1
|
Deng J, Guo J, Qin W, Chen J, He Y, Zhang Q, Vanholme B, Yang W, Liu J. Shading stress promotes lignin biosynthesis in soybean seed coat and consequently extends seed longevity. Int J Biol Macromol 2025; 298:139913. [PMID: 39818396 DOI: 10.1016/j.ijbiomac.2025.139913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The macromolecular components of the seed coat, particularly lignin, play a critical role in regulating seed viability. In the maize-soybean intercropping (MSI) system, shading stress was reported to enhance the viability of soybean seeds. However, the specific role of seed coat lignin in this process remains poorly understood. In this study, we demonstrated that soybean seed coats derived from the MSI system exhibit significantly higher lignin content and mechanical resistance compared to those from the sole cropping systems. Further investigations with artificial shading treatments revealed a substantial impact on the accumulation of phenylpropanoids in soybean seeds. Notably, shading applied during the reproductive stage resulted in decreased levels of anthocyanins, proanthocyanidins, and isoflavones, while simultaneously increasing lignin content. Moreover, both the mechanical resistance of the seed coats and the seeds' longevity under deteriorative conditions improved significantly compared to the normal light control. Gene expression and metabolomics analyses indicated that shading stress promotes the expression of key genes involved in lignin biosynthesis within the soybean seed coats, increasing the amount of several intermediate metabolites. Taken together, these findings reveal that shading stress in the MSI system promotes the biosynthesis and accumulation of lignin in soybean seed coats and thereby regulating seed longevity.
Collapse
Affiliation(s)
- Juncai Deng
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Gent, Belgium; VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Gent, Belgium
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Wenting Qin
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China; College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Gent, Belgium; VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Gent, Belgium.
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiang Liu
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China; Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Rotundo JL, Marshall R, McCormick R, Truong SK, Styles D, Gerde JA, Gonzalez-Escobar E, Carmo-Silva E, Janes-Bassett V, Logue J, Annicchiarico P, de Visser C, Dind A, Dodd IC, Dye L, Long SP, Lopes MS, Pannecoucque J, Reckling M, Rushton J, Schmid N, Shield I, Signor M, Messina CD, Rufino MC. European soybean to benefit people and the environment. Sci Rep 2024; 14:7612. [PMID: 38556523 PMCID: PMC10982307 DOI: 10.1038/s41598-024-57522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Europe imports large amounts of soybean that are predominantly used for livestock feed, mainly sourced from Brazil, USA and Argentina. In addition, the demand for GM-free soybean for human consumption is project to increase. Soybean has higher protein quality and digestibility than other legumes, along with high concentrations of isoflavones, phytosterols and minerals that enhance the nutritional value as a human food ingredient. Here, we examine the potential to increase soybean production across Europe for livestock feed and direct human consumption, and review possible effects on the environment and human health. Simulations and field data indicate rainfed soybean yields of 3.1 ± 1.2 t ha-1 from southern UK through to southern Europe (compared to a 3.5 t ha-1 average from North America). Drought-prone southern regions and cooler northern regions require breeding to incorporate stress-tolerance traits. Literature synthesized in this work evidenced soybean properties important to human nutrition, health, and traits related to food processing compared to alternative protein sources. While acknowledging the uncertainties inherent in any modelling exercise, our findings suggest that further integrating soybean into European agriculture could reduce GHG emissions by 37-291 Mt CO2e year-1 and fertiliser N use by 0.6-1.2 Mt year-1, concurrently improving human health and nutrition.
Collapse
Affiliation(s)
- Jose L Rotundo
- Corteva Agriscience, Seville, Spain.
- Corteva Agriscience, Johnston, USA.
| | - Rachel Marshall
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | - David Styles
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jose A Gerde
- Instituto de Ciencias Agrarias de Rosario, UNR, CONICET, Zavalla, Argentina
| | | | | | | | - Jennifer Logue
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | | | - Chris de Visser
- Wageningen University and Research, Wageningen, The Netherlands
| | - Alice Dind
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Louise Dye
- School of Psychology and Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Stephen P Long
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Departments of Crop Sciences and of Plant Biology, University of Illinois, Champaign, USA
| | - Marta S Lopes
- Sustainable Field Crops, Institute of Agrifood Research and Technology (IRTA), Lleida, Spain
| | - Joke Pannecoucque
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Moritz Reckling
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jonathan Rushton
- Centre of Excellence for Sustainable Food Systems, University of Liverpool, Liverpool, UK
| | - Nathaniel Schmid
- Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | - Marco Signor
- Regional Agency for Rural Development (ERSA), Gorizia, Italy
| | | | - Mariana C Rufino
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- School of Life Sciences, Technical University of Munich, München, Germany
| |
Collapse
|
3
|
Li Z, Liu A, Du Q, Zhu W, Liu H, Naeem A, Guan Y, Chen L, Ming L. Bioactive substances and therapeutic potential of camellia oil: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Chen C, Zhang M, Mujumdar AS, Phuhongsung P. Investigation of 4D printing of lotus root-compound pigment gel: Effect of pH on rapid colour change. Food Res Int 2021; 148:110630. [PMID: 34507774 DOI: 10.1016/j.foodres.2021.110630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
The feasibility was investigated of 4D printing of lotus root gel compounded with a pigment that responds to pH change and alters colour. The pigment comprised of a combination of anthocyanins and lemon yellow; it was used in gel preparation for printing. The flowability and self-support properties of the lotus root-pigment gel were studied to evaluate its 3D printing performance. The gel viscosity decreased with the increase of printing temperature over the range 40, 50, and 60 °C. The gel with a ratio (lotus root powder/compound pigment) of 0.35 extruded smoothly and maintained high formability at temperatures below 60 °C. The pH response of compound pigment enabled the printed sample to change colour from reddish/yellowish to green after spraying with NaHCO3. The a* and b* values decreased significantly (p < 0.05) after spraying for 1 min. The gel with ratios of 0.30 and 0.35 achieved rapid colour change both superficially and internally. Through several different model designs (apple, Christmas tree, letters, and Chinese characters), high-quality 4D printing could be realized without problem. Thus, lotus root gel can be mixed with suitable pigments in correct proportion for 4D printing at appropriate temperature to ensure good flowability.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Pattarapon Phuhongsung
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Li X, Yang C, Chen J, He Y, Deng J, Xie C, Xiao X, Long X, Wu X, Liu W, Du J, Yang F, Wang X, Yong T, Zhang J, Wu Y, Yang W, Liu J. Changing light promotes isoflavone biosynthesis in soybean pods and enhances their resistance to mildew infection. PLANT, CELL & ENVIRONMENT 2021; 44:2536-2550. [PMID: 34118074 DOI: 10.1111/pce.14128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Mildew severely reduces soybean yield and quality, and pods are the first line of defence against pathogens. Maize-soybean intercropping (MSI) reduces mildew incidence on soybean pods; however, the mechanism remains unclear. Changing light (CL) from maize shading is the most important environmental feature in MSI. We hypothesized that CL affects isoflavone accumulation in soybean pods, affecting their disease resistance. In the present study, shading treatments were applied to soybean plants during different developmental stages according to various CL environments under MSI. Chlorophyll fluorescence imaging (CFI) and classical evaluation methods confirmed that CL, especially vegetative stage shading (VS), enhanced pod resistance to mildew. Further metabolomic analyses and exogenous jasmonic acid (JA) and biosynthesis inhibitor experiments revealed the important relationship between JA and isoflavone biosynthesis, which had a synergistic effect on the enhanced resistance of CL-treated pods to mildew. VS promoted the biosynthesis and accumulation of constitutive isoflavones upstream of the isoflavone pathway, such as aglycones and glycosides, in soybean pods. When mildew infects pods, endogenous JA signalling stimulated the biosynthesis of downstream inducible malonyl isoflavone (MIF) and glyceollin to improve pod resistance.
Collapse
Affiliation(s)
- Xiaoman Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Caiqiong Yang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Thuringia, Germany
| | - Jianhua Chen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yuanyuan He
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Juncai Deng
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Oost-Vlaanderen, Belgium
| | - Congwei Xie
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xinli Xiao
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiyang Long
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoling Wu
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Weiguo Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Junbo Du
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Feng Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jing Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yushan Wu
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jiang Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
6
|
Ge Y, Li N, Fu Y, Yu X, Xiao Y, Tang Z, Xiao J, Wu JL, Jiang ZH. Deciphering superior quality of Pu-erh tea from thousands of years' old trees based on the chemical profile. Food Chem 2021; 358:129602. [PMID: 33962815 DOI: 10.1016/j.foodchem.2021.129602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/05/2023]
Abstract
Pu-erh teas from thousands of years' old trees (TPT) equip with both superior flavors and powerful antioxidative capacities. With UHPLC-Q-TOF-MS approach, TPTs' chemical profiles were characterized by comparing with Pu-erh teas from ecological trees (EPT). TPTs are discovered to possess higher contents of amino acids, fatty acids, phenolic acids, nucleosides and nucleobases but lower contents of flavonoids and caffeine congeners based on 117 discriminative constituents from 305 identified ones. Particularly, a series of caffeic acid congeners including ten new hydroxycinnamic acid depsides with higher contents in TPTs are discovered, and caffeic acid with a fold change of 638 is the foremost discriminative component. Furthermore, distinguishing constituent proportion including caffeic acid congeners in TPTs are found to take great responsibilities for their more powerful antioxidative abilities and superior flavors especially more aroma and pleasant bitterness. This research provides information for deciphering formation of TPTs' superior qualities based on chemical profile.
Collapse
Affiliation(s)
- Yahui Ge
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Yu Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Zhiying Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region
| | - Jianbo Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region.
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau Special Administrative Region.
| |
Collapse
|
7
|
Yellow- and green-cotyledon seeds of black soybean: Phytochemical and bioactive differences determine edibility and medical applications. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Min T, Niu LF, Feng XY, Yi Y, Wang LM, Zhao Y, Wang HX. The effects of different temperatures on the storage characteristics of lotus (Nelumbo nucifera G.) root. Food Chem 2021; 348:129109. [PMID: 33524694 DOI: 10.1016/j.foodchem.2021.129109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/21/2023]
Abstract
Lotus root (Nelumbo nucifera G.) is a high economic value crop in the world. In this study, the storage characteristics (color, sensory, texture, and fatty acids) of lotus root ("Elian No.5″) were evaluated at different harvest periods (September 2018, October 2018, November 2018, December 2018, and January 2019). Moreover, the storage characteristics were evaluated after the short- term and long-term storage of lotus root at 4 °C and 20 °C. The hardness of lotus root significantly decreased at both temperatures (4 °C and 20 °C) during the first 3 days of storage. In contrast, the decrease in hardness delayed at 4 °C (beyond 3 days of storage). Further, genes related to hardness at different storage temperatures were identified using the RNA-seq and qRT-PCR. The results of this study provide a reference for lotus root storage and a basis for the molecular breeding of longterm-storable lotus root.
Collapse
Affiliation(s)
- Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
| | - Li-Fang Niu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiang-Yang Feng
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China
| | - Li-Mei Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yun Zhao
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hong-Xun Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), China.
| |
Collapse
|
9
|
Azam M, Zhang S, Abdelghany AM, Shaibu AS, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J. Seed isoflavone profiling of 1168 soybean accessions from major growing ecoregions in China. Food Res Int 2020; 130:108957. [PMID: 32156396 DOI: 10.1016/j.foodres.2019.108957] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Soybean (Glycine max L. Merrill) isoflavones are secondary metabolites of great interest because of their beneficial impact on human health. We profiled the seed isoflavone composition of 1168 soybean accessions collected from diverse ecoregions of China in three locations over two years. We observed significant differences in isoflavone content among the accessions, accession types, years of growth and ecoregions of origin. Total isoflavone (TIF) concentration of the soybean accessions ranged from 745 μg g-1 to 5253.98 μg g-1, which represents a 7-fold difference. The highest mean TIF concentration (2689.27 μg g-1) was observed in the Huang Huai Hai Valley Region (HR) accessions, followed by accessions from the Southern Region (SR) and Northern Region (NR) with TIF concentration of 2518.91 μg g-1 and 1942.78 μg g-1, respectively. Thirty-five accessions were identified as elite soybean resources based on their higher TIF concentration (4024.74 μg g-1 to 5253.98 μg g-1). Pairwise correlation analysis showed significant positive correlations between individual isoflavones and TIF concentrations. Malonyldaidzin and malonylgenistin showed the highest correlations with TIF concentration (r = 0.90 and r = 0.92, respectively), whereas acetyldaidzin showed the lowest correlation. The main isoflavone components had significant negative correlations with latitude and longitude, indicating that the geographical origin of the accessions influenced their seed isoflavone composition. Based on principal component analysis, glycosides and malonylglycosides of isoflavones were the major discriminative components for the soybean accessions. The present study demonstrated the geographical distribution of soybean seed isoflavone concentrations across the main ecoregion of China. The identified soybean accessions with both high and low TIF concentrations, which are desirable materials for industrial uses and could also be used as parents to breed soybean lines with improved isoflavone quantity and composition in the seeds.
Collapse
Affiliation(s)
- Muhammad Azam
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Ahmed M Abdelghany
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Abdulwahab S Shaibu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yue Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yanfei Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yu Tian
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Huilong Hong
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bin Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
10
|
Chen F, Zhou W, Yin H, Luo X, Chen W, Liu X, Wang X, Meng Y, Feng L, Qin Y, Zhang C, Yang F, Yong T, Wang X, Liu J, Du J, Liu W, Yang W, Shu K. Shading of the mother plant during seed development promotes subsequent seed germination in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2072-2084. [PMID: 31925954 PMCID: PMC7242070 DOI: 10.1093/jxb/erz553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/12/2019] [Indexed: 05/03/2023]
Abstract
The effect of shading during seed development on subsequent germination remains largely unknown. In this study, two soybean (Glycine max) seed production systems, monocropping (MC) and maize-soybean intercropping (IC), were employed to examine the effects of shading of the mother plant on subsequent seed germination. Compared to the MC soybean seeds, which received light, the developing IC seeds were exposed to shade resulting from the taller neighboring maize plants. The IC seeds germinated faster than the MC seeds, although there was no significant difference in the thickness of the seed coat. The concentration of soluble pro-anthocyanidin in the IC seed coat was significantly lower than that in the MC seed coat. Changes in the concentrations of several types of fatty acids in IC seeds were also observed, the nature of which were consistent with the effect on germination. The expression levels of genes involved in abscisic acid (ABA) biosynthesis were down-regulated in IC seeds, while the transcription levels of the genes related to gibberellin (GA) biosynthesis were up-regulated. This was consistently reflected in decreased ABA concentrations and increased active GA4 concentrations in IC seeds, resulting in an increased GA4/ABA ratio. Our results thus indicated that shading of the mother plant during seed development in soybean promoted subsequent germination by mediating the biosynthesis of pro-anthocyanidins, fatty acids, and phytohormones.
Collapse
Affiliation(s)
- Feng Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wenguan Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Han Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Xin Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xingcai Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yongjie Meng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Lingyang Feng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Qin
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | | | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Taiwen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaochun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Weiguo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
11
|
Min T, Bao Y, Zhou B, Yi Y, Wang L, Hou W, Ai Y, Wang H. Transcription Profiles Reveal the Regulatory Synthesis of Phenols during the Development of Lotus Rhizome ( Nelumbo nucifera Gaertn). Int J Mol Sci 2019; 20:E2735. [PMID: 31167353 PMCID: PMC6600570 DOI: 10.3390/ijms20112735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 11/25/2022] Open
Abstract
Lotus (Nelumbo nucifera Gaertn) is a wetland vegetable famous for its nutritional and medicinal value. Phenolic compounds are secondary metabolites that play important roles in the browning of fresh-cut fruits and vegetables, and chemical constituents are extracted from lotus for medicine due to their high antioxidant activity. Studies have explored in depth the changes in phenolic compounds during browning, while little is known about their synthesis during the formation of lotus rhizome. In this study, transcriptomic analyses of six samples were performed during lotus rhizome formation using a high-throughput tag sequencing technique. About 23 million high-quality reads were generated, and 92.14% of the data was mapped to the reference genome. The samples were divided into two stages, and we identified 23,475 genes in total, 689 of which were involved in the biosynthesis of secondary metabolites. A complex genetic crosstalk-regulated network involved in the biosynthesis of phenolic compounds was found during the development of lotus rhizome, and 25 genes in the phenylpropanoid biosynthesis pathway, 18 genes in the pentose phosphate pathway, and 30 genes in the flavonoid biosynthesis pathway were highly expressed. The expression patterns of key enzymes assigned to the synthesis of phenolic compounds were analyzed. Moreover, several differentially expressed genes required for phenolic compound biosynthesis detected by comparative transcriptomic analysis were verified through qRT-PCR. This work lays a foundation for future studies on the molecular mechanisms of phenolic compound biosynthesis during rhizome formation.
Collapse
Affiliation(s)
- Ting Min
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yinqiu Bao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Baixue Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Limei Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wenfu Hou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Youwei Ai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hongxun Wang
- School Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
12
|
Feng L, Raza MA, Chen Y, Khalid MHB, Meraj TA, Ahsan F, Fan Y, Du J, Wu X, Song C, Liu C, Bawa G, Zhang Z, Yuan S, Yang F, Yang W. Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercropping system. PLoS One 2019; 14:e0212885. [PMID: 30807607 PMCID: PMC6391028 DOI: 10.1371/journal.pone.0212885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
Different planting patterns affect the light interception of intercrops under intercropping conditions. Here we revealed that narrow-wide-row relay-intercropping improves the light interception across maize leaves in wide rows (60cm) and narrow rows (40cm), accelerated the biomass production of intercrop-species and compensated the slight maize yield loss by considerably increasing the soybean yield. In a two-year experiment, maize was planted with soybean in different planting patterns (1M1S, 50:50cm and 2M2S, 40:60cm) of relay-intercropping, both planting patterns were compared with sole cropping of maize (M) and soybean (S). As compared to M and 1M1S, 2M2S increased the total light interception of maize leaves in wide rows (WR) by 27% and 23%, 20% and 10%, 16% and 9% which in turn significantly enhanced the photosynthetic rate of WR maize leaves by 7% and 5%, 12% and 9%, and 19% and 4%, at tasseling, grain-filling and maturity stage of maize, respectively. Similarly, the light transmittance at soybean canopy increased by 218%, 160% and 172% at V2, V5 and R1 stage in 2M2S compared with 1M1S. The improved light environment at soybean canopy in 2M2S considerably enhanced the mean biomass accumulation, and allocation to stem and leaves of soybean by 168%, and 131% and 207%, respectively, while it decreased the mean biomass accumulation, and distribution to stem, leaves and seed of maize by 4%, and 4%, 6% and 5%, respectively than 1M1S. Compared to 1M1S, 2M2S also increased the CR values of soybean (by 157%) but decreased the CR values of maize (by 61%). Overall, under 2M2S, relay-cropped maize and soybean produced 94% and 69% of the sole cropping yield, and the 2M2S achieved LER of 1.7 with net income of 1387.7 US $ ha-1 in 2016 and 1434.4 US $ ha-1 in 2017. Our findings implied that selection of optimum planting pattern (2M2S) may increase the light interception and influence the light distribution between maize and soybean rows under relay-intercropping conditions which will significantly increase the intercrops productivity. Therefore, more attention should be paid to the light environment when considering the sustainability of maize-soybean relay-intercropping via appropriate planting pattern selection.
Collapse
Affiliation(s)
- Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Yuankai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Muhammad Hayder Bin Khalid
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tehseen Ahmad Meraj
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Faiza Ahsan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfang Fan
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Chun Song
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Chuanyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - George Bawa
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, P.R. China
| |
Collapse
|
13
|
Hu BY, Deng JC, Yang CQ, Hu Y, Zhang J, Yang WY, Liu J. Extraction optimization, purification and characterization of polysaccharides from the seed coat of black soybean. PLoS One 2017; 12:e0190202. [PMID: 29267349 PMCID: PMC5739467 DOI: 10.1371/journal.pone.0190202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, the extraction of water-soluble polysaccharides from the seed coat of black soybean (BSCP) was investigated and optimized. A response surface methodology based on a Box-Behnken design (BBD) was used to optimize the extraction conditions as follows: extraction temperature, 100°C; ratio of water to material, 22.3 mL/g; and extraction time, 133.2 min. Under these conditions, the experimental yield of polysaccharides was 10.56%, which was consistent with the predictive yield. A novel galactomannan, BSCP-1, with a molecular weight of 7.55 × 105 Da determined by high-performance gel permeation chromatography, was isolated from the black soybean seed coat. Through gas chromatography-mass spectrometry analysis, BSCP-1 was identified as a galactomannan consisting of galactose, mannose and rhamnose in a molar ratio of 6.01:3.56:1.00. Cytotoxicity against the human gastric carcinoma cancer cell line was also determined.
Collapse
Affiliation(s)
- Bao-yu Hu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jun-cai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Cai-qiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yao Hu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jing Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wen-yu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Liu J, Qin WT, Wu HJ, Yang CQ, Deng JC, Iqbal N, Liu WG, Du JB, Shu K, Yang F, Wang XC, Yong TW, Yang WY. Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L. Merr.) seeds. Food Chem 2017; 223:104-113. [PMID: 28069115 DOI: 10.1016/j.foodchem.2016.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 11/20/2022]
Abstract
The effects of storage duration on the seed germination and metabolite profiling of soybean seeds with five different coloured coats were studied. Their germination, constituents and transcript expressions of isoflavones and free fatty acids (FFAs) were compared using chromatographic metabolomic profiling and transcriptome sequencing. The seed water content was characterized using nuclear magnetic resonance (NMR) relaxometry. Results showed that dark-coloured seeds were less inactivated than light-coloured seeds. The aglycone and β-glucoside concentrations of upstream constituents increased significantly, whereas the acetylglucosides and malonylglucosides of downstream constituents decreased with an increase in the storage period. FFAs increased considerably in the soybean seeds as a result of storage. These results indicate that dark-coloured soybean seeds have better storability than light-coloured seeds, and seed water content plays a role in seed inactivation. It was concluded that there are certain metabolic regularities that are associated with different coloured seed coats of soybeans under storage conditions.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wen-Ting Qin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Hai-Jun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Cai-Qiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Jun-Cai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Nasir Iqbal
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wei-Guo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Bo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China; Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Xiao-Chun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Tai-Wen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wen-Yu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
15
|
Deng JC, Yang CQ, Zhang J, Zhang Q, Yang F, Yang WY, Liu J. Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [ Glycine max (L.) Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:508. [PMID: 28487702 PMCID: PMC5404178 DOI: 10.3389/fpls.2017.00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH) stress during soybean maturation in the field promotes pre-harvest mildew, resulting in damage to different organs of soybean fruits to different extents, but relatively little information on the resistance mechanisms in these fruits is available. Therefore, to understand the metabolic responses of soybean fruits to field mold (FM), the metabonomic variations induced by LTH were characterized using proton nuclear magnetic resonance spectroscopy (1H-NMR), and the primary metabolites from the pod, seed coat and cotyledon of pre-harvest soybean were quantified. Analysis of FM-damaged soybean germplasms with different degrees of resistance to FM showed that extracts were dominated by 66 primary metabolites, including amino acids, organic acids and sugars. Each tissue had a characteristic metabolic profile, indicating that the metabolism of proline in the cotyledon, lysine in the seed coat, and sulfur in the pod play important roles in FM resistance. The primary-secondary metabolism interface and its potential contribution to FM resistance was investigated by targeted analyses of secondary metabolites. Both the seed coat and the pod have distinct but nonexclusive metabolic responses to FM, and these are functionally integrated into FM resistance mechanisms.
Collapse
Affiliation(s)
- Jun-cai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
| | - Cai-qiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
| | - Jing Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
| | - Qing Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping SystemChengdu, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping SystemChengdu, China
| | - Wen-yu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping SystemChengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of AgricultureChengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping SystemChengdu, China
- Institute of Ecological Agriculture, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
16
|
Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro. Nutrients 2017; 9:nu9030207. [PMID: 28264445 PMCID: PMC5372870 DOI: 10.3390/nu9030207] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/21/2017] [Indexed: 01/14/2023] Open
Abstract
Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.
Collapse
|
17
|
Liu J, Hu B, Liu W, Qin W, Wu H, Zhang J, Yang C, Deng J, Shu K, Du J, Yang F, Yong T, Wang X, Yang W. Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Sci Rep 2017; 7:42478. [PMID: 28211897 PMCID: PMC5304147 DOI: 10.1038/srep42478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
The isoflavone profiles of seeds of various soybean genotypes with different levels of shade tolerance at the seedling stage were investigated. High-performance liquid chromatography (HPLC) was used to quantify 12 isoflavones, and the data were analyzed using a multivariate statistical analysis. Combined with field experimental data and an orthogonal partial least-squares discriminant analysis (OPLS-DA), several aglycones (genistein (GE), daidzein (DE), and glycitein (GLE)) were selected and identified as key compounds involved in the shade tolerance of soybean seedlings. Additional correlation analysis and laboratory shading stress experiments with soybean seedlings also confirmed the function of these selected isoflavones, especially GE, in the discrimination of soybean seedlings with different levels of shade tolerance. Furthermore, the structure-antioxidant activity relationships between a range of isoflavones and the plant shade-tolerance mechanism are discussed. Targeted metabolomic analyses of isoflavones could reveal the diversity of shade tolerance in soybean seedlings, thus contributing to the breeding of excellent soybean varieties.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Baoyu Hu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Weiguo Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenting Qin
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Haijun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Jing Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Caiqiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Juncai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Taiwen Yong
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaochun Wang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu 611130, China
| |
Collapse
|
18
|
Liu J, Deng J, Zhang K, Wu H, Yang C, Zhang X, Du J, Shu K, Yang W. Pod Mildew on Soybeans Can Mitigate the Damage to the Seed Arising from Field Mold at Harvest Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9135-9142. [PMID: 27933997 DOI: 10.1021/acs.jafc.6b03561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Seedpods are the outermost barrier of legume plants encountered by pests and pathogens, but research on this tissue, especially regarding their chemical constituents, is limited. In the present study, a mildew-index-model-based cluster analysis was used to evaluate and identify groups of soybean genotypes with different organ-specific resistance against field mold. The constituents of soybean pods, including proteins, carbohydrates, fatty acids, and isoflavones, were analyzed. Linear regression and correlation analyses were also conducted between these main pod constituents and the organ-specific mildew indexes of seed (MIS) and pod (MIP). With increases in the contents of infection constituents, such as proteins, carbohydrates, and fatty acids, the MIP increased and the MIS decreased. The MIS decreased with increases in the contents of glycitein (GLE)-type isoflavonoids, which act as antibiotic constituents. Although the infection constituents in the soybean pods caused pod mildew, they also helped mitigate the corresponding seed mildew to a certain extent.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- Institute of Ecological Agriculture, Sichuan Agricultural University , Chengdu, Sichuan 611130, People's Republic of China
| | - Juncai Deng
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Ke Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- College of Pharmacy, Central South University , Changsha, Hunan 410013, People's Republic of China
| | - Haijun Wu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Caiqiong Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Xiaowen Zhang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Junbo Du
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| | - Kai Shu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
- Institute of Ecological Agriculture, Sichuan Agricultural University , Chengdu, Sichuan 611130, People's Republic of China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture , Chengdu, Sichuan 611130, People's Republic of China
| |
Collapse
|
19
|
A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds. Food Chem 2016; 218:99-106. [PMID: 27719963 DOI: 10.1016/j.foodchem.2016.09.057] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
Abstract
Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants.
Collapse
|