1
|
Garg S, Nain P, Kumar A, Joshi S, Punetha H, Sharma PK, Siddiqui S, Alshaharni MO, Algopishi UB, Mittal A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Front Microbiol 2024; 15:1439561. [PMID: 39104588 PMCID: PMC11299335 DOI: 10.3389/fmicb.2024.1439561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
The best environment for plant growth and development contains certain essential metabolites. A broad category of metabolites known as "plant biostimulants" (PBs) includes biomolecules such as proteins, carbohydrates, lipids, and other secondary metabolites related to groups of terpenes, specific nitrogen-containing compounds, and benzene ring-conjugated compounds. The formation of biomolecules depends on both biotic and abiotic factors, such as the release of PB by plants, animals, and microorganisms, or it can result from the control of temperature, humidity, and pressure in the atmosphere, in the case of humic substances (HSs). Understanding the genomic outputs of the concerned organism (may be plants or others than them) becomes crucial for identifying the underlying behaviors that lead to the synthesis of these complex compounds. For the purposes of achieving the objectives of sustainable agriculture, detailed research on PBs is essential because they aid in increasing yield and other growth patterns of agro-economic crops. The regulation of homeostasis in the plant-soil-microbe system for the survival of humans and other animals is mediated by the action of plant biostimulants, as considered essential for the growth of plants. The genomic size and gene operons for functional and regulation control have so far been revealed through technological implementations, but important gene annotations are still lacking, causing a delay in revealing the information. Next-generation sequencing techniques, such as nanopore, nanoball, and Illumina, are essential in troubleshooting the information gaps. These technical advancements have greatly expanded the candidate gene openings. The secondary metabolites being important precursors need to be studied in a much wider scale for accurate calculations of biochemical reactions, taking place inside and outside the synthesized living cell. The present review highlights the sequencing techniques to provide a foundation of opportunity generation for agricultural sustainability.
Collapse
Affiliation(s)
- Shivanshu Garg
- Department of Biochemistry, CBSH-GBPUA&T, Pantnagar, India
| | - Pooja Nain
- Department of Soil Science, College of Agriculture, GBPUA&T, Pantnagar, India
| | - Ashish Kumar
- Department of Microbiology, CBSH-GBPUA&T, Pantnagar, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | | | - Pradeep Kumar Sharma
- Department of Environment Science, Graphic Era Deemed to be University, Dehradun, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Amit Mittal
- School of Allied Sciences, Graphic Era Hill University, Bhimtal, India
| |
Collapse
|
2
|
Cui J, Wang Y, Liang X, Zhao J, Ji Y, Tan W, Dong F, Guo Z. Synthesis, antimicrobial activity, antioxidant activity and molecular docking of novel chitosan derivatives containing glycine Schiff bases as potential succinate dehydrogenase inhibitors. Int J Biol Macromol 2024; 267:131407. [PMID: 38582463 DOI: 10.1016/j.ijbiomac.2024.131407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.
Collapse
Affiliation(s)
- Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqing Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China
| | - Jinyu Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264003, China
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Khosravi F, Mohammadi S, Kosari-Nasab M, Asgharian P. The impact of microcrystalline and nanocrystalline cellulose on the antioxidant phenolic compounds level of the cultured Artemisia absinthium. Sci Rep 2024; 14:2692. [PMID: 38302508 PMCID: PMC10834404 DOI: 10.1038/s41598-023-50772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024] Open
Abstract
Artemisia absinthium has long been used traditionally as an anti-microbial and antioxidant agent. Various biologically active secondary metabolites, including phenolic compounds such as gallic acid and p-coumaric acid, have been reported from the species. In addition, growing the plants under in vitro conditions enriched with elicitors is a cost-effective approach to enhance secondary metabolite production. This paper examined microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) effects on morphological characteristics, phenolic compounds, antioxidant activity, and volatile oil content of A. absinthium. The treated shoots with various concentrations of MCC and NCC were subjected to spectrophotometric, GC-MS, and LC-MS analysis. FESEM-EDX, TEM, XRD, and DLS methods were applied to characterize MCC and NCC properties. Morphological findings revealed that the stem length, dry, and fresh weights were improved significantly (P ≤ 0.05) under several MCC and NCC concentrations. Some treatments enhanced gallic and p-coumaric acid levels in the plant. Although 1.5 g/L of MCC treatment showed the highest antioxidant activity, all NCC treatments reduced the antioxidant effect. The findings suggest that both MCC and NCC, at optimized concentrations, could be exploited as elicitors to improve the secondary metabolite production and morphological properties.
Collapse
Affiliation(s)
- Faezeh Khosravi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Mohammadi
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Yadav A, Singh S, Yadav V. Screening herbal extracts as biostimulant to increase germination, plant growth and secondary metabolite production in wheatgrass. Sci Rep 2024; 14:607. [PMID: 38182633 PMCID: PMC10770375 DOI: 10.1038/s41598-023-50513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
Recently it has been recognized that herbal plants contain endogenous molecules with biostimulant properties, capable of inducing morphological and biochemical changes in crop plants. Therefore, the present experiment was conducted to screen herbal samples for their plant growth promoting properties. Twenty-five herbal extracts were tested for their biostimulating activity on wheat crop (Triticum aestivum) through seed priming. Morphological parameters chosen for evaluation include: percent seed germination, length and weight of seedling, wheat grass length and biomass. Biochemical parameters include: total phenolic and flavonoid, enzymatic activity of catalase and phenylalanine ammonium lyase and antioxidant activity. Results indicated an increase in the tested parameters by the extracts, however the biostimulant property varied between the selected herbal samples. Some of the samples, such as Phyllanthus emblica, Plumbago zeylanica, Catharanthus roseus and Baccopa monnieri, were highly effective in inducing plant growth promoting parameters. Principal component analysis was performed and herbal samples were grouped into categories based on their activity.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shachi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, UP, 221005, India.
| | - Vidushi Yadav
- Bioinformatics, MMV, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
5
|
Zheng H, Deng W, Yu L, Shi Y, Deng Y, Wang D, Zhong Y. Chitosan coatings with different degrees of deacetylation regulate the postharvest quality of sweet cherry through internal metabolism. Int J Biol Macromol 2024; 254:127419. [PMID: 37848115 DOI: 10.1016/j.ijbiomac.2023.127419] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of β-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanqing Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yu
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuchen Shi
- Shanghai SOLON Information Technology Co., Ltd., 479 Chundong Road, Shanghai, 201108, China
| | - Yun Deng
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Danfeng Wang
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Zhong
- Department of Food Science & Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Mazumdar P, Jalaluddin NSM, Nair I, Tian Tian T, Rejab NAB, Harikrishna JA. A review of Hydrocotyle bonariensis, a promising functional food and source of health-related phytochemicals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2503-2516. [PMID: 37599849 PMCID: PMC10439074 DOI: 10.1007/s13197-022-05516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 08/22/2023]
Abstract
Hydrocotyle bonariensis is an edible herb, that is also used for traditional medical purposes. It is high in antioxidants, phenols, and flavonoids. However, there is limited information on the nutritional composition and the mechanisms by which nutritional and functional constituents of H. bonariensis affect human metabolism. With an aim to identify gaps in evidence to support the mainstream use of H. bonariensis for health and as a functional food, this review summarises current knowledge of the taxonomy, habitat characteristics, nutritional value and health-related benefits of H. bonariensis and its extracts. Ethno-medical practices for the plant are supported by pharmacological studies, yet animal model studies, clinical trials and food safety assessments are needed to support the promotion of H. bonariensis and its derivatives as superfoods and for use in the modern pharmaceutical industry.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Indiran Nair
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Tian Tian
- Green World Genetics Sdn. Bhd, 52200 Kuala Lumpur, Malaysia
| | - Nur Ardiyana Binti Rejab
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Zacometti C, Tata A, Stella R, Leone S, Pallante I, Merenda M, Catania S, Pozzato N, Piro R. DART-HRMS allows the detection of toxic alkaloids in animal autopsy specimens and guides the selection of confirmatory methods in accidental plant poisoning. Anal Chim Acta 2023; 1264:341309. [PMID: 37230724 DOI: 10.1016/j.aca.2023.341309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND In cases of suspected animal poisonings or intoxications, there is the need for high-throughput, rapid and accurate analytical tools capable of giving rapid answers and, thus, speeding up the early stages of investigations. Conventional analyses are very precise, but do not meet the need for rapid answers capable of orienting the decisions and the choice of appropriate countermeasures. In this context, the use of ambient mass spectrometry (AMS) screening methods in toxicology laboratories could satisfy the requests of forensic toxicology veterinarians in a timely manner. RESULTS As a proof of principle, direct analysis in real time high resolution mass spectrometry (DART-HRMS) was applied to a veterinary forensic case in which 12 of a group of 27 sheep and goats died with an acute neurological onset. Because of evidence in the rumen contents, the veterinarians hypothesized an accidental intoxication after ingestion of vegetable materials. The DART-HRMS results showed abundant signals of the alkaloids calycanthine, folicanthidine and calycanthidine, both in the rumen content and at the liver level. The DART-HRMS phytochemical fingerprinting of detached Chimonanthus praecox seeds was also compared with those acquired from the autopsy specimens. Liver, rumen content and seed extracts were then subjected to LC-HRMS/MS analysis to gather additional insights and confirm the putative assignment of calycanthine anticipated by DART-HRMS. HPLC-HRMS/MS confirmed the presence of calycanthine in both rumen contents and liver specimens and allowed its quantification, ranging from 21.3 to 46.9 mg kg-1 in the latter. This is the first report detailing the quantification of calycanthine in liver after a deadly intoxication event. SIGNIFICANCE AND NOVELTY Our study illustrates the potential of DART-HRMS to offer a rapid and complementary alternative to guide the selection of confirmatory chromatography-MSn strategies in the analysis of autopsy specimens from animals with suspected alkaloid intoxication. This method offers the consequent saving of time and resources over those needed for other methods.
Collapse
Affiliation(s)
- Carmela Zacometti
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy.
| | - Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Stefania Leone
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy; Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Ivana Pallante
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Marianna Merenda
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy
| | - Salvatore Catania
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy
| | - Nicola Pozzato
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| |
Collapse
|
8
|
Yadav A, Singh S. Effect of exogenous phytohormone treatment on antioxidant activity, enzyme activity and phenolic content in wheat sprouts and identification of metabolites of control and treated samples by UHPLC-MS analysis. Food Res Int 2023; 169:112811. [PMID: 37254387 DOI: 10.1016/j.foodres.2023.112811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Phytohormones, Indole acetic acid, Salicylic acid and Gibberellic acid, either alone or in combination was applied on wheat sprouts to improve its nutritional status. The experiment included estimation of total phenolic, flavonoids, peroxidase activity and phenylalanine ammonium lyase activity. Antioxidant activity was determined by DPPH and FRAP assay. The results showed an increase in phenolic compounds, enzyme activity and antioxidant activity after treatment with the phytohormones. Phytohormone combinations were found to be more effective as compared to pure treatments. UHPLC-ESI-MS analysis was used to identify compounds in the control and treated samples. Phenolic acids, polyphenols, simple sugars, amino acids, dipeptides, lipids and fatty acids were detected. A multifold increase in the levels of phenolic compounds was observed in the phytohormone treated wheat sprouts.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shachi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
9
|
García-García AL, Matos AR, Feijão E, Cruz de Carvalho R, Boto A, Marques da Silva J, Jiménez-Arias D. The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1200898. [PMID: 37332721 PMCID: PMC10272596 DOI: 10.3389/fpls.2023.1200898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply. Furthermore, the cultivation of A. annua is being threatened by climate change. Specifically, drought stress is a major concern for plant development and productivity, but, on the other hand, moderate stress levels can elicit the production of secondary metabolites, with a putative synergistic interaction with elicitors such as chitosan oligosaccharides (COS). Therefore, the development of strategies to increase yield has prompted much interest. With this aim, the effects on artemisinin production under drought stress and treatment with COS, as well as physiological changes in A. annua plants are presented in this study. Methods Plants were separated into two groups, well-watered (WW) and drought-stressed (DS) plants, and in each group, four concentrations of COS were applied (0, 50,100 and 200 mg•L-1). Afterwards, water stress was imposed by withholding irrigation for 9 days. Results Therefore, when A. annua was well watered, COS did not improve plant growth, and the upregulation of antioxidant enzymes hindered the production of artemisinin. On the other hand, during drought stress, COS treatment did not alleviate the decline in growth at any concentration tested. However, higher doses improved the water status since leaf water potential (YL) improved by 50.64% and relative water content (RWC) by 33.84% compared to DS plants without COS treatment. Moreover, the combination of COS and drought stress caused damage to the plant's antioxidant enzyme defence, particularly APX and GR, and reduced the amount of phenols and flavonoids. This resulted in increased ROS production and enhanced artemisinin content by 34.40% in DS plants treated with 200 mg•L-1 COS, compared to control plants. Conclusion These findings underscore the critical role of ROS in artemisinin biosynthesis and suggest that COS treatment may boost artemisinin yield in crop production, even under drought conditions.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Jorge Marques da Silva
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - David Jiménez-Arias
- ISOPlexis—Center for Sustainable Agriculture and Food Technology, Madeira University, Funchal, Portugal
| |
Collapse
|
10
|
Anjum N, Hossain MS, Rahman MA, Rafi MKJ, Al Noman A, Afroze M, Saha S, Alelwani W, Tangpong J. Deciphering antidiarrheal effects of Meda pata (Litsea glutinosa (Lour.) C.B.Rob.) leaf extract in chemical-induced models of albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116189. [PMID: 36791925 DOI: 10.1016/j.jep.2023.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diarrhea is one of the leading causes of preventable death in developing countries, mainly caused by bacterial infections and traditional therapies are very common in diarrheal incidences. Meda Pata (Litsea glutionsa) has a long history of use as traditional medicine for diarrhea, dysentery, and spasm in Bangladesh, India, and some other Asian countries. AIM OF THE STUDY This research reports the antidiarrheal effects of Meda Pata (Litsea glutinosa leaf extract, LGLEx) in animal models. The work has been supported by in silico molecular docking study to verify the effects. MATERIALS AND METHODS The antidiarrheal effect of LGLEx was investigated in castor oil-induced diarrhea, magnesium sulfate-induced diarrhea, and gastrointestinal motility test models. Antidiarrheal effects were supported by a molecular docking study through an interaction between LGLEx's GC-MS analyzed imidazole-containing compounds and muscarinic acetylcholine receptor (PDB: 4U14) and 5-HT3 receptor (PDB: 5AIN). RESULTS LGLEx potentially reduced the diarrheal incidences in in vivo assays reducing gastrointestinal motility. The maximum diarrheal inhibition was obtained in the castor oil-induced model (62.63%) and and BaSO4-induced model (73.14%), which were statistically significant (P < 0.05) when compared to the reference drug loperamide. In the castor-oil and BaSO4-induced models, peristaltic movement was reduced by 25.96% and 32.17%, respectively. Biochemical markers particularly IgE, C-reactive proteins, and serum electrolytes were significantly (P < 0.0) restored in treated groups. A Molecular docking analysis revealed that two compounds (1-Ethyl-2-hydroxymethylimidazole and 1,6-Anhydro-beta-D-glucofuranose demonstrated the highest binding affinity with target receptors muscarinic acetylcholine receptor (PDB: 4U14) and 5-HT3 receptor (PDB: 5AIN) confirming their drug likeliness. The findings indicate a high potential antidiarrheal impact that warrants further investigation for its therapeutic application.
Collapse
Affiliation(s)
- Nazifa Anjum
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Md Saddam Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| | - Md Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Abdullah Al Noman
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh.
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dr. Kudrat-i-Khuda Road, Dhanmondi, Dhaka, Bangladesh.
| | - Srabonti Saha
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh.
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
11
|
Lyalina T, Shagdarova B, Zhuikova Y, Il’ina A, Lunkov A, Varlamov V. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce ( Lactuca sativa) Growth Parameters. Molecules 2023; 28:1915. [PMID: 36838903 PMCID: PMC9959803 DOI: 10.3390/molecules28041915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Seed priming increases germination, yield, and resistance to abiotic factors and phytopathogens. Chitosan is considered an ecofriendly growth stimulant and crop protection agent. Chitosan hydrolysate (CH) is an unfractionated product of hydrolysis of high-molecular-weight crab shell chitosan with a molecular weight of 1040 kDa and a degree of deacetylation of 85% with nitric acid. The average molecular weight of the main fraction in CH was 39 kDa. Lettuce seeds were soaked in 0.01-1 mg/mL CH for 6 h before sowing. The effects of CH on seed germination, plant morphology, and biochemical indicators at different growth stages were evaluated. Under the 0.1 mg/mL CH treatment, earlier seed germination was detected compared to the control. Increased root branching was observed, along with 100% and 67% increases in fresh weight (FW) at the 24th and 38th days after sowing (DAS), respectively. An increase in the shoot FW was found in CH-treated plants (33% and 4% at the 24th and 38th DAS, respectively). Significant increases in chlorophyll and carotenoid content compared to the control were observed at the 10th DAS. There were no significant differences in the activity of phenylalanine ammonia-lyase, polyphenol oxidase, β-1,3-glucanase, and chitinase at the 24th and 38th DAS. Seed priming with CH could increase the yield and uniformity of plants within the group. This effect is important for commercial vegetable production.
Collapse
Affiliation(s)
- Tatiana Lyalina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | | | | | | | | | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| |
Collapse
|
12
|
Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics (Basel) 2023; 12:338. [PMID: 36830248 PMCID: PMC9951924 DOI: 10.3390/antibiotics12020338] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | | | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| |
Collapse
|
13
|
Singh S, Kumar M, Dwivedi S, Yadav A, Sharma S. Distribution profile of iridoid glycosides and phenolic compounds in two Barleria species and their correlation with antioxidant and antibacterial activity. FRONTIERS IN PLANT SCIENCE 2023; 13:1076871. [PMID: 36699860 PMCID: PMC9868927 DOI: 10.3389/fpls.2022.1076871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Barleria prionitis is known for its medicinal properties from ancient times. Bioactive iridoid glycosides and phenolic compounds have been isolated from leaves of this plant. However, other parts of a medicinal plants are also important, especially roots. Therefore, it is important to screen all organs for complete chemical characterization. METHOD All parts of B. prionitis, including leaf, root, stem and inflorescence in search of bioactive compounds, with a rapid and effective metabolomic method. X500R QTOF system with information dependent acquisition (IDA) method was used to collect high resolution accurate mass data (HRMS) on both the parent (MS signal) and their fragment ions (MS/MS signal). ESI spectra was obtained in positive ion mode from all parts of the plant. A comparative analysis of antioxidant and antibacterial activity was done and their correlation study with the identified compounds was demonstrated. Principal component analysis was performed. RESULT Iridoid glycosides and phenolic compounds were identified from all parts of the showing variability in presence and abundance. Many of the compounds are reported first time in B. prionitis. Antioxidant and antibacterial activity was revealed in all organs, root being the most effective one. Some of the iridoid glycoside and phenolic compounds found to be positively correlated with the tested biological activity. Principal component analysis of the chemical profiles showed variability in distribution of the compounds. CONCLUSION All parts of B. prionitis are rich source of bioactive iridoid glycosides and phenolic compounds.
Collapse
Affiliation(s)
- Shachi Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Mukesh Kumar
- Department of Statistics, MMV, Banaras Hindu University, Varanasi, India
| | - Seema Dwivedi
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Anjali Yadav
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Sarika Sharma
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Chen Z, Zhang L, Peng M, Zhu S, Wang G. Preharvest application of selenite enhances the quality of Chinese flowering cabbage during storage via regulating the ascorbate-glutathione cycle and phenylpropanoid metabolisms. Food Res Int 2023; 163:112229. [PMID: 36596157 DOI: 10.1016/j.foodres.2022.112229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is a candidate of selenium (Se) accumulator, but it is not clear whether and how preharvest Se treatment affects its quality after harvest. Here, we showed that preharvest application of 100 μmol/L selenite to roots enhanced storage quality of Chinese flowering cabbage. It increased antioxidant capacity and reduced weight loss, leaf yellowing, and protein degradation after harvest. Furthermore, it increased the activities of antioxidant enzymes such as POD, CAT, GSH-Px, and GR, as well as contents of AsA, GSH, phenolics, and flavonoids during storage. Metabolome analysis revealed that phenolic acids including p-Coumaric acid, caffeic acid, and ferulic acid; flavonoids such as naringenin, eriodictyol, apigenin, quercetin, kaempferol, and their derivatives were notably increased by preharvest selenite treatment. Consistently, the total antioxidant capacity, evaluated by DPPH, ABTS, and FRAP methods, were all markedly enhanced in selenite-treated cabbage compared to the control. Transcriptomics analysis showed that the DEGs induced by selenite were significantly enriched in AsA-GSH metabolisms and phenylpropanoids biosynthesis pathways. Moreover, preharvest selenite treatment significantly up-regulated the expressions of BrGST, BrGSH-Px, BrAPX, BrASO, BrC4H, BrCOMT, BrCHS, and BrFLS during storage. These results suggest that preharvest selenite treatment enhanced quality of cabbage not only by increasing Se biological accumulation, but also through regulating AsA-GSH cycle and increasing phenolics and flavonoids synthesis after harvest. This study provides a novel insight into the effects of preharvest Se treatment on quality of Chinese flowering cabbage during storage.
Collapse
Affiliation(s)
- Zhuosheng Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Lee CW, Su H, Shiea J. Potential applications and challenges of novel ambient ionization mass spectrometric techniques in the emergency care for acute poisoning. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Su H, Huang MZ, Shiea J, Lee CW. Thermal desorption ambient ionization mass spectrometry for emergency toxicology. MASS SPECTROMETRY REVIEWS 2022:e21784. [PMID: 35603997 DOI: 10.1002/mas.21784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
In the emergency department, it is important to rapidly identify the toxic substances that have led to acute poisoning because different toxicants or toxins cause poisoning through different mechanisms, requiring disparate therapeutic strategies and precautions against contraindicating actions, and diverse directions of clinical course monitoring and prediction of prognosis. Ambient ionization mass spectrometry, a state-of-the-art technology, has been proved to be a fast, accurate, and user-friendly tool for rapidly identifying toxicants like residual pesticides on fruits and vegetables. In view of this, developing an analytical platform that explores the application of such a cutting-edge technology in a novel direction has been initiated a research program, namely, the rapid identification of toxic substances which might have caused acute poisoning in patients who visit the emergency department and requires an accurate diagnosis for correct clinical decision-making to bring about corresponding data-guided management. This review includes (i) a narrative account of the breakthrough in emergency toxicology brought about by the advent of ambient ionization mass spectrometry and (ii) a thorough discussion about the clinical implications and technical limitations of such a promising innovation for promoting toxicological tests from tier two-level to tier one level.
Collapse
Affiliation(s)
- Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Min-Zong Huang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Improvement of Phytopharmaceutical and Alkaloid Production in Periwinkle Plants by Endophyte and Abiotic Elicitors. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Periwinkle plant represents a major source of immensely vital terpenoid indole alkaloids and natural antioxidants which are widely used in cancer chemotherapy. A pot experiment was done to evaluate the role of two periwinkle endophytes (Streptomyces sp. and Bacillus sp.) with or without abiotic elicitors (aluminum chloride, tryptophan, and chitosan) on plant biomass, physio-biochemical attributes, phytopharmaceutical constituents, and alkaloid production. Inoculation with endophyte microbes significantly increased plant growth, nitrogen, phosphorus, potassium, carotenoids, ascorbic acid, and alkaloid yield. It also decreased oxidative biomarkers (hydrogen peroxide and malondialdehyde) and had no significant effects on flavonoids and anthocyanin. In this regard, Streptomyces sp. was more effective than Bacillus sp. Foliar spraying with chitosan significantly increased plant growth, chlorophyll, ions, antioxidant capacity, phytopharmaceutical constituents (total soluble phenols, flavonoids, and anthocyanin), and alkaloid yield, associated with a decline in oxidative biomarkers. Conversely, aluminum chloride application generally increased oxidative biomarkers, which was associated with a decreasing effect on plant growth, chlorophyll, and ions. Application of either tryptophan or chitosan with endophyte microbes increased plant growth, chlorophyll, ions, antioxidants, and alkaloid; meanwhile, it decreased oxidative biomarkers. On the contrary, aluminum chloride with endophytes evoked oxidative damage that was associated with a reduction in plant growth, chlorophyll, ions, and phytopharmaceutical constituents. The current study provides a proof-of-concept of the use of the endophyte Streptomyces sp. with chitosan for enhancing periwinkle plant biomass, phytopharmaceuticals accumulation, and alkaloid production.
Collapse
|
18
|
Sisco E, Damaso N, Robinson EL, Robertson JM, Forbes TP. Rapid, presumptive identification of seed-based toxins using direct analysis in real time mass spectrometry (DART-MS) and its variants. Sci Justice 2022; 62:145-151. [DOI: 10.1016/j.scijus.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/07/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
|
19
|
Shahrajabian MH, Sun W. Sustainable Approaches to Boost Yield and Chemical Constituents of Aromatic and Medicinal Plants by Application of Biostimulants. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:72-92. [PMID: 36200191 DOI: 10.2174/2772574x13666221004151822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Biostimulants consist of natural ingredients, metabolites of fermentation, micro-organisms, algae or plant extracts, bacteria, mushrooms, humus substances, amino acids, biomolecules, etc. Methods: In this study, all relevant English-language articles were collected. The literature was reviewed using the keywords of biostimulant, medicinal plant, aromatic plant, natural products, and pharmaceutical benefits from Google Scholar, Scopus, and PubMed databases. RESULTS The significant and promoting impact of biostimulants has been reported for different medicinal and aromatic plants, such as salicylic acid for ajuga, artichoke, ajwain, basil, common rue, common sage, common thyme, coneflower, coriander, dendrobium, desert Indian wheat, dragonhead, fennel, fenugreek, feverfew, ginger, groundnut, guava, henna, Iranian soda, lavender, lemon balm, lemongrass, Malabar spinach; seaweed extract on almond, bird,s eye chili; amino acids on artemisia, broccoli, chamomile, beneficial bacteria on ashwagandha; humic acid on black cumin, cannabis, chicory, garlic, gerbera, Hungarian vetch, Moldavian dragonhead, niger plant; chitosan on dragon fruit, marigold, milk thistle, etc. The suggested mechanisms include the stimulatory impacts on the activity of enzymes involved in different biosynthetic processes, the hormone-like activity of biostimulant compounds and the improvement of nutrient uptake of plants. CONCLUSION The current manuscript gives many examples of the potential of biostimulants for medicinal and aromatic plant production. However, further studies are needed to better understand the effectiveness of different biostimulants and foliar applications in sustainable agriculture.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Qiu H, Su L, Wang H, Zhang Z. Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity, nitric oxide production and differential gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:115-127. [PMID: 34098155 DOI: 10.1016/j.plaphy.2021.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Elicitation is one of the most effective strategies for enhancing plant bioactive compounds, such as triterpenoid saponins. Chitosan gained worldwide attention for biostimulant activity, but little is known about its roles in the elicitation of triterpenoid saponin in medicinal plants. Here, we explored the regulatory network of chitosan on saponin accumulation in hairy root cultures of Psammosilene tunicoides, a valuable medicinal herb known for its pain-relieving properties endemic to China. Compared with control, the highest total saponin accumulation exhibited a 4.55-fold enhancement in hairy roots elicited by 200 mg L-1 chitosan for nine days. High-performance liquid chromatography (HPLC) revealed the yields of quillaic acid, gypsogenin and gypsogenin-3-O-β-D-glucuronopyranoside were significantly increased after chitosan treatments. Moreover, exogenous chitosan application dramatically triggered the reactive oxygen species (ROS) scavenging enzyme activities and nitric oxide (NO) content in hairy roots. Comparative transcriptome analysis from chitosan-treated (1 and 9 d) or control groups revealed that differentially expressed genes (DEGs) were greatly enriched in plant-pathogen interaction and metabolic processes. The transcriptions of candidate DEGs involved in chitosan-elicited saponin metabolism were increased, especially genes encoding antioxidant enzymes (SOD, POD and GR), stress-responsive transcription factors (WRKYs and NACs) and terpenoid biosynthetic enzymes (DXS, GPPS and SE). Taken together, these results indicate that chitosan elicitor promotes triterpenoid saponin biosynthesis by enhancing antioxidant activities, NO production and differential gene expression in P. tunicoides hairy roots.
Collapse
Affiliation(s)
- Hanhan Qiu
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China; Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Lingye Su
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Hongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| | - Zongshen Zhang
- School of Biology Engineering, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
21
|
Kahromi S, Khara J. Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3898-3907. [PMID: 33348431 DOI: 10.1002/jsfa.11030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND A wide variety of secondary metabolites are synthesized from primary metabolites by plants which have a vast range in pharmaceutical, food additive and industrial applications. In recent years, the use of elicitors has opened a novel approach for the production of secondary metabolite compounds. Dracocephalum kotschyi is a valuable herb due to pharmaceutical compounds like rosmarinic acid, quercetin and apigenin. In the current study, foliar application of chitosan (0, 100, 400 mg L-1 ) as an elicitor was used. RESULTS After chitosan treatment, the amounts of hydrogen peroxide (H2 O2 ) increased and the plant was able to increase the activities of enzymatic (guaiacol peroxidase, catalase and phenylalanine ammonium lyase) and non-enzymatic (total phenols and flavonoids) defensive metabolites. Also, foliar spray of chitosan promoted nutrient absorption which led to the accumulation of macroelements in the plant. CONCLUSIONS Chitosan was found to be a very effective elicitor for improving rosmarinic acid and quercetin content (up to 13-fold). Also, the content of apigenin (anticancer flavonoid) showed 16-fold enhancement compared to the control. Therefore, the treatment of D. kotschyi leaves with chitosan caused a very large increase in the induction and production of important pharmaceutical compounds such as rosmarinic acid and quercetin. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samaneh Kahromi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Jalil Khara
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13126869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biostimulants are a novel and eco-friendly agronomic tool with practical applications in alleviating negative effects of environmental stressors. The present work studied the effects of three biostimulant products (Nomoren (N), Twin-Antistress (TW), and X-Stress (XS)) under normal irrigation (W+) and water deficit irrigation conditions (W−) on the nutritional, chemical composition and bioactive properties of common bean fresh pods. A variable effect of biostimulants and water deficit irrigation was observed on nutritional value parameters, while fructose and sucrose were the main detected sugars, especially in NW+ and CW− treatments. Oxalic, malic, and citric acid were the main detected organic acids, while γ- and total tocopherol content was the highest in TWW+. (+)-Catechin and (−)-epicatechin were the most abundant phenolic compounds, especially in the NW− treatment. A variable antioxidant capacity was observed for the Thiobarbituric Acid Reactive Substances (TBARS) and Oxidative Haemolysis assays (OxHLIA), while TWW+ extracts showed the best overall results against the tested fungi. In conclusion, the tested biostimulants had a positive effect on chemical composition and bioactivities of purple bean depending on the irrigation regime.
Collapse
|
23
|
Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021; 11:biom11050698. [PMID: 34067181 PMCID: PMC8150747 DOI: 10.3390/biom11050698] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biostimulants, are a diverse class of compounds including substances or microorganism which have positive impacts on plant growth, yield and chemical composition as well as boosting effects to biotic and abiotic stress tolerance. The major plant biostimulants are hydrolysates of plant or animal protein and other compounds that contain nitrogen, humic substances, extracts of seaweeds, biopolymers, compounds of microbial origin, phosphite, and silicon, among others. The mechanisms involved in the protective effects of biostimulants are varied depending on the compound and/or crop and mostly related with improved physiological processes and plant morphology aspects such as the enhanced root formation and elongation, increased nutrient uptake, improvement in seed germination rates and better crop establishment, increased cation exchange, decreased leaching, detoxification of heavy metals, mechanisms involved in stomatal conductance and plant transpiration or the stimulation of plant immune systems against stressors. The aim of this review was to provide an overview of the application of plant biostimulants on different crops within the framework of sustainable crop management, aiming to gather critical information regarding their positive effects on plant growth and yield, as well as on the quality of the final product. Moreover, the main limitations of such practice as well as the future prospects of biostimulants research will be presented.
Collapse
|
24
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
25
|
Akuodor GC, Essiet GA, Ekenjoku JA, Udoh FV, Ogiji ED, Ibiam GA, Nnorom FO. Antidiarrhoael and antimicrobial effects of ethanol root bark extract from Salacia lehmbachii. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The roots of Salacia lehmbachii are used in Nigerian folklore medicine without scientific basis. The present study was aimed to investigate the antidiarrheal and antimicrobial activities of the ethanol extract of S. lehmbachii root bark. Methods: The antidiarrheal activity was examined using castor oil induced diarrhoea method. The ethanol root bark extract effects on intestinal transit time and enteropooling were also evaluated in rats, while antimicrobial activity was conducted on selected microorganisms. The acute toxicity test and phytochemical screening of the extract were also carried out. Results: The extract produced significant (P < 0.05) dose dependent protection on rats against castor oil induced diarrhoea. The extract inhibited intestinal transit time and caused significant dose related inhibition of castor oil induced enteropooling in rats, comparable to the standard drug, atropine (P < 0.05). The root bark extract significantly and dose dependently delayed the onset of castor oil induced diarrhoea, reduced the frequency of defecation and decreased the severity of diarrhoea in rats. S. lehmbachii ethanol root bark extract significantly and dose dependently decreased the volume of intestinal fluid accumulation in the castor oil induced enteropooling. The extract also significantly inhibited the growth of test organisms. The acute toxicity test produced no lethality in rats, whereas the phytochemical analysis revealed the presence of alkaloids, saponins, tannins, flavonoids, terpenoids, steroids, cardiac glycosides, resins and balsam. Conclusion: The results of this study confirm the ethnomedicinal use of S. lehmbachii root bark as a valuable natural agent for the treatment of diarrhoea and microbial infections.
Collapse
Affiliation(s)
- Godwin Christian Akuodor
- Department of Pharmacology and Therapeutics, Faculty of Medicine, College Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| | - Grace Akanimo Essiet
- Department of Pharmacology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | | | - Francis Vincent Udoh
- Department of Pharmacology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Emeka Donald Ogiji
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Gideon Ama Ibiam
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Nigeria
| | | |
Collapse
|
26
|
Liang J, Sun J, Chen P, Frazier J, Benefield V, Zhang M. Chemical analysis and classification of black pepper (Piper nigrum L.) based on their country of origin using mass spectrometric methods and chemometrics. Food Res Int 2020; 140:109877. [PMID: 33648195 DOI: 10.1016/j.foodres.2020.109877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/13/2023]
Abstract
The current study applied gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and thermal desorption direct analysis in real-time mass spectrometry (TD-DART-MS) methods to the analysis of black pepper (Piper nigrum L.) samples from different countries. The black pepper powder samples were analyzed directly by TD-DART-MS without any extraction, but for GC-MS and LC-MS methods, a methanol extraction procedure was employed before the analysis. Various compounds, such as piperamides and terpenes, were detected. Partial least squares-discriminant analysis (PLS-DA) was used to classify black pepper samples based on their origins. Total ion mass spectrum (TMS) data profiles from GC-MS, LC-MS, and TD-DART-MS methods were constructed and evaluated for the performance of classification. A cubic-root data transformation was tested in the data preprocessing and found to be effective for improving the classification rates. The average classification rates of PLS-DA models with GC-MS-cubic-root-TMS, LC-MS-cubic-root-TMS, and DART-MS-cubic-root-TMS data representations were 94.1 ± 0.6%, 87.7 ± 0.6%, and 97.0 ± 0.3% respectively, for 100-time bootstrapped-Latin-partition cross-validation. This study presents for the first time the analysis of plant-based food materials by using TD-DART-MS, and it has been demonstrated as a simple and high-throughput method for classification studies.
Collapse
Affiliation(s)
- Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705-2350, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705-2350, USA
| | - Jared Frazier
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Virginia Benefield
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
27
|
Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. CHINESE HERBAL MEDICINES 2020; 12:257-264. [PMID: 36119014 PMCID: PMC9476754 DOI: 10.1016/j.chmed.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.
Collapse
|
28
|
Gerami M, Majidian P, Ghorbanpour A, Alipour Z. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:965-974. [PMID: 32377046 PMCID: PMC7196603 DOI: 10.1007/s12298-020-00788-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/18/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
This study examined the effect of chitosan elicitor with four different concentrations (0, 0.2, 0.4 and 0.6 g/l) on physiological and biochemical properties of stevia under four levels of salinity stress (0, 50, 100, 150 mM level of NaCl). Salt stress caused reduction of chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll, carotenoid and total protein content. The increment of malondialdehyde (MDA) content was not significant in all NaCl levels, while the CAT and POX activities were increased as well as stevioside and rebaudioside A under salinity stress. On one side, chitosan treatments could compensate the reduction of physiological traits such as photosynthetic pigments and protein content. On the other side, chitosan caused multiple increases in malondialdehyde content, antioxidant enzymes activity (catalase and peroxidase), steviol glycosides (stevioside and rebaudioside A) under salt stress. We report for the first time, the potential of chitosan to enhance salinity-tolerant abilities in stevia through increment of the salt-adaptive factors and to diminish harmful damages caused by NaCl stress.
Collapse
Affiliation(s)
- Mahyar Gerami
- Department of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Parastoo Majidian
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran
| | | | - Zeinab Alipour
- Department of Biology, Sana Institute of Higher Education, Sari, Iran
| |
Collapse
|
29
|
Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, Capita R, Alonso-Calleja C, Pereira JE, Amaral JS, Igrejas G, Poeta P. Comparative Insight upon Chitosan Solution and Chitosan Nanoparticles Application on the Phenolic Content, Antioxidant and Antimicrobial Activities of Individual Grape Components of Sousão Variety. Antioxidants (Basel) 2020; 9:antiox9020178. [PMID: 32098120 PMCID: PMC7070837 DOI: 10.3390/antiox9020178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022] Open
Abstract
Chitosan, a natural polysaccharide, has been previously proposed as an elicitor in plants to prevent pathogen infections. The present study aimed to analyze the effect of chitosan solution and chitosan nanoparticles treatment applied on the grapevine variety Sousão with respect to the phenolic composition, antioxidant potential and antibacterial activity of its individual grape components. Grapevine plants of selected lines were sprayed with chitosan solution and chitosan nanoparticles, and ethanolic extracts of stems, seeds and skins were prepared from grapevines treated and not treated with chitosan. Total phenolic, anthocyanin and tannin contents were studied, and the identification of the individual phenolic compounds was performed by HPLC-DAD. The antimicrobial susceptibility method was performed using the Kirby-Bauer disc diffusion method against multidrug-resistant bacteria. Overall, there was small increase in the concentration of phenolic compounds, antioxidant and antimicrobial activities in grape components treated with chitosan solution. Seed extracts showed the highest antioxidant and antimicrobial activities. The studied individual components obtained from chitosan-treated grapevines could represent an added value due to the increased antioxidant and antibacterial potentials. The phenolic compounds found in components may be used in food and pharmaceutical industries as natural food preservers and antibiotic adjuvants.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (A.S.); (J.E.P.)
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (N.G.); (G.I.)
- Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratório Associado for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2829-516 Caparica, Portugal
| | - Rupesh Kumar Singh
- Centro de Química-Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.K.S.); (V.F.)
| | - Nelson Gomes
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (N.G.); (G.I.)
| | - Bruno Gonçalves Soares
- CoLAB Vines&Wines—National Collaborative Laboratory for the Portuguese Wine Sector, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), 5000-801 Vila Real, Portugal;
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (A.S.); (J.E.P.)
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (N.G.); (G.I.)
- Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratório Associado for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2829-516 Caparica, Portugal
| | - Virgílio Falco
- Centro de Química-Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.K.S.); (V.F.)
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, Av. Facultad de Vetrinaria, 25, 24004 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, Av. Facultad de Vetrinaria, 25, 24004 León, Spain
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (A.S.); (J.E.P.)
- CECAV, 5000-801 Vila Real, Portugal
| | - Joana S. Amaral
- Centro de Investigação de Montanha (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- REQUIMTE-LAQV, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, Functional Genomics and Proteomics’ Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (N.G.); (G.I.)
- Functional Genomics and Proteomics Unit, University of Tras-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Laboratório Associado for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (A.S.); (J.E.P.)
- Laboratório Associado for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, Lisboa, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-259350466; Fax: +351-259350629
| |
Collapse
|
30
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
31
|
The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes ( Spinacia oleracea L.). Molecules 2019; 24:molecules24244494. [PMID: 31817970 PMCID: PMC6943419 DOI: 10.3390/molecules24244494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023] Open
Abstract
In the present study, the effect of biostimulants application on the nutritional quality and bioactive properties of spinach cultivated in protected environment under water stress conditions was evaluated. For this purpose, four commercially available biostimulant products (Megafol (MEG), Aminovert (AM), Veramin Ca (V), Twin Antistress (TA), and two spinach genotypes (Fuji F1 and Viroflay) were tested under two irrigation regimes (normal irrigation (W+), and water-holding (W–). Fat and carbohydrates content was favored by water stress when Megafol (MEGW+) and Veramin (VW+) were applied on Fuji plants, while calorific value was also increased by MEGW+ treatment. In contrast, protein and ash content increased when AMW– and TAW+ were applied on Viroflay plants. Raffinose and glucose were the most abundant sugars, followed by sucrose and fructose, with the highest contents recorded for Fuji plants when AMW+ (fructose, glucose and total carbohydrates), CW– (sucrose), and TAW– (raffinose) treatments were applied. Regarding organic acids, oxalic and malic acid which had the highest contents for the TAW– (Viroflay plants) and AMW– (Fuji plants) treatments, respectively. α- and γ-tocopherol were the only isoforms detected with MEGW– and VW– inducing the biosynthesis of α-tocopherol, while AMW+ increased γ-tocopherol content in Fuji plants. The main fatty acids were α-linolenic and linoleic acids which were detected in the highest amounts in AMW–, AMW+, and TAW+ the former and in AMW–, VW–, and CW+ the latter. Regarding phenolic compounds content, peak 12 (5,3′,4′-Trihydroxy-3-methoxy-6:7-methylenedioxyflavone-4′-glucuronide) was the most abundant compound, especially in Viroflay plants under normal irrigation and no biostimulants added (CW–). The antioxidant and cytotoxic activity of the tested samples did not show promising results when compared with the positive controls, while a variable antibacterial activity was recorded depending on the tested biostimulant, irrigation regime and genotype. In conclusion, a variable effect of the tested biostimulants and irrigation regimes was observed on bioactive properties and chemical composition of both spinach genotypes which highlights the need for further research in order to make profound conclusions regarding the positive effects of biostimulants under water stress conditions.
Collapse
|
32
|
Rahman SMM, Atikullah M, Islam MN, Mohaimenul M, Ahammad F, Islam MS, Saha B, Rahman MH. Anti-inflammatory, antinociceptive and antidiarrhoeal activities of methanol and ethyl acetate extract of Hemigraphis alternata leaves in mice. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0110-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
33
|
Rapid identification of herbal toxins using electrospray laser desorption ionization mass spectrometry for emergency care. J Food Drug Anal 2019; 27:415-427. [PMID: 30987713 PMCID: PMC9296212 DOI: 10.1016/j.jfda.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The unintentional ingestion of toxic compounds in herbs is not uncommon in many parts of the world. To provide timely and life-saving care in the emergency department, it is essential to develop a point-of-care analytical method that can rapidly identify these toxins in herbs. Since electrospray laser desorption ionization mass spectrometry (ELDI/MS) has been successfully used to characterize non-volatile chemical compounds without sample preparation, it was used to identify toxic herbal compounds in this study. The herbal toxins were collected either by sweeping a metallic probe across the surface of a freshly cut herb section or by directly sampling extracts of ground herbal powder. The analytes on the probe were then desorbed, ionized and detected using ELDI/MS, wherein analysis of the herbal toxins was completed within 30 s. This approach allows for the rapid morphological recognition of herbs and early point-of-care identification of herbal toxins for emergency management and is promising in providing important toxicological information to ensure appropriate medical treatment.
Collapse
|
34
|
Sun Y, Tao W, Huang H, Ye X, Sun P. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chem 2018; 279:321-327. [PMID: 30611497 DOI: 10.1016/j.foodchem.2018.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
With in-vitro digestion and human intestinal HepG2 cells, we analyzed the bioaccessibility and cell uptake of phytochemicals and determined the cellular antioxidant capacity (CAA) of fresh eating citrus fruits. The results showed that CAA of citrus fruits was higher in digesta than in extracts, and the CAA is strongly correlated with naringenin and beta-carotene uptake (p < 0.05). During in vitro digestion, vanillic acid and p-coumaric decreased, and ferulic acid increased in all citrus fruits significantly (p < 0.05); other phytochemicals varied among the fruits. During uptake, hydroxybenzoic acids, hesperidin, narirutin, naringenin and neohesperidin were detected in cells, Zeaxanthin, lutein, beta-cryptoxanthin and beta-carotene could be detected in the citrus varieties except for pummel, but hydroxycinnamic acids and hesperitin were not detected in cells. This work provides insights into the bioaccessibility and cell uptake of phytochemicals and cellular antioxidant activity of fresh eating citrus fruits.
Collapse
Affiliation(s)
- Yujing Sun
- Department of Food Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenyang Tao
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haizhi Huang
- Zhejiang Fangyuan Checking Group Co., Ltd., Hangzhzou 310018, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Peilong Sun
- Department of Food Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
35
|
Huang Z, Xu Y, Huang Y, Liu C, Jiang K, Wang L. Rapid determination of ginkgolic acids in Ginkgo biloba
kernels and leaves by direct analysis in real time-mass spectrometry. J Sep Sci 2017; 40:4857-4864. [DOI: 10.1002/jssc.201700626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 10/07/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongping Huang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | - Yueting Xu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
- Zhejiang Institute for Food and Drug Control; Hangzhou China
| | - Yilei Huang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| | | | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology; Hangzhou Normal University; Hangzhou China
| | - Lili Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou China
| |
Collapse
|
36
|
Batista Silva W, Cosme Silva GM, Santana DB, Salvador AR, Medeiros DB, Belghith I, da Silva NM, Cordeiro MHM, Misobutsi GP. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem 2017; 242:232-238. [PMID: 29037684 DOI: 10.1016/j.foodchem.2017.09.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023]
Abstract
Guava is a typically tropical fruit highly perishable with a short shelf-life due to intense metabolic activity after harvested. In attempt to minimize the problems related to the postharvest, we evaluated the physiochemical characteristics and antioxidant system in guava fruits under chitosan coating at concentrations of 1%, 2%, and 3% stored at 25°C during 96h. The chitosan suppressed the respiratory rate, fresh weight loss, firmness and skin color with delay in the degradation of chlorophyll. In the treatment with 2% and 3% of chitosan in the solid soluble content and ascorbic acid were reduced; retarded the loss of titratable acidity during 96h after treatment. These treatment induced significant decreases in the phenylalanine ammonia-lyase activity and significantly increases of peroxidase Activity. Our results suggest that chitosan effectively prolongs the quality attributes in guava fruits after harvesting due to increases in the antioxidant processes, delaying the ripening during room temperature of storage.
Collapse
Affiliation(s)
- Willian Batista Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.
| | | | - Diederson Bortolini Santana
- Departamento de Produção Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28035-200 Campos dos Goyatacazes, RJ, Brazil
| | - Acácio Rodrigues Salvador
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Ikram Belghith
- Laboratoire des Plantes Extremophiles, LPE, Centre de Biotechnologie de Borj-Cedria, CBBC, Hammam-Lif, Tunisia
| | - Natália Martins da Silva
- Departamento Ciências Agrárias, Universidade Estadual de Montes Claros, 39440-000 Janaúba MG, Brazil
| | | | - Gisele Polete Misobutsi
- Departamento Ciências Agrárias, Universidade Estadual de Montes Claros, 39440-000 Janaúba MG, Brazil
| |
Collapse
|
37
|
Chandra S, Chakraborty N, Panda K, Acharya K. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:298-307. [PMID: 28412634 DOI: 10.1016/j.plaphy.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 05/24/2023]
Abstract
Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease.
Collapse
Affiliation(s)
- Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Nilanjan Chakraborty
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Koustubh Panda
- Department of Biotechnology, Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
38
|
Zeb A, Nisar P. Effects of High Temperature Frying of Spinach Leaves in Sunflower Oil on Carotenoids, Chlorophylls, and Tocopherol Composition. Front Chem 2017; 5:19. [PMID: 28382299 PMCID: PMC5360722 DOI: 10.3389/fchem.2017.00019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
Spinach is one of the highly consumed vegetable, with significant nutritional, and beneficial properties. This study revealed for the first time, the effects of high temperature frying on the carotenoids, chlorophylls, and tocopherol contents of spinach leaves. Spinach leaves were thermally processed in the sunflower oil for 15, 30, 45, and 60 min at 250°C. Reversed phase HPLC-DAD results revealed a total of eight carotenoids, four chlorophylls and α-tocopherol in the spinach leaves. Lutein, neoxanthin, violaxanthin, and β-carotene-5,6-epoxide were the major carotenoids, while chlorophyll a and b' were present in higher amounts. Frying of spinach leaves increased significantly the amount of α-tocopherol, β-carotene-5,6-epoxide, luteoxanthin, lutein, and its Z-isomers and chlorophyll b' isomer. There was significant decrease in the amounts of neoxanthin, violaxanthin, chlorophyll b, b' and chlorophyll a with increase of frying time. The increase of frying time increased the total phenolic contents in spinach leaves and fried sunflower oil samples. Chemical characteristics such as peroxide values, free fatty acids, conjugated dienes, conjugated trienes, and radical scavenging activity were significantly affected by frying, while spinach leaves increased the stability of the frying oil. This study can be used to improve the quality of fried vegetable leaves or their products at high temperature frying in food industries for increasing consumer acceptability.
Collapse
Affiliation(s)
- Alam Zeb
- Biochemistry Laboratory, Department of Biotechnology, Faculty of Biological Sciences, University of MalakandChakdara, Pakistan
| | | |
Collapse
|
39
|
Wang J, Li J, Li J, Li J, Liu S, Gao W. LSP1, a responsive protein from Meyerozyma guilliermondii, elicits defence response and improves glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis Fisch adventitious roots. J Cell Physiol 2017; 232:3510-3519. [PMID: 28105652 DOI: 10.1002/jcp.25811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/14/2023]
Abstract
This research explored the effects of protein and polysaccharide in Meyerozyma guilliermondii on active compounds in Glycyrrhiza uralensis Fisch adventitious roots. In this study, a responsive protein LSP1 was purified from the Meyerozyma guilliermondii since the excellent induction. The contents of total flavonoids (3.46 mg · g-1 ), glycyrrhizic acid (0.41 mg · g-1 ), glycyrrhetinic acid (0.41 mg · g-1 ), and polysaccharide (94.49 mg · g-1 ) in adventitious root peaked at LSP1 group, which were 1.6, 3.4, 2.4, 2.0-fold that of control, respectively. Besides, the responsive protein LSP1 significantly activated the defense signaling, mitogen-activated protein kinases and extremely up-regulated the expression of defense-related genes and functional genes involved in glycyrrhizic acid biosynthesis.
Collapse
Affiliation(s)
- Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
40
|
Phytochemical Screening and Antinociceptive and Antidiarrheal Activities of Hydromethanol and Petroleum Benzene Extract of Microcos paniculata Barks. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3167085. [PMID: 27777944 PMCID: PMC5061988 DOI: 10.1155/2016/3167085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/05/2016] [Indexed: 01/22/2023]
Abstract
Introduction. Microcos paniculata is traditionally used for treating diarrhea, wounds, cold, fever, hepatitis, dyspepsia, and heat stroke. Objective. To investigate the qualitative phytochemical constituents of hydromethanol (HMPB) and petroleum benzene extract of Microcos paniculata barks (PBMPB) and to evaluate their antinociceptive and antidiarrheal activities. Methods. Phytochemical constituents and antinociceptive and antidiarrheal activities were determined and evaluated by different tests such as Molisch's, Fehling's, Mayer's, Wagner's, Dragendorff's, frothing, FeCl3, alkali, Pew's, and Salkowski's test, general test of glycosides, Baljet and NH4OH test, formalin-induced paw licking, acetic acid-induced writhing, tail immersion, and hot plate tests, and castor oil and MgSO4 induced diarrheal tests. Results. These extracts revealed the presence of saponins, flavonoids, and triterpenoids and significantly (⁎P < 0.05, versus control) reduced paw licking and abdominal writhing of mice. At 30 min after their administration, PBMPB revealed significant increase in latency (⁎P < 0.05, versus control) in tail immersion test. In hot plate test, HMPB and PBMPB 200 mg/kg showed significant increase in response latency (⁎P < 0.05, versus control) at 30 min after their administration. Moreover, both extracts significantly (⁎P < 0.05, versus control) inhibited percentage of diarrhea in antidiarrheal models. Conclusion. Study results indicate that M. paniculata may provide a source of plant compounds with antinociceptive and antidiarrheal activities.
Collapse
|
41
|
Malerba M, Cerana R. Chitosan Effects on Plant Systems. Int J Mol Sci 2016; 17:E996. [PMID: 27347928 PMCID: PMC4964372 DOI: 10.3390/ijms17070996] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Raffaella Cerana
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
42
|
Li J, Wang J, Li J, Li J, Liu S, Gao W. Protein elicitor isolated from Escherichia coli induced bioactive compound biosynthesis as well as gene expression in Glycyrrhiza uralensis Fisch adventitious roots. RSC Adv 2016. [DOI: 10.1039/c6ra16903a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study explored the ability of three rhizobacterial strains (Bacillus subtilis, Penicillium fellutanum and Escherichia coli) to trigger metabolism.
Collapse
Affiliation(s)
- Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin Key Laboratory of Industry Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science and Technology
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin Key Laboratory of Industry Microbiology
- Ministry of Education
- College of Biotechnology
- Tianjin University of Science and Technology
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|