1
|
Liu J, Huang X, Zhang X, Feng Y, Yuan Z, Gao S, Li Z, El-Mesery HS, Shi J, Zou X. Sensing technology empowering food safety: research progress of SERS-assisted multimodal biosensing toward food hazard factors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3083-3110. [PMID: 40197732 DOI: 10.1039/d5ay00292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Food is the main source of human energy and nutrition, but once it is contaminated with hazardous factors, such as biotoxins, pesticide residues, etc., it will seriously damage health. This paper reviews the research progress of biosensors based on surface-enhanced Raman scattering (SERS) in the detection of food hazard factors. First, the basic principle, substrate and assay mode of SERS technology, as well as related design and sensing strategy mechanisms, are introduced. Then, the design idea of multimodal biosensors combining SERS with microfluidic, fluorescence, colorimetric, electrochemical (EC), molecular imprinting and other technologies is expounded to improve the analysis accuracy and specificity. Then the application results of multimodal biosensors based on SERS sensing toward food hazard factors are discussed, and the necessity of its development is illustrated. Finally, the future development direction of this field is prospected, which provides a reference for promoting the research and application of multimodal biosensors based on SERS.
Collapse
Affiliation(s)
- Jiaqian Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yuerong Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhecong Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Shujie Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
2
|
Xiang X, Lu J, Tao M, Xu X, Wu Y, Sun Y, Zhang S, Niu H, Ding Y, Shang Y. High-throughput identification of meat ingredients in adulterated foods based on centrifugal integrated purification-CRISPR array. Food Chem 2024; 443:138507. [PMID: 38277932 DOI: 10.1016/j.foodchem.2024.138507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Rapid, accurate, and sensitive analytical methods for the detection of food fraud are now an urgent requirement in the global food industry to ensure food quality. In response to this demand, a centrifugal integrated purification-CRISPR array for meat adulteration (CIPAM) was established. In detail, CIPAM system combines microneedles for DNA extraction and RAA-CRISPR/Cas12a integrated into a centrifugal microfluidic chip for the detection of meat adulteration. The RAA-CRISPR/Cas12a reaction reagents were pre-embedded into the different reaction chambers on the microfluidic chip to achieve the streamline of operations, markedly simplifying the detection process. The whole reaction was completed within 30 min with a detection limit of 0.1 % (w/w) in pig, chicken, duck, and lamb products. Referring to the results of the standard method, CIPAM system achieved 100 % accuracy. The automatic multiplex detection process implemented in the developed CIPAM system met the needs of food regulatory authorities.
Collapse
Affiliation(s)
- Xinran Xiang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaran Lu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Mengying Tao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaowei Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yaoyao Wu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuqing Sun
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
| | - Huimin Niu
- Fujian Key Laboratory of Aptamers Technology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350001, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yuting Shang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Qin G, Zhang Z, Wu S, Liu H, Liu F, Jia Z. Non-destructive recognition of copy paper based on advanced spectral fusion and feature optimization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123144. [PMID: 37473633 DOI: 10.1016/j.saa.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
In order to provide more clues for ongoing investigations and case handling, as well as achieve fast, non-destructive, and accurate identification of copy paper found at crime scenes, this study aims to utilize advanced spectral fusion technology to characterize and identify the three-dimensional features of the "origin-manufacturer-brand" of copy paper. Confocal Raman Microscopic and Fourier transform infrared spectroscopy were employed to collect spectral data from 200 samples from four regions (Shandong, Henan, Shaanxi, Jiangsu). The effects of different preprocessing methods, such as Hilbert transformation and deconvolution, on the model's ability to distinguish were compared. Feature variables were extracted using principal component analysis, and Bayesian discriminant classification models were constructed based on single infrared spectroscopy, Raman spectroscopy, and three types of spectral fusion datasets. By comparing the classification accuracy of different models, the primary fusion based on the full spectrum dataset was selected as the optimal model for the three-dimensional feature classification of copy paper. The accuracy achieved for origin (96%), manufacturer (100%), and brand (100%) was satisfactory, and the classification results were highly accurate. This study provides valuable insights and serves as a reference for its application in forensic science research.
Collapse
Affiliation(s)
- Ge Qin
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhen Zhang
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Shihao Wu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Huaice Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Fubang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| |
Collapse
|
5
|
Song Y, Xie X, Liu Y, Zhu Z, Sun L. Nanoscale Study of DNA-Cu 2+ Interactions by Liquid-Cell Electron Microscopy. ACS OMEGA 2023; 8:26325-26331. [PMID: 37521608 PMCID: PMC10372934 DOI: 10.1021/acsomega.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Metal ions are indispensable constituent elements of the human body, among which Cu2+ plays an important role in various biochemical reactions in the human body and is an essential element for maintaining human health. Studying the interaction between Cu2+ and DNA can be helpful to further understand the mechanism of Cu2+ behavior in organisms. In this paper, we investigated the DNA-Cu2+ complex by transmission electron microscopy (TEM) and used in situ liquid-cell TEM to observe the dynamic processes of interactions between DNA and Cu2+. Results show that the binding of Cu2+ to DNA leads to the bending of the DNA strand and provides an anchor site for activating Cu2+ for the nucleation and growth of copper crystals. Bound by the DNA strand, the copper crystals are arranged along the curved strand, showing the same arrangement pattern as guanine on the DNA sequence. It is believed that the study will further elaborate the interaction mechanism by directly observing the DNA-Cu2+ complex at the nanometer scale and benefit the related biomedical research studies.
Collapse
Affiliation(s)
- Yujie Song
- SEU-FEI
Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education,
School of Electronic Engineering, Southeast
University, Nanjing 210096, China
| | - Xiao Xie
- SEU-FEI
Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education,
School of Electronic Engineering, Southeast
University, Nanjing 210096, China
- School
of Integrated Circuits, Southeast University, Nanjing 210096, China
| | - Yang Liu
- SEU-FEI
Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education,
School of Electronic Engineering, Southeast
University, Nanjing 210096, China
| | - Zhen Zhu
- SEU-FEI
Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education,
School of Electronic Engineering, Southeast
University, Nanjing 210096, China
- School
of Integrated Circuits, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI
Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education,
School of Electronic Engineering, Southeast
University, Nanjing 210096, China
- School
of Integrated Circuits, Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Ding R, Yu L, Wang C, Zhong S, Gu R. Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review. Crit Rev Anal Chem 2023; 54:2618-2635. [PMID: 36966435 DOI: 10.1080/10408347.2023.2189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
Collapse
Affiliation(s)
- Rong Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianhui Yu
- Chengdu Pushi Pharmaceutical Technology Co., Ltd, Chengdu, China
| | - Chenghui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shihong Zhong
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Li X, Cai M, Li M, Wei X, Liu Z, Wang J, Jia K, Han Y. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for the rapid qualitative evaluation of multiple qualities in chicken. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Aslam R, Sharma SR, Kaur J, Panayampadan AS, Dar OI. A systematic account of food adulteration and recent trends in the non-destructive analysis of food fraud detection. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Koczoń P, Hołaj-Krzak JT, Palani BK, Bolewski T, Dąbrowski J, Bartyzel BJ, Gruczyńska-Sękowska E. The Analytical Possibilities of FT-IR Spectroscopy Powered by Vibrating Molecules. Int J Mol Sci 2023; 24:ijms24021013. [PMID: 36674526 PMCID: PMC9860999 DOI: 10.3390/ijms24021013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
This paper discusses the state of advancement in the development of spectroscopic methods based on the use of mid (proper) infrared radiation in the context of applications in various fields of science and technology. The authors drew attention to the most important solutions specific to both spectroscopy itself (ATR technique) and chemometric data processing tools (PCA and PLS models). The objective of the current paper is to collect and consistently present information on various aspects of FT-IR spectroscopy, which is not only a well-known and well-established method but is also continuously developing. The innovative aspect of the current review is to show FT-IR's great versatility that allows its applications to solve and explain issues from both the scientific domain (e.g., hydrogen bonds) and practical ones (e.g., technological processes, medicine, environmental protection, and food analysis). Particular attention was paid to the issue of hydrogen bonds as key non-covalent interactions, conditioning the existence of living matter and determining the number of physicochemical properties of various materials. Since the role of FT-IR spectroscopy in the field of hydrogen bond research has great significance, a historical outline of the most important qualitative and quantitative hydrogen bond theories is provided. In addition, research on selected unconventional spectral effects resulting from the substitution of protons with deuterons in hydrogen bridges is presented. The state-of-the-art and originality of the current review are that it presents a combination of uses of FT-IR spectroscopy to explain the way molecules vibrate and the effects of those vibrations on macroscopic properties, hence practical applications of given substances.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Jakub T. Hołaj-Krzak
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bharani K. Palani
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Tymoteusz Bolewski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Jarosław Dąbrowski
- Institute of Technology and Life Sciences—National Research Institute, 3 Hrabska Ave., Falenty, 05-090 Raszyn, Poland
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
10
|
Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods. Food Chem 2023; 400:134043. [DOI: 10.1016/j.foodchem.2022.134043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022]
|
11
|
Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy. Foods 2022; 11:foods11213426. [PMID: 36360039 PMCID: PMC9656656 DOI: 10.3390/foods11213426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding meat quality attribute changes during ageing by using non-destructive techniques is an emergent pursuit in the agroindustry research field. Using beef certified samples from the protected geographical indication (PGI) “Ternera de Navarra”, the primary goal of this study was to use Fourier transform infrared spectroscopy on the middle infrared region (FTIR-MIR) as a tool for the examination of meat tenderness evolution throughout ageing. Samples of the longissimus dorsi muscle of twenty young bulls were aged for 4, 6, 11, or 18 days at 4 °C. Animal carcass classification and sample proximate analysis were performed to check sample homogeneity. Raw aged steaks were analyzed by FTIR-MIR spectroscopy (4000–400 cm−1) to record the vibrational spectrum. Texture profile analysis was performed using a multiple compression test (compression rates of 20%, 80%, and 100%). Compression values were found to decrease notably between the fourth and sixth day of ageing for the three compression rates studied. This tendency continued until the 18th day for C20. For C80 and C100, there was not a clear change in the 11th and 18th days of the study. Regarding FTIR-MIR as a prediction method, it achieved an R2 lower than 40%. Using principal component analysis (PCA) of the results, the whole spectrum fingerprint was used in the discrimination of the starting and final ageing days with correct maturing time classifications. Combining the PCA treatment together with the discriminant analysis of spectral data allowed us to differentiate the samples between the initial and the final ageing points, but it did not single out the intermediate points.
Collapse
|
12
|
Detection and quantification of carrageenan in jelly candies using lectin histochemistry and photometric titration. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Ventura MI, Beyramysoltan S, Musah RA. Revealing the presence of tryptamine new psychoactive substances using fused “neutral loss” spectra derived from DART high-resolution mass spectra. Talanta 2022; 246:123417. [DOI: 10.1016/j.talanta.2022.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/15/2022]
|
14
|
Saleem A, Sahar A, Pasha I, Shahid M. Determination of Adulteration of Chicken Meat into Minced Beef Mixtures using Front Face Fluorescence Spectroscopy Coupled with Chemometric. Food Sci Anim Resour 2022; 42:672-688. [PMID: 35855273 PMCID: PMC9289803 DOI: 10.5851/kosfa.2022.e29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to explore the potential of front face fluorescence spectroscopy (FFFS) as rapid, non-destructive and inclusive technique along with multi-variate analysis for predicting meat adulteration. For this purpose (FFFS) was used to discriminate pure minced beef meat and adulterated minced beef meat containing (1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) of chicken meat as an adulterant in uncooked beef meat samples. Fixed excitation (290 nm, 322 nm, and 340 nm) and fixed emission (410 nm) wavelengths were used for performing analysis. Fluorescence spectra were acquired from pure and adulterated meat samples to differentiate pure and binary mixtures of meat samples. Principle component analysis, partial least square regression and hierarchical cluster analysis were used as chemometric tools to find out the information from spectral data. These chemometric tools predict adulteration in minced beef meat up to 10% chicken meat but are not good in distinguishing adulteration level from 1% to 5%. The results of this research provide baseline for future work for generating spectral libraries using larger datasets for on-line detection of meat authenticity by using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Asima Saleem
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Corresponding author: Amna Sahar, National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture Faisalabad 38000, Pakistan, Tel: +92-03326959611, E-mail:
| | - Imran Pasha
- National Institute of Food Science and Technology (NIFSAT), Faculty of Food, Nutrition and Home Sciences (FFNHS), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Jia W, van Ruth S, Scollan N, Koidis A. Hyperspectral imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends. Curr Res Food Sci 2022; 5:1017-1027. [PMID: 35755306 PMCID: PMC9218168 DOI: 10.1016/j.crfs.2022.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022] Open
Abstract
Meat products are particularly plagued by safety problems because of their complicated structure, various production processes and complex supply chains. Rapid and non-invasive analytical methods to evaluate meat quality have become a priority for the industry over the conventional chemical methods. To achieve rapid analysis of safety and quality parameters of meat products, hyperspectral imaging (HSI) is now widely applied in research studies for detecting the various components of different meat products, but its application in meat production and supply chain integrity as a quality control (QC) solution is still ambiguous. This review presents the fresh look at the current states of HSI research as both the scope and the applicability of the HSI in the meat quality evaluation expanded. The future application scenarios of HSI in the supply chain and the future development of HSI hardware and software are also discussed, by which HSI technology has the potential to enable large scale meat product testing. With a fully adapted for factory setting HSI, the inspection coverage can reliably identify the chemical properties of meat products. With the introduction of Food Industry 4.0, HSI advances can change the meat industry to become from reactive to predictive when facing meat safety issues. HSI has shown promising early signs in the non-destructive analysis of meat quality and safety. Hyperspectral imaging (HSI) is now widely applied in research studies for different meat products with the help of machine learning methods. With a fully adapted factory setting and robust machine learning of HSI, the inspection coverage can reach 100% of the target meat. HSI can change the meat industry to become from reactive to predictive when facing issues, this will be translated into fewer recalls, less meat fraud, and less waste.
Collapse
Affiliation(s)
- Wenyang Jia
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Saskia van Ruth
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Nigel Scollan
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
16
|
The Potentialities of Accelerator-Based Techniques as an analytical Tool for Forensics: the case of Coffee. Forensic Sci Int 2022; 335:111281. [DOI: 10.1016/j.forsciint.2022.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022]
|
17
|
Determination of Carrageenan in Livestock and Poultry Meat by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Int J Anal Chem 2021; 2021:5277453. [PMID: 34608392 PMCID: PMC8487359 DOI: 10.1155/2021/5277453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) has become the main method for the detection and analysis of food additives because of its good separation, high selectivity, and high sensitivity. The aim of this study was to establish an UHPLC-MS/MS method that can quickly and accurately measure the content of carrageenan in livestock and poultry meat. Chromatographic separation was performed on an ACQUITY UPLC BEH HILIC C18 column (2.1 mm × 50 mm, 1.7 μm) using a gradient elution with methanol and 0.1% (v/v) formic acid in water as a mobile phase. The quantitative analysis was executed using a triple quadrupole mass spectrometer in which electrospray ionization, multiple reaction monitoring, and negative mode were operated. The retention time was about 1.3 min for carrageenan. The carrageenan content showed a good linear relationship from 0.05 to 1.00 g/kg. The limit of detection (LOD) was 0.06 g/kg, and the limit of quantification (LOQ) was 0.18 g/kg. The standards were spiked at three levels (low, medium, and high) and were analyzed in six replicates. The recovery values of carrageenan in pork, beef, lamb, chicken, and duck meat were 82.06-111.55%, 85.43-112.50%, 89.55-116.00%, 83.80-102.15%, and 82.41-110.90%, respectively. The relative standard deviations (RSDs) were all lower than 7.51%. The developed method shows a high recovery rate and good precision and can be used for the rapid detection of carrageenan in livestock and poultry meat.
Collapse
|
18
|
Azcarate SM, Ríos-Reina R, Amigo JM, Goicoechea HC. Data handling in data fusion: Methodologies and applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Robert C, Jessep W, Sutton JJ, Hicks TM, Loeffen M, Farouk M, Ward JF, Bain WE, Craigie CR, Fraser-Miller SJ, Gordon KC. Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Food Chem 2021; 361:130154. [PMID: 34077882 DOI: 10.1016/j.foodchem.2021.130154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
The implementation of Raman and infrared spectroscopy with three data fusion strategies to predict pH and % IMF content of red meat was investigated. Raman and FTIR systems were utilized to assess quality parameters of intact red meat. Quantitative models were built using PLS, with model performances assessed with respect to the determination coefficient (R2), root mean square error and normalized root mean square error (NRMSEP). Results obtained on validation against an independent test set show that the high-level fusion strategy had the best performance in predicting the observed pH; with RP2 and NRMSEP values of 0.73 and 12.9% respectively, whereas low-level fusion strategy showed promise in predicting % IMF (NRMSEP = 8.5%). The fusion of data from more than one technique at low and high level resulted in improvement in the model performances; highlighting the possibility of information enhancement.
Collapse
Affiliation(s)
- Chima Robert
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - William Jessep
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Joshua J Sutton
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Talia M Hicks
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North 4410, New Zealand
| | - Mark Loeffen
- Delytics Ltd., Waikato Innovation Centre, Hamilton East, Hamilton 3216, New Zealand
| | - Mustafa Farouk
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand
| | - James F Ward
- AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Wendy E Bain
- AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Cameron R Craigie
- AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Keith C Gordon
- Dodd-Walls Centre for Photonics and Quantum Technologies, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
20
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
21
|
Agudelo‐Cuartas C, Granda‐Restrepo D, Sobral PJA, Castro W. Determination of mechanical properties of whey protein films during accelerated aging: Application of FTIR profiles and chemometric tools. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camilo Agudelo‐Cuartas
- BIOALI, Research Group, Department of Food Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia Medellín Colombia
| | - Diana Granda‐Restrepo
- BIOALI, Research Group, Department of Food Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia Medellín Colombia
| | - Paulo J. A. Sobral
- Food Research Center (FoRC) University of São Paulo São Paulo Brazil
- Department of Food Engineering College of Animal Science and Food Engineering, University of Sao Paulo Pirassununga São Paulo Brazil
| | - Wilson Castro
- Facultad de Ingeniería de Industrias Alimentarias Universidad Nacional de Frontera Piura Sullana Peru
| |
Collapse
|
22
|
Amirvaresi A, Parastar H. External parameter orthogonalization-support vector machine for processing of attenuated total reflectance-mid-infrared spectra: A solution for saffron authenticity problem. Anal Chim Acta 2021; 1154:338308. [PMID: 33736807 DOI: 10.1016/j.aca.2021.338308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
In the present work, a new approach based on external parameter orthogonalization combined with support vector machine (EPO-SVM) is proposed for processing of attenuated total reflectance-Fourier transform mid-infrared (ATR-FT-MIR) spectra with the goal of solving authentication problem in saffron, the most expensive spice in the world. First, one-hundred authentic saffron samples are clustered by principal component analysis (PCA) with EPO as the best preprocessing strategy. Then, EPO-SVM is used for the detection of four commonly used plant-derived adulterants (i.e. safflower, calendula, rubia, and style) in binary mixtures (saffron and each of plant adulterants) and its performance is compared with other common classification methods. The obtained results showed that the EPO-SVM approach has a much better classification accuracy (>95%) than other methods (accuracy<89.2%). Finally, two different sample sets including mixture of saffron and four plant adulterants and commercial saffron samples are used for validation of the developed EPO-SVM model. In this regard, classification figures of merit in terms of sensitivity, specificity and accuracy were respectively 96.6%, 97.1%, and 96.8% which showed good classification performance. It is concluded that the proposed EPO-PCA and EPO-SVM approaches can be considered as reliable tools for authentication and adulteration detection in saffron samples.
Collapse
Affiliation(s)
- Arian Amirvaresi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
23
|
Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Yue J, Huang H, Wang Y. A practical method superior to traditional spectral identification: Two-dimensional correlation spectroscopy combined with deep learning to identify Paris species. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105731] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020; 25:molecules25194472. [PMID: 33003382 PMCID: PMC7582365 DOI: 10.3390/molecules25194472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023] Open
Abstract
Fish and other seafood products have a limited shelf life due to favorable conditions for microbial growth and enzymatic alterations. Various preservation and/or processing methods have been developed for shelf-life extension and for maintaining the quality of such highly perishable products. Freezing and frozen storage are among the most commonly applied techniques for this purpose. However, frozen–thawed fish or meat are less preferred by consumers; thus, labeling thawed products as fresh is considered a fraudulent practice. To detect this kind of fraud, several techniques and approaches (e.g., enzymatic, histological) have been commonly employed. While these methods have proven successful, they are not without limitations. In recent years, different emerging methods have been investigated to be used in place of other traditional detection methods of thawed products. In this context, spectroscopic techniques have received considerable attention due to their potential as being rapid and non-destructive analytical tools. This review paper aims to summarize studies that investigated the potential of emerging techniques, particularly those based on spectroscopy in combination with chemometric tools, to detect frozen–thawed muscle foods.
Collapse
|
26
|
Authentication and Quality Assessment of Meat Products by Fourier-Transform Infrared (FTIR) Spectroscopy. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09251-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Ríos-Reina R, Azcarate SM, Camiña JM, Goicoechea HC. Multi-level data fusion strategies for modeling three-way electrophoresis capillary and fluorescence arrays enhancing geographical and grape variety classification of wines. Anal Chim Acta 2020; 1126:52-62. [PMID: 32736724 DOI: 10.1016/j.aca.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022]
Abstract
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
Collapse
Affiliation(s)
- Rocío Ríos-Reina
- Área de Nutrición y Bromatología, Fac. Farmacia, Univ. Sevilla, C/P. García González No. 2, E-41012, Sevilla, Spain
| | - Silvana M Azcarate
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa-CONICET, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
| | - José M Camiña
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa-CONICET, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral-CONICET, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina
| |
Collapse
|
28
|
Abstract
AbstractThere is a growing need for chemical analyses to be performed in the field, at the point of need. Tools and techniques often found in analytical chemistry laboratories are necessary in performing these analyses, yet have, historically, been unable to do so owing to their size, cost and complexity. Technical advances in miniaturisation and liquid chromatography are enabling the translation of these techniques out of the laboratory, and into the field. Here we examine the advances that are enabling portable liquid chromatography (LC). We explore the evolution of portable instrumentation from its inception to the most recent advances, highlighting the trends in the field and discussing the necessary criteria for developing in-field solutions. While instrumentation is becoming more capable it has yet to find adoption outside of research.
Collapse
|
29
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
30
|
He Y, Bai X, Xiao Q, Liu F, Zhou L, Zhang C. Detection of adulteration in food based on nondestructive analysis techniques: a review. Crit Rev Food Sci Nutr 2020; 61:2351-2371. [PMID: 32543218 DOI: 10.1080/10408398.2020.1777526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, people pay more and more attention to food quality and safety, which are significantly relating to human health. Food adulteration is a world-wide concerned issue relating to food quality and safety, and it is difficult to be detected. Modern detection techniques (high performance liquid chromatography, gas chromatography-mass spectrometer, etc.) can accurately identify the types and concentrations of adulterants in different food types. However, the characteristics as expensive, low efficient and complex sample preparation and operation limit the use of these techniques. The rapid, nondestructive and accurate detection techniques of food adulteration is of great and urgent demand. This paper introduced the principles, advantages and disadvantages of the nondestructive analysis techniques and reviewed the applications of these techniques in food adulteration screen in recent years. Differences among these techniques, differences on data interpretation and future prospects were also discussed.
Collapse
Affiliation(s)
- Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Qinlin Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Lei Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| | - Chu Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Spectroscopy Sensing, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
A soft discriminant model based on mid-infrared spectra of bovine meat purges to detect economic motivated adulteration by the addition of non-meat ingredients. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01795-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Zhou L, Zhang C, Qiu Z, He Y. Information fusion of emerging non-destructive analytical techniques for food quality authentication: A survey. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115901] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Assis C, Gama EM, Nascentes CC, de Oliveira LS, Anzanello MJ, Sena MM. A data fusion model merging information from near infrared spectroscopy and X-ray fluorescence. Searching for atomic-molecular correlations to predict and characterize the composition of coffee blends. Food Chem 2020; 325:126953. [PMID: 32387940 DOI: 10.1016/j.foodchem.2020.126953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
This article aims to develop and validate a multivariate model for quantifying Robusta-Arabica coffee blends by combining near infrared spectroscopy (NIRS) and total reflection X-ray fluorescence (TXRF). For this aim, 80 coffee blends (0.0-33.0%) were formulated. NIR spectra were obtained in the wavenumber range 11100-4950 cm-1 and 14 elements were determined by TXRF. Partial least squares models were built using data fusion at low and medium levels. In addition, selection of predictive variables based on their importance indices (SVPII) improved results. The best model reduced the number of variables from 1114 to 75 and root mean square error of prediction from 4.1% to 1.7%. SVPII selected NIR regions correlated with coffee components, and the following elements were chosen: Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr. The model interpretation took advantage of the data fusion between atomic and molecular spectra in order to characterize the differences between these coffee varieties.
Collapse
Affiliation(s)
- Camila Assis
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Ednilton Moreira Gama
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Clésia Cristina Nascentes
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Leandro Soares de Oliveira
- Departamento de Engenharia Mecânica, Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Michel José Anzanello
- Departamento de Engenharia Industrial, Universidade Federal do Rio Grande do Sul, 90035-190 Porto Alegre, RS, Brazil
| | - Marcelo Martins Sena
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Bioanalítica, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
34
|
Pezzolato M, Baioni E, Maurella C, Varello K, Meistro S, Balsano A, Bozzetta E. Distinguishing between Fresh and Frozen-Thawed Smoked Salmon: Histology To Detect Food Adulteration in High-Value Products. J Food Prot 2020; 83:52-53. [PMID: 31825675 DOI: 10.4315/0362-028x.jfp-19-346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The issue of food safety has acquired increased importance, and fraud is a major concern for the food industry. Among different types of food adulteration, there is the sale of frozen-thawed smoked salmon product as fresh, which not only decreases the quality of products but also misleads consumers and may involve associated health risks. In response to this problem, we tested the performance of histology to identify smoked salmon as fresh or frozen-thawed as a valid analytical method, so food business operators and official controllers can reliably and correctly classify the storage state of the product. Three groups of samples were prepared: group A (n = 36), fresh samples; group B (n = 36), frozen at -18°C for 30 days; and group C (n = 36), stored at -3°C for 30 days after packaging. Two histopathologists examined all samples in blind evaluations and classified them as fresh or frozen-thawed. Sensitivity, specificity, and interrater agreement were calculated. Results show high performance with the test: 80.6% sensitivity (95% confidence intervals [CI]: 64 to 91.8%); 95.6% specificity (95% CI: 89.1 to 98.8%); and Cohen's kappa was 0.81 (95% CI: 0.64 to 0.98%). Histology is a reliable and highly accurate method to differentiate fresh from frozen-thawed smoked salmon and could be used by the industry and official controllers to verify the labeling of the commercial product.
Collapse
Affiliation(s)
- Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| | - Elisa Baioni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| | - Serena Meistro
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| | | | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy (ORCID: https://orcid.org/0000-0001-9530-9016 [M.P.])
| |
Collapse
|
35
|
Comparison of transmission FTIR and ATR spectra for discrimination between beef and chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR combined with chemometrics. Journal of Food Science and Technology 2019; 57:1430-1438. [PMID: 32180639 DOI: 10.1007/s13197-019-04178-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/05/2019] [Indexed: 12/23/2022]
Abstract
Detecting meat adulteration for quality control and accurate labeling is important and needs convenient analytical methods. This study aimed to investigate and compare the application of the transmission and ATR approaches of FTIR followed by principal component analysis (PCA) to not only discriminate between chicken and beef meat but also quantizing chicken portion of mixtures. Two different approaches are presented; spectra preprocessing with focus on wavenumber region of 1700-1071 cm-1, and no preprocessed where PCA was applied on the whole spectra range of mid-FTIR. The results suggest that applying PCA on specified preprocessed spectra could detect hidden relationships between variables in chicken and beef in both approaches. PCA successfully clustered these kinds of meats when applied on transmission mode spectra without any preprocessing treatment, while applying it on ATR mode's raw spectra failed to cluster them. Additionally, the preprocessed ATR-FTIR spectrum was used to prepare regression models by Partial Least Square Regression (PLS-R) and artificial neural networks (ANN) for predicting presence and percentage of chicken meat in the beef meat mixture. The results demonstrated the superiority of ANN over PLS-R in this assessment with an R2 of 0.999.
Collapse
|
36
|
Sahar A, Allen P, Sweeney T, Cafferky J, Downey G, Cromie A, Hamill RM. Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible-Near-Infrared Spectroscopy and Chemometrics. Foods 2019; 8:foods8110525. [PMID: 31652829 PMCID: PMC6915407 DOI: 10.3390/foods8110525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/04/2022] Open
Abstract
The potential of visible–near-infrared (Vis–NIR) spectroscopy to predict physico-chemical quality traits in 368 samples of bovine musculus longissimus thoracis et lumborum (LTL) was evaluated. A fibre-optic probe was applied on the exposed surface of the bovine carcass for the collection of spectra, including the neck and rump (1 h and 2 h post-mortem and after quartering, i.e., 24 h and 25 h post-mortem) and the boned-out LTL muscle (48 h and 49 h post-mortem). In parallel, reference analysis for physico-chemical parameters of beef quality including ultimate pH, colour (L, a*, b*), cook loss and drip loss was conducted using standard laboratory methods. Partial least-squares (PLS) regression models were used to correlate the spectral information with reference quality parameters of beef muscle. Different mathematical pre-treatments and their combinations were applied to improve the model accuracy, which was evaluated on the basis of the coefficient of determination of calibration (R2C) and cross-validation (R2CV) and root-mean-square error of calibration (RMSEC) and cross-validation (RMSECV). Reliable cross-validation models were achieved for ultimate pH (R2CV: 0.91 (quartering, 24 h) and R2CV: 0.96 (LTL muscle, 48 h)) and drip loss (R2CV: 0.82 (quartering, 24 h) and R2CV: 0.99 (LTL muscle, 48 h)) with lower RMSECV values. The results show the potential of Vis–NIR spectroscopy for online prediction of certain quality parameters of beef over different time periods.
Collapse
Affiliation(s)
- Amna Sahar
- Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Paul Allen
- Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Torres Sweeney
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 W6F6, Ireland.
| | - Jamie Cafferky
- Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Gerard Downey
- Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| | - Andrew Cromie
- Irish Cattle Breeders Federation, Highfield House, Shinagh, Bandon, Co. Cork P72 X050, Ireland.
| | - Ruth M Hamill
- Teagasc Food Research Centre Ashtown, Dublin D15 KN3K, Ireland.
| |
Collapse
|
37
|
Valand R, Tanna S, Lawson G, Bengtström L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:19-38. [PMID: 31613710 DOI: 10.1080/19440049.2019.1675909] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The increasing demand for food and the globalisation of the supply chain have resulted in a rise in food fraud, and recent high profile cases, such as the Chinese milk scandal in 2008 and the EU horsemeat scandal in 2013 have emphasised the vulnerability of the food supply system to adulteration and authenticity frauds. Fourier Transform Infrared (FTIR) spectroscopy is routinely used in cases of suspected food fraud as it offers a rapid, easy and reliable detection method for these investigations. In this review, we first present a brief summary of the concepts of food adulteration and authenticity as well as a discussion of the current legislation regarding these crimes. Thereafter, we give an extensive overview of FTIR as an analytical technique and the different foods where FTIR analysis has been employed for food fraud investigations as well as the subsequent multivariate data analyses that have been applied successfully to investigate the case of adulteration or authenticity. Finally, we give a critical discussion of the applications and limitations of FTIR, either as a standalone technique or incorporated in a test battery, in the fight against food fraud.
Collapse
Affiliation(s)
- Reema Valand
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Sangeeta Tanna
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Graham Lawson
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| | - Linda Bengtström
- School of Pharmacy, Faculty of Health and Life Sciences. De Montfort University, Leicester, UK
| |
Collapse
|
38
|
Nunes KM, Andrade MVO, Almeida MR, Fantini C, Sena MM. Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Yeong TJ, Pin Jern K, Yao LK, Hannan MA, Hoon STG. Applications of Photonics in Agriculture Sector: A Review. Molecules 2019; 24:E2025. [PMID: 31137897 PMCID: PMC6571790 DOI: 10.3390/molecules24102025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 11/17/2022] Open
Abstract
The agricultural industry has made a tremendous contribution to the foundations of civilization. Basic essentials such as food, beverages, clothes and domestic materials are enriched by the agricultural industry. However, the traditional method in agriculture cultivation is labor-intensive and inadequate to meet the accelerating nature of human demands. This scenario raises the need to explore state-of-the-art crop cultivation and harvesting technologies. In this regard, optics and photonics technologies have proven to be effective solutions. This paper aims to present a comprehensive review of three photonic techniques, namely imaging, spectroscopy and spectral imaging, in a comparative manner for agriculture applications. Essentially, the spectral imaging technique is a robust solution which combines the benefits of both imaging and spectroscopy but faces the risk of underutilization. This review also comprehends the practicality of all three techniques by presenting existing examples in agricultural applications. Furthermore, the potential of these techniques is reviewed and critiqued by looking into agricultural activities involving palm oil, rubber, and agro-food crops. All the possible issues and challenges in implementing the photonic techniques in agriculture are given prominence with a few selective recommendations. The highlighted insights in this review will hopefully lead to an increased effort in the development of photonics applications for the future agricultural industry.
Collapse
Affiliation(s)
- Tan Jin Yeong
- Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia.
| | - Ker Pin Jern
- Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia.
| | - Lau Kuen Yao
- Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia.
| | - M A Hannan
- Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia.
| | - Shirley Tang Gee Hoon
- Microbiology Unit, Department of Pre-clinical, International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Seksyen 13, Shah Alam 40100, Selangor, Malaysia.
| |
Collapse
|
40
|
Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Food Chem 2019; 281:71-77. [DOI: 10.1016/j.foodchem.2018.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
|
41
|
Wu XM, Zhang QZ, Wang YZ. Traceability the provenience of cultivated Paris polyphylla Smith var. yunnanensis using ATR-FTIR spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:132-145. [PMID: 30639599 DOI: 10.1016/j.saa.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
The conventional procedures, based on attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), have been developed for the origins traceability of cultivated Paris polyphylla Smith var. yunnanensis (PPY) samples with the help of partial least square discriminant analysis (PLS-DA) and random forest. In this study, a set of 219 batch cultivated PPY samples, containing the cultivation years of 5, 6 and 7, and covering the municipal districts of Chuxiong, Dali, Honghe, Lijiang and Yuxi in Yunnan Province, China, were used to build the discrimination models. Firstly, a visualized analysis was carried out by t-distributed stochastic neighbor embedding (t-SNE) to reduce each data point in a two-dimensional map and make a knowledge of the sample distribution tendency. Secondly, the single spectra data sets of Paridis rhizome and leaf tissues, and the combination of these two data sets with variable selection (mid-level data fusion strategy), were used to establish PLS-DA and random forest models, and parallelly compared the model performance. Results demonstrated that the discrimination ability of PLS-DA preceded the random forest model, and the classification performance was remarkably improved after mid-level data fusion. These results verified each other by 5-, 6- and 7-year old Paridis samples and indicated that the model performance established in the present study was reliable. Besides, five agronomic characters, including the plant height, dry weight of rhizome and leaf tissues, and the allocation of rhizome and leaf were determined and analyzed, results of which indicated that the dry weight and their allocation was significantly different among various origins and fluctuated with the cultivation years. This study was using a comprehensive and green analytical method to discriminate the cultivated Paridis according to their provenances, which was simultaneously benefited for the appropriate cultivation areas selection based on the dry weight of rhizome tissues.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Qing-Zhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yuan-Zhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
42
|
Hassoun A, Sahar A, Lakhal L, Aït-Kaddour A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Kutsanedzie FYH, Guo Z, Chen Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Zhiming Guo
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Quansheng Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
44
|
|
45
|
Rohman A. The employment of Fourier transform infrared spectroscopy coupled with chemometrics techniques for traceability and authentication of meat and meat products. J Adv Vet Anim Res 2018; 6:9-17. [PMID: 31453165 PMCID: PMC6702933 DOI: 10.5455/javar.2019.f306] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022] Open
Abstract
Meat-based food such as meatball and sausages are important sources of protein needed for the human body. Due to different prices, some unethical producers try to adulterate high-price meat such as beef with lower priced meat like pork and rat meat to gain economical profits, therefore, reliable and fast analytical techniques should be developed, validated, and applied for meat traceability and authenticity. Some instrumental techniques have been applied for the detection of meat adulteration, mainly relied on DNA and protein using polymerase chain reaction and chromatographic methods, respectively. But, this method is time-consuming, needs a sophisticated instrument, involves complex sample preparation which make the method is not suitable for routine analysis. As a consequence, a simpler method based on spectroscopic principles should be continuously developed. Food samples are sometimes complex which resulted in complex chemical responses. Fortunately, a statistical method called with chemometrics could solve the problems related to complex chemical data. This mini-review highlights the application of Fourier-transform infrared spectroscopy coupled with numerous chemometrics techniques for authenticity and traceability of meat and meat-based products.
Collapse
Affiliation(s)
- Abdul Rohman
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Research Center of Halal Products, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
46
|
Deniz E, Güneş Altuntaş E, Ayhan B, İğci N, Özel Demiralp D, Candoğan K. Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ebru Deniz
- Faculty of Engineering, Department of Food Engineering Ankara University Ankara Turkey
| | | | - Beycan Ayhan
- Central Laboratory, Biotechnology Institute Ankara University Ankara Turkey
| | - Naşit İğci
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics Nevşehir Hacı Bektaş Veli University Nevşehir Turkey
| | - Duygu Özel Demiralp
- Faculty of Engineering, Department of Biomedical Engineering Ankara University Ankara Turkey
| | - Kezban Candoğan
- Faculty of Engineering, Department of Food Engineering Ankara University Ankara Turkey
| |
Collapse
|
47
|
Zhang J, Wei X, Huang J, Lin H, Deng K, Li Z, Shao Y, Zou D, Chen Y, Huang P, Wang Z. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectral prediction of postmortem interval from vitreous humor samples. Anal Bioanal Chem 2018; 410:7611-7620. [DOI: 10.1007/s00216-018-1367-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/19/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
|
48
|
Wang Y, Zuo ZT, Shen T, Huang HY, Wang YZ. Authentication of Dendrobium Species Using Near-Infrared and Ultraviolet–Visible Spectroscopy with Chemometrics and Data Fusion. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1451874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ye Wang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhi-Tian Zuo
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Tao Shen
- College of Resources and Environment, Yuxi Normal University, Yuxi, RP China
| | - Heng-Yu Huang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yuan-Zhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
49
|
Srivastava S, Sadistap S. Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9893-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Tibola CS, da Silva SA, Dossa AA, Patrício DI. Economically Motivated Food Fraud and Adulteration in Brazil: Incidents and Alternatives to Minimize Occurrence. J Food Sci 2018; 83:2028-2038. [PMID: 30020548 DOI: 10.1111/1750-3841.14279] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
Abstract
Brazil is one of the world's largest food producers. Adulteration of foods is often reported and represent an important potential threat to food safety. Because of this, reduction of the vulnerability of foods to adulteration is of high priority to Brazil. This study analyzes economically motivated food fraud and adulterations in Brazil between 2007 and 2017, based on academic journal reports. In addition, alternatives are proposed to minimize these incidents through good practices, traceability systems and the development of methods to detect food fraud and adulteration. Complex supply chains for foods of animal origin, such as milk and dairy products, were the main targets of food fraud and adulterations. Other products prone to fraudulent activities were vegetable oils, especially olive oil, which are high value products. Meat and fish, as well as their respective by-products, were also involved in some food fraud and adulteration, especially substitution. Cases of extraneous ingredient addition were also reported in the coffee and tea sectors. Comprehensive food fraud and adulteration prevention requires the enforcement of regulatory systems, increased sampling and monitoring, training of food producers and handlers, and development of precise, rapid, and cost-effective methods of fraud detection. The availability of robust methods to identify the chemical constituents of foods could be a decisive step, both to detect and prevent fraud in producer countries and to open up new markets to these products. The results of this study can be used to analyze food safety risks and prioritize target areas for food research and policy-making in order to enforce food safety regulations in Brazil. PRACTICAL APPLICATION A food fraud and adulteration review was conducted based on scientific literature in Brazil. Milk and its products were the main targets of food fraud and adulterations. Food fraud and adulteration causes and suggestions for good practice are presented. The results can be used to analyze food safety and protect consumer rights.
Collapse
Affiliation(s)
- Casiane Salete Tibola
- Embrapa Trigo, Rodovia BR-285, km 294, C.P. 3081, Passo Fundo, RS, 99001-970, Brazil
| | - Simone Alves da Silva
- Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Inst., Avenida Doutor Arnaldo, 355-Cerqueira César-São Paulo, SP, 01246-000, Brazil
| | - Alvaro Augusto Dossa
- Embrapa Trigo, Rodovia BR-285, km 294, C.P. 3081, Passo Fundo, RS, 99001-970, Brazil
| | - Diego Inácio Patrício
- Embrapa Trigo, Rodovia BR-285, km 294, C.P. 3081, Passo Fundo, RS, 99001-970, Brazil
| |
Collapse
|