most followed by triglyceride. The total saturated fatty acids content in PAW-DBD group increased by 105.02 μg/g, while the total content of unsaturated fatty acids decreased by 275.36 μg/g. It can be concluded that the PAW-DBD processing increased both the types and amounts of the volatile flavor in ASB and promoted lipid oxidation by altering lipid profiles.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China.
| |
Collapse
|
13
|
Chen Y, Yao X, Sun J, Ma A. Effects of different high temperature-pressure processing times on the sensory quality, nutrition and allergenicity of ready-to-eat clam meat. Food Res Int 2024; 185:114263. [PMID: 38658068 DOI: 10.1016/j.foodres.2024.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Investigating technologies to control the allergenicity of seafood is particularly important to safeguard consumer health, but there is currently a dearth of research focused on reducing the allergenicity of clam meat. This study aimed to investigate the effects of high temperature-pressure (HTP) processing times (121 °C, 0.14 MPa; 5, 10, 15, 20 min) on the sensory quality, nutrition, and allergenicity of ready-to-eat clam meat. With the extension of HTP time, the hardness of clam meat gradually decreased, the chewiness decreased initially and then increased, and the meat became tender. HTP processing endowed clam meat with abundant esters and aldehydes. Among all the processing groups, the umami and saltiness were better at 15 min, correlating with the highest overall acceptability. Ready-to-eat clam meat contained high-protein nutritional value. Compared with raw clam meat, the tropomyosin allergenicity of clam meat treated with HTP for 15 and 20 min was significantly reduced by 51.9 % and 56.5 %, respectively (P < 0.05). However, there was no significant difference between these two groups. Appropriate HTP processing time might be an efficient condition to reduce the tropomyosin allergenicity of ready-to-eat clam meat and improve its quality, particularly for the time of 15 min. The results of this study could provide a reliable theoretical basis for the development of hypoallergenic clam foods.
Collapse
Affiliation(s)
- Yachun Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoyue Yao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
14
|
Li J, Sun C, Ma W, Wen K, Wang Y, Yue X, Wang Y, Bai Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods 2024; 13:1566. [PMID: 38790866 PMCID: PMC11121095 DOI: 10.3390/foods13101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of ultrasound-assisted immersion freezing (UIF) at different power rates (0, 200, 400, and 600 W) on the changes in beef quality and flavor after braising. The results demonstrated that UIF treatment at 400 W significantly reduced the juice loss (cooking loss decreased from 49.04% to 39.74%) and fat oxidation (TBARS value decreased from 0.32 mg/kg to 0.20 mg/kg) of braised beef. In addition, the tenderness (hardness value decreased from 5601.50 g to 2849.46 g) and color stability of braised beef were improved after UIF treatment. The flavor characteristics of braised beef were characterized using an electronic nose and an electronic tongue. The PCA analysis data showed that the cumulative contribution rates of the first and second principal components were 85% and 93.2%, respectively, with the first principal component accounting for a higher proportion. The UIF-400 W group had the highest concentration for the first principal component, and the differentiation was not significant compared to the control group. The total amino acid values of different power UIF treatment groups were improved compared to the AF treatment group, indicating that UIF can effectively reduce the losses caused by freezing. The results demonstrate that ultrasound-assisted freezing treatment is beneficial in enhancing the tenderness and flavor attributes of beef after braising, providing new insights into the processing of meat products with desirable quality characteristics.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Chenhao Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Wuchao Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Kexin Wen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| |
Collapse
|
15
|
Ye S, Gao Y, Hu X, Cai J, Sun S, Jiang J. Research progress and future development potential of Flammulina velutipes polysaccharides in the preparation process, structure analysis, biology, and pharmacology: A review. Int J Biol Macromol 2024; 267:131467. [PMID: 38599436 DOI: 10.1016/j.ijbiomac.2024.131467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.
Collapse
Affiliation(s)
- Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Yi Gao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Li Y, Song H, Zhang Z, Li R, Zhang Y, Yang L, Li J, Zhu D, Liu J, Yu H, Liu H. Effects of fermentation with different probiotics on the quality, isoflavone content, and flavor of okara beverages. Food Sci Nutr 2024; 12:2619-2633. [PMID: 38628216 PMCID: PMC11016408 DOI: 10.1002/fsn3.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/11/2023] [Accepted: 12/24/2023] [Indexed: 04/19/2024] Open
Abstract
The present study aimed to prepare and evaluate a new probiotic functional beverage, using single-probiotic and compound probiotic fermentation on okara. Four different forms of fermentation microorganisms used were Lacticaseibacillus rhamnosus S24 (Lr), Lacticaseibacillus paracasei 6244 (Lp), Lactobacillus acidophilus 11,073 (La), and mixed fermentation (Lr + Lp + La). The physicochemical properties, antioxidant activity, flavor change, and storage period of fermented okara beverages with probiotics were investigated. The results showed that different fermentation schemes could significantly improve the physicochemical properties, antioxidant activity, and sensory quality of the okara beverages. The number of viable bacteria in the Lp group (3.53 × 108 CFU/mL), isoflavone content (0.514 μg/mL) were the highest; total phenol and flavonoid content were 3.32 and 5.68 times higher than in the CK group, respectively. DPPH and ABTS+ free radical scavenging rates were increased by 11.32% and 20%, respectively (p < .05). Through SPME/GC-MS analysis, 44 volatile compounds were identified in the Lr + Lp + La groups, mainly as a result of changes in alcohols and aldehydes produced by fermentation metabolism. It enhances the floral and fruity aroma of the okara beverage. All probiotic-fermented okara beverages can be stored at 4°C for 15 days, with probiotic activity greater than 107 CFU/mL. This study can obtain a probiotic okara beverage rich in soybean isoflavones and with good flavor. Overall, okara can be used to develop functional beverages containing probiotics and contribute to a zero-waste approach in the food industry.
Collapse
Affiliation(s)
- Yixue Li
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Hong Song
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Zunqin Zhang
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Ran Li
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Ying Zhang
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Lina Yang
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Jun Li
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Danshi Zhu
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| | - Jun Liu
- Shandong Yuwang Ecogical Food Industry Co., Ltd.YuchengChina
| | - Hansong Yu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - He Liu
- College of Food Science and TechnologyBohai UniversityJinzhouChina
| |
Collapse
|
17
|
Li X, Liu C, Wu J, Xiao X, Zhang L, Chen C, Wilson AS, Song F. Ester-related volatile compounds reveal the diversity and commonalities of different types of late-ripening peaches. J Food Sci 2024; 89:1485-1497. [PMID: 38317483 DOI: 10.1111/1750-3841.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
To recognize the key ester-related volatile compounds, 5 types of peaches including 54 late-ripening peach materials were examined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and E-nose. Here, a large number of esters were identified to be released by ripe peach fruits and were mainly characterized by fruity, green, and fatty notes. The variety and content of esters had greatly changed within or between cultivars, indicating that the fruit volatiles were highly differentiated depending on the specific genotypes and cultivation conditions. The ester types showed that fatty acid-derived C6 alcohols and methyl-/ethyl- short-chain alcohol were the main ester precursors, which were more likely to be utilized and well selected by alcohol acyltransferases, whereas the preference of acyl donors was not observed. The common peach type, which exhibited a unique volatile profile, displayed broader diversity and more abundant characteristics in ester-related volatiles than the other four types. A total of 19 key esters were identified as the main components and the content of most esters showed no significant difference among different peach types. Some key esters had even been enriched in nectarines. Moreover, the multiple discriminant analysis revealed a possible relationship between peach types and the domestication of the peach evolution. This study investigated ester-related volatiles released by different types of peach fruits and can be further used to evaluate the peach qualities, providing an important reference for peach breeding and processing.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing, China
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Chunsheng Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Junkai Wu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Xiao Xiao
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Libin Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Caixia Chen
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annette S Wilson
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Song W, Sun M, Lu H, Wang S, Wang R, Shang X, Feng T. Variations in Key Aroma Compounds and Aroma Profiles in Yellow and White Cultivars of Flammulina filiformis Based on Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Experiments Coupled with Odor Threshold Concentrations. Foods 2024; 13:684. [PMID: 38472798 DOI: 10.3390/foods13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flammulina filiformis (F. filiformis) is called the 'benefiting intelligence' mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was "sweet" for the yellow strain, while it was "green" for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.
Collapse
Affiliation(s)
- Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shengyou Wang
- Institute of Edible Fungi, Sanming Academy of Agricultural Sciences, Sanming 365000, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ruijuan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
19
|
Wang B, Liu YX, Dong M, Zhang YY, Huang XH, Qin L. Flavor enhancement during the drying of scallop (Patinopecten yessoensis) as revealed by integrated metabolomic and lipidomic analysis. Food Chem 2024; 432:137218. [PMID: 37639891 DOI: 10.1016/j.foodchem.2023.137218] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Dried scallops are a typical shellfish commodity, but the molecular change mechanism in the drying process is not clear. In this paper, the effect of drying on the flavor of scallops was revealed by integrated metabolomic and lipidomic analysis. The results showed that 70 °C was the best temperature for hot air drying, and the moisture content of the scallops was less than 20% after 12 h of drying, which meets the commercial standards for dried scallops. A total of 53 volatile compounds were detected in dried scallops, of which 2,5-dimethyl pyrazine and tetramethyl pyrazine, as characteristic flavor compounds, changed significantly during drying. In addition, taste peptides such as Arg-Gly and Gly-Gly, produced by protein degradation during drying, may contribute to the umami perception of dried scallops. This study helped to increase the overall quality of dried scallops.
Collapse
Affiliation(s)
- Bo Wang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yu-Xi Liu
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Meng Dong
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Yu-Ying Zhang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Xu-Hui Huang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Wang Y, Zhang H, Cui J, Gao S, Bai S, You L, Ji C, Wang S. Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Res Int 2024; 175:113715. [PMID: 38129035 DOI: 10.1016/j.foodres.2023.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The influence of frying times (0, 2, 4, 6, 8, and 10 min) on the continuous changes in the water distribution and the concentrations of key volatile compounds in chicken breast during the frying process were studied. The fried chicken samples could be distinguished by PCA of E-nose and PLS-DA of GC-MS. A total of 40 volatile compounds were identified by GC-MS, and 28 compounds were verified to be the key compounds after further screening by OAVs. The T22 was increased first and then decreased, while the M22 and M23 in fried chicken were considerably decreased and increased with increasing frying time, respectively. The content of the water and the total peak area of LF-NMR in fried chicken samples during the frying process significantly decreased, and the water was transferred from high to low degrees of freedom. In addition, water content, T21, T22, M22 and L* value were positively correlated with most alcohols and aldehydes, and were negatively correlated with pyrazines, while a*, b*, M23 and all amino acids were positively correlated with pyrazines and were negatively correlated with most alcohols and aldehydes. The results may guide the production processes of fried chicken and help produce high-quality chicken products.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Bai
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chen Ji
- College of Agricultural Sciences, Xichang University, XiChang 615000, China
| | - Songlei Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
21
|
Wang H, Sui Y, Liu J, Kong B, Li H, Qin L, Chen Q. Analysis and comparison of the quality and flavour of traditional and conventional dry sausages collected from northeast China. Food Chem X 2023; 20:100979. [PMID: 38022737 PMCID: PMC10661686 DOI: 10.1016/j.fochx.2023.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the physicochemical properties and flavour profile of traditional dry sausages (T-SH, T-DXAL, T-HG, T-MDJ, T-HRB) collected from various wet markets were compared with those of conventional dry sausages (C-QL, C-ND, C-YSD, C-YC, C-HRL) collected from various food companies in northeast China. Traditional dry sausages were characterised by a low moisture content, a low water activity, and a high shear force after a long fermentation time compared with conventional dry sausages. Electronic nose and electronic tongue signals combined with chemometrics methods were applied for a comprehensive qualitative analysis of the odour and taste of dry sausages. A total of 61 volatile compounds were identified using gas chromatography-mass spectrometry, and the multivariate chemometrics analysis confirmed the difference in volatile compounds between traditional and conventional samples. Moreover, the sensory evaluation revealed that conventional dry sausages lacked the characteristic fermented flavour of traditional dry sausages.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huiyao Li
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
22
|
Sun X, Yu Y, Saleh ASM, Yang X, Ma J, Gao Z, Zhang D, Li W, Wang Z. Characterization of aroma profiles of chinese four most famous traditional red-cooked chickens using GC-MS, GC-IMS, and E-nose. Food Res Int 2023; 173:113335. [PMID: 37803645 DOI: 10.1016/j.foodres.2023.113335] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
The aroma profile of the four most popular types of red-cooked chickens in China was analyzed using a combination of gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose (E-nose). Principal component analysis (PCA) demonstrated that the E-nose could successfully distinguish between the four types of red-cooked chickens. Additionally, a fingerprint was created using GC-IMS to examine the variations in volatile organic compounds (VOCs) distribution in the four chicken types. A total number of 84 and 62 VOCs were identified in the four types of red-cooked chickens using GC-MS and GC-IMS, respectively. Odor activity value (OAV) showed that 1-octen-3-ol, heptanal, hexanal, nonanal, octanal, eugenol, dimethyl trisulfide, anethole, anisaldehyde, estragole, and eucalyptol were the key volatile components in all samples. Furthermore, partial least squares-discriminant analysis (PLS-DA) demonstrated that (E, E)-2,4-decadienal, dimethyl trisulfide, octanal, eugenol, hexanal, (E)-2-nonenal, 1-octen-3-ol, butanal, ethyl acetate, ethyl acetate (D), nonanal, and heptanal could be used as markers to distinguish aroma of the four types of red-cooked chickens. Also, it is worth noting that levels of VOCs varied between chicken breast muscle and skin. The obtained results offer theoretical and technological support for flavor identification and control in red-cooked chickens to enhance their quality and encourage consumer consumption, which will be advantageous for the red-cooked chicken production chain.
Collapse
Affiliation(s)
- Xiangxiang Sun
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yumei Yu
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Xinyu Yang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jiale Ma
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziwu Gao
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
23
|
Deng G, Li J, Liu H, Wang Y. Volatile compounds and aroma characteristics of mushrooms: a review. Crit Rev Food Sci Nutr 2023; 64:13175-13192. [PMID: 37788142 DOI: 10.1080/10408398.2023.2261133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Mushrooms are popular due to their rich medicinal and nutritional value. Of the many characteristics of mushrooms, aroma has received extensive attention and research as a key determinant of consumer preference. This paper reviews the production, role and contribution of common volatile compounds (VCs) in wild and cultivated mushrooms, and explores the methods used to characterize them and the factors influencing aroma. To date, more than 347 common VCs have been identified in mushrooms, such as aldehydes, ketones, alcohols and sulfur-containing compounds. Extraction and identification of VCs is a critical step and combining multiple analytical methods is an effective strategy in mushroom aroma studies. In addition, the VCs and the aroma of mushrooms are affected by a variety of factors such as genetics, growing conditions, and processing methods. However, the mechanism of influence is unknown. Further studies on the production mechanisms of VCs, their contribution to aroma, and the factors influencing their formation need to be determined in order to fully elucidate aroma and flavor of mushrooms.
Collapse
Affiliation(s)
- Guangmei Deng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
24
|
Li X, Zhang Y, Hengchao E, He X, Li J, Zhao X, Zhou C. Characteristic fingerprints and comparison of volatile flavor compounds in Morchella sextelata under different drying methods. Food Res Int 2023; 172:113103. [PMID: 37689871 DOI: 10.1016/j.foodres.2023.113103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Morchella sextelata is a precious and popular commercial edible fungus that was developed recently in China. This research aimed to characterize the volatile profiles of M. sextelata under three dehydration methods (freeze, hot air, and natural air drying). Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-ToF-MS) was shown to the best choice to discriminate the volatile profiles of M. sextelata Characteristic flavor substances of M. sextelata were eight-carbon-containing (C8) compounds, hexanal, 2(5 h)-furanone, and benzaldehyde. Drying methods had significant influences on the volatile flavor profiles of M. sextelata, and 104 differential compounds were screened by multivariate statistical analysis. Freeze-dried samples had the most abundant volatile compounds and maintained more alcohols, ketones, aldehydes, and esters described as mushroom, sweet, and green flavor, like 1-octen-3-ol, 1-octen-3-one, nonanal, 2,3-butanedione, and so on. Hot air-drying promoted the production of heterocycles and ketones with roasted flavor due to the thermalreaction, such as 2-cyclohexen-1-one, furan, 3-phenyl-, etc. Natural air-drying resulted in acids releasing an unpleasant flavor, e.g., acetic acid, 2-methylbutanoic acid, etc. Overall, thermal reaction combined with vacuum conditions might be suitable for maintaining and enriching the aroma flavor of dried true morels.
Collapse
Affiliation(s)
- Xiaobei Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Yanmei Zhang
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - E Hengchao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiangwei He
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Jianying Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality and Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
| |
Collapse
|
25
|
Xie L, Jiang YS, Wang YB, Xiao HW, Liu W, Ma Y, Zhao XY. Changes in the Physical Properties and Volatile Odor Characteristics of Shiitake Mushrooms ( Lentinula edodes) in Far Infrared Radiation Drying. Foods 2023; 12:3213. [PMID: 37685146 PMCID: PMC10486590 DOI: 10.3390/foods12173213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The effects of far infrared radiation drying (FID) on physical properties (drying kinetics, color, shrinkage ratio, rehydration ratio, and microstructural characterization) and volatile odor characteristics (volatile odor profile distinction and volatile compounds) of shiitake mushrooms were evaluated in this study. During the FID, the drying time decreased with the increase in drying temperature, and it had a less significant effect in the lower temperature range. The increase in drying temperature led to increasing shrinkage and collapse in the microstructure, resulting in a decreased rehydration rate and highlighting the influence of microstructure characteristics on macroscopic properties. Higher drying temperatures employed in the FID process were found to be associated with a decreasing L* value and an increasing ΔE value. The application of principal component analysis can effectively distinguish the significant effect of FID on the volatile odor profiles of shiitake mushrooms. Compared to raw shiitake mushrooms, FID treatment has endowed samples with a greater variety of volatile compounds. After processing with FID, there have been increases in volatile components such as sulfur compounds, acids, nitrogen compounds, and aldehydes, while volatile components like alcohols, ketones, and hydrocarbons have shown decreases.
Collapse
Affiliation(s)
- Long Xie
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yu-Si Jiang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yu-Bin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiao-Yan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|
26
|
Lu H, Song W, Shang XD, Liu JY, Zhang D, Li L, Wang RJ, Zhai XT, Feng T. Expression of terpene synthase-related genes in parents and offspring of Flammulina filiformis based on differences in volatile aroma components. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100156. [PMID: 36588602 PMCID: PMC9794882 DOI: 10.1016/j.fochms.2022.100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Flammulina filiformis (F. filiformis) is one of the four major edible types of fungus in the world and has been cultivated in China since 800 CE (Anno Domini). Some of the most essential criteria for evaluating the quality of F. filiformis are the types and contents of volatile components present. A focused study on screened the terpene synthase genes involved in the aroma of offspring and compared key terpenoids between parents and offspring, which is helpful for the development and application of F. filiformis. Firstly, the volatile aroma components of parent and offspring F. filiformis were extracted using two pretreatment procedures, and then were semi-quantified by an internal standard. Forty-eight, fifty-eight, and forty-eight volatile compounds were identified in parents and offspring of three different strains, and 15, 22, and 12 aroma compounds (OAVs ≥ 1) were further screened out via calculating their odor activity values (OAVs). Terpenoids, in particular linalool and eucalyptol, which contribute more to the aroma, result in the unique green and grassy aroma of the offspring. At last, the F. filiformis genome was resequenced and the coordinates of genes related to terpenoid synthase were determined. The results showed that Scaffolds, including scaffold3.t874 and scaffold9.t157 were connected to terpenoid synthesis of offspring (No. 61523). The variant genes g269 and g61 were related to terpenoid synthase sequences. This study provides a theoretical foundation for the cultivation of more diverse and unique varieties of F. filiformis.
Collapse
Affiliation(s)
- Huan Lu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiao-Dong Shang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Jian-Yu Liu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Dan Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Liang Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rui-Juan Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, Shanghai, China
| | - Xiao-Ting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
27
|
Ali A, Wang J, Jiang W, Wei S, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Metabolomic profiles and potential biomarkers identification among targeted muscles of fresh hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) and golden pompano (Trachinotus ovatus). Lebensm Wiss Technol 2023; 184:115083. [DOI: 10.1016/j.lwt.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Seong HY, Shin EC, Lee Y, Kim M. Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry. Foods 2023; 12:2328. [PMID: 37372539 DOI: 10.3390/foods12122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Edible insects have recently attracted attention as an alternative sustainable protein food source. However, consumer aversion remains the major obstacle to successful implementation in the food industry due to their shape and unpleasant odor. Here, we evaluated and compared odor-active compounds from untreated Gryllus bimaculatus (UGB), hot-air dried GB at 70 °C for 10 h (AGB), freeze-dried GB (FGB), steam-heated GB at 121 °C and 14.5 psi for 15 min (SGB), and defatted GB by hexane (DFGB). Each sample was analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). The most volatile compounds were detected in UGB, followed by SGB, DFGB, AGB, and FGB by GC-MS analysis. In GC-O analysis, fourteen compounds were identified as cricket or cricket-related odor among twenty identified compounds. Cyclododecane had the strongest cricket-related odor found only in UGB. DFGB received the lowest total scores of intensity for cricket-related odors, while SGB received the highest scores. It seems that defatting could reduce cricket-related odors. This study may provide theoretical information for the GB odors according to the four processing methods.
Collapse
Affiliation(s)
- Hui-Yeong Seong
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Eui-Cheol Shin
- Department of Green Bio Science/Food Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Youngseung Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
29
|
Qiu Y, Li Y, Wu L, Wei H, Fu J, Chen W, Lin S, Yang S, Zhang R, Shang W, Liao C, Zeng S, Luo Y, Cai W. Analysis of Important Volatile Organic Compounds and Genes Produced by Aroma of Pepper Fruit by HS-SPME-GC/MS and RNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2246. [PMID: 37375872 DOI: 10.3390/plants12122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Pepper is an important condiment, and its aroma affects its commercial value. In this study, transcriptome sequencing and combined headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the differentially expressed genes and volatile organic compounds in spicy and non-spicy pepper fruits. Compared with non-spicy fruits, there were 27 up-regulated volatile organic compounds (VOCs) and 3353 up-regulated genes (Up-DEGs) in spicy fruits. The results of KEGG enrichment analysis of the Up-DEGs combined with differential VOCs analysis showed that fatty acid biosynthesis and terpenoid biosynthesis may be the main metabolic pathways for aroma differences between non-spicy and spicy pepper fruits. The expression levels of the fatty acid biosynthesis-related genes FAD, LOX1, LOX5, HPL, and ADH and the key terpene synthesis gene TPS in spicy pepper fruits were significantly higher than those in non-spicy pepper fruits. The differential expression of these genes may be the reason for the different aroma. The results can provide reference for the development and utilization of high-aroma pepper germplasm resources and the breeding of new varieties.
Collapse
Affiliation(s)
- Yinhui Qiu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Yongqing Li
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Lidong Wu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Hang Wei
- Institute of Agricultural Quality Standards and Testing Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Jianwei Fu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiting Chen
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shuting Lin
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Wei Shang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Chengshu Liao
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shaogui Zeng
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ying Luo
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Weiwei Cai
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 350002, China
| |
Collapse
|
30
|
Jiang Y, Zhao Q, Deng H, Li Y, Gong D, Huang X, Long D, Zhang Y. The Nutrients and Volatile Compounds in Stropharia rugoso-annulata by Three Drying Treatments. Foods 2023; 12:foods12102077. [PMID: 37238895 DOI: 10.3390/foods12102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to examine the differences in the nutrients and volatile compounds of Stropharia rugoso-annulata after undergoing three different drying treatments. The fresh mushrooms were dried using hot air drying (HAD), vacuum freeze drying (VFD), and natural air drying (NAD), respectively. After that, the nutrients, volatile components, and sensory evaluation of the treated mushrooms were comparably analyzed. Nutrients analysis included proximate compositions, free amino acids, fatty acids, mineral elements, bioactive compositions, and antioxidant activity. Volatile components were identified by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and analyzed with principal component analysis (PCA). Finally, sensory evaluation was conducted by ten volunteers for five sensory properties. The results showed that the HAD group had the highest vitamin D2 content (4.00 μg/g) and antioxidant activity. Compared with other treatments, the VFD group had higher overall nutrient contents, as well as being more preferred by consumers. Additionally, there were 79 volatile compounds identified by HS-SPME-GC-MS, while the NAD group showed the highest contents of volatile compounds (1931.75 μg/g) and volatile flavor compounds (1307.21 μg/g). PCA analysis suggested the volatile flavor compositions were different among the three groups. In summary, it is recommended that one uses VFD for obtaining higher overall nutritional values, while NAD treatment increased the production of volatile flavor components of the mushroom.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haolan Deng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Xie M, Chen Y, Sun Y, Gao Y, Wu Z, Wu R, Li R, Hong S, Wang M, Zou Y, Zhang H, Xiong Y. Effect of Drying Kinetics, Volatile Components, Flavor Changes and Final Quality Attributes of Moslae herba during the Hot Air Thin-Layer Drying Process. Molecules 2023; 28:molecules28093898. [PMID: 37175307 PMCID: PMC10179961 DOI: 10.3390/molecules28093898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Moslae herba is considered to be a functional food ingredient or nutraceutical due to its rich bioactive components. The present research was carried out to investigate the effects of different temperatures (40 °C, 50 °C and 60 °C) on the drying characteristics, textural properties, bioactive compounds, flavor changes and final quality attributes of Moslae herba during the hot air-drying process. The results showed that the Midilli model could effectively simulate the drying process of Moslae herba. The effective moisture diffusivity ranged from 3.14 × 10-5 m2/s to 7.39 × 10-5 m2/s, and the activation energy was estimated to be 37.29 kJ/mol. Additionally, scanning electron microscopy (SEM) images of Moslae herba samples showed the shrinkage of the underlying epidermal layers and glandular trichomes. In total, 23 volatile compounds were detected in Moslae herba. Among them, the content of thymol increased from 28.29% in fresh samples to 56.75%, 55.86% and 55.62% in samples dried at temperatures of 40 °C, 50 °C and 60 °C, respectively, while the other two components, p-cymene and γ-terpinene, decreased with an increase in the temperature. Furthermore, both radar fingerprinting and principal component analysis (PCA) of the electronic nose (E-nose) showed that the flavor substances significantly altered during the drying process. Eventually, drying Moslae herba at 60 °C positively affected the retention of total phenolics, total flavonoids and the antioxidant capacity as compared with drying at 40 °C and 50 °C. The overall results elucidated that drying Moslae herba at the temperature of 60 °C efficiently enhanced the final quality by significantly reducing the drying time and maintaining the bioactive compounds.
Collapse
Affiliation(s)
- Min Xie
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ying Chen
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yarou Gao
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhenfeng Wu
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ruiyu Wu
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Rui Li
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shixi Hong
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Minyan Wang
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yiping Zou
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hua Zhang
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yaokun Xiong
- Department of Pharmaceutics, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
32
|
Li Y, Leng W, Xue J, Yuan L, Liu H, Gao R. A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional Chinese shrimp paste. Food Res Int 2023; 166:112585. [PMID: 36914317 DOI: 10.1016/j.foodres.2023.112585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The fermentation process of traditional shrimp paste is closely associated with the production of flavor substances, but the formation mechanism of key aroma components is still unclear. In this study, a comprehensively flavor profile analysis of traditional fermented shrimp paste was carried out by E-nose and SPME-GC-MS. A total of 17 key volatile aroma components with OAV > 1 contributed greatly to the overall flavor formation of shrimp paste. In addition, high-throughput sequencing (HTS) analysis revealed that Tetragenococcus was the dominant genera in the whole fermentation process. Moreover, metabolomics analysis showed that the oxidation and degradation of lipids, protein, organic acids and amino acids produced a large number of flavor substances and intermediates, which laid the foundation for the Maillard reaction in term of generating the distinct aroma of the traditional shrimp paste. This work will provide theoretical support for the realization of flavor regulation and quality control in traditional fermented foods.
Collapse
Affiliation(s)
- Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
33
|
Shao Y, Liu X, Zhang Z, Wang P, Li K, Li C. Comparison and discrimination of the terpenoids in 48 species of huajiao according to variety and geographical origin by E-nose coupled with HS-SPME-GC-MS. Food Res Int 2023; 167:112629. [PMID: 37087205 DOI: 10.1016/j.foodres.2023.112629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
The unique flavor and aroma characteristics of huajiao were not only influenced by cultivated varieties, maturity, but also geographic origin. This study compared the terpenoids of 48 species of huajiao using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and electronic nose (E-nose). The E-nose results showed differences in huajiao from different origins and varieties, and from the PCA loading plots it was possible to conclude that some samples contained higher levels of hydrocarbons and alcohols, providing a preliminary discrimination between different species of huajiao. Further, GC-MS results showed that six key biomarkers could be used to distinguish red and green huajiao. Red huajiao in Central China contained more terpenoids than in other regions. Nine key biomarkers could be used to distinguish red huajiao from different regions. Oil huajiao exhibited a more distinct aroma in red huajiao. Green huajiao from Yunnan Province had more terpenoids than that from other provinces. The terpenoids content of Yunnan zhuyeqing was higher than other green huajiao. Heatmap analysis helped to find the most contributors of huajiao, which could be used as key terpenoids to differentiate huajiao of different regions or cultivars. Finally, through the correlation analysis of E-nose and GC-MS, it was found that the E-nose sensors could distinguish different huajiao by specific responses to some terpenoids in the samples.
Collapse
Affiliation(s)
- Yuanyuan Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xiaoqiong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Dehong Tropical Agriculture Research Institute of Yunnan, Rui 678600, Yunnan, China
| | - Zhuoya Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Pengxiang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
34
|
Zhang F, Yang B, Zhang M, Qi J, Xu X, Xiong G. Influence of sodium bicarbonate and moisture content on physicochemical properties of chicken-based extrudate by twin-screw extruder. Food Chem 2023; 402:134313. [DOI: 10.1016/j.foodchem.2022.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
35
|
Zheng AR, Wei CK, Liu DH, Thakur K, Zhang JG, Wei ZJ. GC-MS and GC×GC-ToF-MS analysis of roasted / broth flavors produced by Maillard reaction system of cysteine-xylose-glutamate. Curr Res Food Sci 2023; 6:100445. [PMID: 36699115 PMCID: PMC9868338 DOI: 10.1016/j.crfs.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Maillard reaction products (MRPs) with roasted/broth flavors were prepared and analyzed for the resulting flavor differences. The identification of volatile compounds in MRPs was carried out by GC-MS and GC × GC-ToF-MS. A total of 88 compounds were identified by GC-MS; 130 compounds were identified by GC × GC-ToF-MS, especially acids and ketones were identified. Principal component analysis (PCA) was used to visualize the volatile compounds, and the roasted/broth flavors were differentiated. The contents and types of pyrazines were more in roasted flavors; thiol sulfides and thiophenes were more in broth flavors. All in all, the differences in volatile compounds producing roasted/broth flavors were studied through the cysteine-xylose-glutamate Maillard reaction system, which provided a theoretical basis for the future use of Maillard reaction to simulate meat flavor.
Collapse
Affiliation(s)
- An-Ran Zheng
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
| | - Chao-Kun Wei
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
- Corresponding author. School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China.
| | - Dun-Hua Liu
- School of Food and Wine & School of Agriculture, Ningxia University, Yinchuan, 750021, PR China
| | - Kiran Thakur
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Jian-Guo Zhang
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
- Corresponding author. School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, PR China.
| |
Collapse
|
36
|
Wu J, Chen R, Li X, Fu Z, Xian C, Zhao W, Zhao C, Wu X. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose. Front Nutr 2023; 10:1132527. [PMID: 36960200 PMCID: PMC10028209 DOI: 10.3389/fnut.2023.1132527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
In the production of soy sauce-aroma type baijiu (SSAB), the quality of base liquor significantly affects the finished liquor's quality. Moreover, low-quality liquor may cause health problems. The different quality grades of base liquor were analyzed to investigate the relationship between the quality and the key compounds in SSAB. In this study, samples were evaluated by the sensory and further analyzed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) coupled with electronic nose (E-nose). First, by sensory evaluation, the sauce, floral and fruity, fermented aromas and taste indicators (softness, fullness, harmony, purity and persistence) were positively correlated with the quality grade of the base liquor. The E-nose could distinguish the different quality grades of base liquor well. Second, differential compounds were identified via untargeted metabolome based on the HS-SPME-GC-MS. 16 common differential compounds were shared in the base liquor from different fermentation rounds, including 11 esters, 1 alcohol, 2 aldehydes and 2 ketones. It was found that the higher the quality grade of the base liquor, the richer the content of aromatics, alcohols, aldehydes and ketones. The principal component analysis (PCA) biplots of the differential compounds in the different quality grades of base liquor indicated that the superior-grade base liquor has a strong fruity aroma. By correlation analysis of the differential compounds and sensors responses of E-nose, furfuryl ethyl ether, butanoic acid ethyl ester, isopentyl hexanoate, nonanoic acid ethyl ester and 3-methyl-1-butanol had a significant effect on the response intensity of E-nose sensors. In the present study, the key differential compounds between the different quality grades of base liquor were identified, and the sensory differences between the base liquor were digitized.
Collapse
Affiliation(s)
- Junhai Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| | - Renyuan Chen
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Xiaobo Li
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Zheyang Fu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| | - Chun Xian
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Wenwu Zhao
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Cheng Zhao
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Xinying Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
- *Correspondence: Xinying Wu,
| |
Collapse
|
37
|
Analysis of the changes of volatile flavor compounds in a traditional Chinese shrimp paste during fermentation based on electronic nose, SPME-GC-MS and HS-GC-IMS. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Identification of s9ap used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of Pleurotus eryngii. Mol Biol Rep 2023; 50:621-629. [PMID: 36370299 DOI: 10.1007/s11033-022-07562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Pleurotus eryngii is a kind of edible fungi with good quality, and it is popular among consumers. At present, some adulterated edible fungi are available in the market. The rights and interests of consumers can be ensured by establishing a practical edible fungi detection system. Among the existing methods for detecting food adulteration, endogenous reference gene amplification is convenient and reliable. However, no ideal endogenous reference gene is available for P. eryngii. METHODS AND RESULTS In this study, s9ap was screened as an endogenous reference gene through sequence alignment. Qualitative and quantitative PCR analysis of this gene was carried out in one P. eryngii variety and 18 other species. The detection limit of quantitative PCR was 400 pg, and no s9ap amplification products were detected in the 18 other species. CONCLUSIONS This study confirmed that s9ap was an ideal endogenous reference gene for the detection of P. eryngii. This method was also suitable for processed food products.
Collapse
|
40
|
Zhu R, Wen Y, Wu W, Zhang L, Salman Farid M, Shan S, Wen J, Farag MA, Zhang Y, Zhao C. The flavors of edible mushrooms: A comprehensive review of volatile organic compounds and their analytical methods. Crit Rev Food Sci Nutr 2022; 64:5568-5582. [PMID: 36519553 DOI: 10.1080/10408398.2022.2155798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their distinctive flavors, edible mushrooms have gained attention in flavor-related research, and the quality of their flavors determines their consumption. The odor is a vital element of food flavor that significantly impacts consumers' perceptions and purchase decisions. The volatile organic compounds (VOCs) of the odorant ingredient is the primary factors affecting scent characteristics. VOCs analysis and identification require technical assistance. The production and use of edible mushrooms can be aided by a broader examination of their volatile constituents. This review discusses the composition of VOCs in edible mushrooms and how they affect flavors. The principles, advantages, and disadvantages of various methods for extraction, isolation, and characterization of the VOCs of edible mushrooms are also highlighted. The numerous VOCs found in edible mushrooms such as primarily C-8 compounds, organic sulfur compounds, aldehydes, ketones, alcohols, and esters are summarized along with their effects on the various characteristics of scent. Combining multiple extraction, isolation, identification, and quantification technologies will facilitate rapid and accurate analysis of VOCs in edible mushrooms as proof of sensory attributes and quality.
Collapse
Affiliation(s)
- Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jiahui Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
41
|
Understanding the promotion of heat treatment on the flavor of Lentinula edodes using metabolomics integrated with transcriptomics. Food Res Int 2022; 162:112051. [DOI: 10.1016/j.foodres.2022.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
|
42
|
Sun W, Ji H, Zhang D, Zhang Z, Liu S, Song W. Evaluation of Aroma Characteristics of Dried Shrimp (Litopenaeus vannamei) Prepared by Five Different Procedures. Foods 2022; 11:foods11213532. [PMID: 36360145 PMCID: PMC9658951 DOI: 10.3390/foods11213532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Litopenaeus vannamei is one of the most popular shrimp species in the world and has been reported in studies on its dryness and flavor. However, the aroma characteristics of shrimps dried with different drying methods are compared in a unified way, and there are few reports on the difference in aroma of different shrimps dried. In order to clarify the difference in aroma characteristics of shrimp dried produced by different drying methods. In this study, blanched shrimp (BS) was used as a control to analyze the aroma characteristics of shrimp dried by five different procedures (SD-BFDP) samples, namely vacuum freeze-dried shrimp (VFDS), vacuum dried-shrimp (VDS), heat pump-dried shrimp (HPDS), hot air dried-shrimp (HADS) and microwave vacuum-dried shrimp (MVDS). An electronic nose (E-nose) was used to obtain the aroma fingerprint of SD-BFDP samples. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for qualitative and quantitative analysis of volatile compounds in SD-BFDP samples. Partial least squares regression (PLSR) was used to analyze potential correlations between sensory attributes and aroma-active compounds (AACs). Partial least squares-discrimination analysis (PLS-DA) was used to screen for signature aroma compounds. The results of the E-nose showed that there were differences in the aroma fingerprints of the SD-BFDP samples, and the E-nose could distinguish the five kinds of SD-BFDP. The qualitative and quantitative results of GC-MS showed that the types and contents of the main volatile components of SD-BFDP samples were different. 15 AACs were screened from SD-BFDP based on odor activity value (OAV). The PLSR results showed good correlations between certain sensory attributes and the majority of AACs. PLS-DA results displayed that aroma attributes of SD-BFDP samples could be distinguished by six signature aroma compounds, including trimethylamine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, nonanal, 3-ethyl-2,5-dimethylpyrazine, and octanal. These research results reveal that shrimps dried in different procedures have unique aroma characteristics, which could provide a theoretical basis for the rapid identification of aroma attributes of dried shrimps in the future. From a flavor perspective, MVD is the best drying method.
Collapse
Affiliation(s)
- Weizhen Sun
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongwu Ji
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zewei Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenkui Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
43
|
Yang B, Huang J, Jin W, Sun S, Hu K, Li J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods 2022; 11:3249. [PMID: 37430997 PMCID: PMC9601802 DOI: 10.3390/foods11203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, fresh Lyophyllum decastes was dried using hot air drying (HAD), hot air combined with vacuum drying (HAVD), and vacuum freeze drying (VFD). Additionally, the quality and volatile compounds were analyzed. VFD achieved the best color retention, the highest rehydration capacity, and the slightest damaged tissue structure; however, it recorded the longest drying time and the highest energy consumption. HAD was the most energy-efficient of the three methods. Furthermore, the products with more hardness and elasticity were obtained by HAD and HAVD-this finding was convenient for transportation. In addition, GC-IMS demonstrated that the flavor components had significantly changed after drying. A total of 57 volatile flavor compounds was identified, and the aldehyde, alcohol, and ketone compounds were the primary ingredient of the L. decastes flavor component, whereby the relative content of the HAD sample was apparently higher than HAVD and VFD. Taken together, VFD was better at preserving the color and shape of fresh L. decastes, but HAD was more appropriate for drying L. decastes because of the lower energy consumption, and was more economical. Meanwhile, HAD could be used to produce a more intense aroma.
Collapse
Affiliation(s)
- Bin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhang Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wensong Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
44
|
Comparison of the Antioxidant Activities and Polysaccharide Characterization of Fresh and Dry Dendrobium officinale Kimura et Migo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196654. [PMID: 36235191 PMCID: PMC9572727 DOI: 10.3390/molecules27196654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
Abstract
It is generally believed that fresh Dendrobium officinale (FDO) has more significant pharmacological activity than dried Dendrobium officinale (DDO); however, the difference has not been clearly shown. Our study compared their antioxidant properties both in vitro and in vivo, and the molecular weight arrangement and monosaccharide composition of the fresh Dendrobium officinale polysaccharides (FDOPs) and the dried Dendrobium officinale polysaccharides (DDOPs) were analyzed by HPLC-GPC and GC-MS. The results showed that the FDO and its polysaccharides had more significant effects on scavenging DPPH, ABTS, and hydroxyl radicals than the DDO. In addition, both the FDO and DDO significantly reduced lipid peroxidation levels and increased the SOD, T-AOC, CAT, and GSH levels in mice with acute liver damage caused by CCl4, while the FDO and its polysaccharides were more effective. Histopathological analysis further verified the protective effect of the Dendrobium polysaccharides on CCl4-induced liver injury. The determination of the polysaccharides revealed that the polysaccharide and mannose contents of the FDO were significantly higher than their dried counterparts, and the homogeneous arrangement of the polysaccharides in the FDO was degraded into three polysaccharide fragments of different molecular weights in the DDO. Overall, our data identified differences in the antioxidant activities of the FDO and DDO, as well as the reasons for these differences.
Collapse
|
45
|
Chen JN, Han HT, Liu CJ, Gao Q, Wang XW, Zhang JW, Tanokura M, Xue YL. Characterization of aroma-active compounds in Dongli by quantitative descriptive analysis, gas chromatography-triple quadrupole tandem mass spectrometry, and gas chromatography-olfactometry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4108-4121. [PMID: 36193355 PMCID: PMC9525488 DOI: 10.1007/s13197-022-05463-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/03/2022] [Accepted: 04/03/2022] [Indexed: 06/01/2023]
Abstract
Dongli, or frozen pear, is a traditional Chinese snack with a unique flavor. This study identified the aroma-active volatile compounds (VOCs) in Dongli using quantitative descriptive analysis (QDA), gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS), and gas chromatography-olfactometry (GC-O). QDA indicated that Dongli of all cultivars presented increased sweet and wine aromas. A total of 21 VOCs were identified by GC-MS/MS. Bidirectional orthogonal partial least square (O2PLS) analysis, GC-O analysis, detection frequency analysis (DFA), and relative odor activity values (ROAV) showed that: estragole and anethole contributing "anise, green" aromas were the key aromatic VOCs of fresh pears, while ethyl butanoate, butyl acetate, heptyl acetate, benzaldehyde, and geranyl acetone contributing "sweet, fruity, green" aromas were the key aromatic VOCs of Dongli. The results revealed that the repeated freezing treatment promoted a unique aroma in pears. This study would contribute to developing new pear products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05463-8.
Collapse
Affiliation(s)
- Jia-Nan Chen
- College of Light Industry, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036 People’s Republic of China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Hao-Ting Han
- College of Light Industry, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036 People’s Republic of China
| | - Chun-Ju Liu
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Qi Gao
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs; Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, 300384 People’s Republic of China
| | - Xiao-Wen Wang
- College of Light Industry, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036 People’s Republic of China
| | - Jun-Wei Zhang
- College of Light Industry, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036 People’s Republic of China
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - You-Lin Xue
- College of Light Industry, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036 People’s Republic of China
| |
Collapse
|
46
|
Insight into the dynamic variation and retention of major aroma volatile compounds during the milling of Suxiang japonica rice. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zhu Y, Zhang M, Zhang L, Law CL, Wang Y, Liu K. Preparation of enzymatic hydrolysate using edible fungi by-products of soup seasoning: Effect of different enzymes on enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Ge Z, Wang W, Xu M, Gao S, Zhao Y, Wei X, Zhao G, Zong W. Effects of Lactobacillus plantarum and Saccharomyces cerevisiae co-fermentation on the structure and flavor of wheat noodles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4697-4706. [PMID: 35191031 DOI: 10.1002/jsfa.11830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although traditional fermented noodles possess high eating quality, it is difficult to realize large-scale industrialization as a result of the complexity of spontaneous fermentation. In present study, commercial Lactobacillus plantarum and Saccharomyces cerevisiae were applied in the preparation of fermented noodles. RESULTS The changes in the structural characteristics and aroma components of noodles after fermentation were investigated via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), low-field magenetic resonance imaging, electronic nose, and simultaneous distillation and extraction/gas chromatography-mass spectrometry (GC-MS) analysis. SEM images revealed that co-fermentation of the L. plantarum and S. cerevisiae for 10-40 min enhanced the continuity of the gluten network and promoted the formation of pores. FTIR spectra analysis showed that the co-fermentation increased significantly (P < 0.05) the proportion of α-helices of noodles gluten protein, enhancing the orderliness of the molecular structure of protein. After fermentation for 10-40 min, the signal density of hydrogen protons increased from the surface to the core, indicating that the water in the noodles migrated inward during a short fermentation process. The results of multivariate statistical analysis demonstrated that the main aroma differences between unfermented and fermented noodles were mainly in hydrocarbons, aromatic compounds and inorganic sulfides. GC-MS analysis indicated that the main volatile compounds detected were 2, 4-di-tert-butylphenol, bis (2-ethylhexyl) adipate, butyl acetate, dibutyl phthalate, dioctyl terephthalate, bis (2-ethylhexyl) phthalate, pentanol and 2-pentylfuran, etc. CONCLUSION: Co-fermentation with L. plantarum and S. cerevisiae improved the structure of gluten network and imparted more desirable volatile components to wheat noodles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenzhen Ge
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Weijing Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- HaoXiangNi Health Food Co., Ltd, Zhengzhou, China
| | - Mingyue Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shanshan Gao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuxiang Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Guangyuan Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
49
|
Zhu M, Hu Z, Liang M, Song L, Wu W, Li R, Li Z, Zhang J. Evaluation of the flavor compounds of
Pleurotus eryngii
as affected by baking temperatures using
HS‐SPME‐GC‐MS
and electronic nose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengwei Zhu
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Zhizhong Hu
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Miao Liang
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Lingyong Song
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Wentao Wu
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Ruili Li
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Zhihua Li
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Junsong Zhang
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| |
Collapse
|
50
|
Yuan YH, Liu LX, Guo L, Wang L, Hao JW, Liu YG. Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|