1
|
Sánchez-Gutiérrez M, Gómez-García R, Carrasco E, Rodríguez A, Pintado M. Bioactive Potential of Olive Leaf By-Product Throughout In Vitro Gastrointestinal Digestion. Foods 2025; 14:563. [PMID: 40002007 PMCID: PMC11853783 DOI: 10.3390/foods14040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Olive leaf, an abundant and underutilized byproduct of the olive industry, has gained attention as a potential functional ingredient due to its high content of dietary fiber and phenolic compounds. However, little is known about its bioaccessibility and transformation throughout the digestive process, limiting its application in food formulations. This study provides a comprehensive and quantitative assessment of how ground olive leaf bioactive compounds behave during gastrointestinal digestion, offering new insights into their stability and potential health benefits. The total phenolics content and antioxidant activity of ground olive leaf increased in the oral and gastric phases, decreasing slightly in the intestinal phase, with a bioaccessibility of 46% and up to 70% for the total phenolic content and antioxidant activity, respectively. The principal individual phenolic compounds identified in the intestinal phase were oleuropein, luteolin-7-glycoside, luteolin-6-glycoside and ferulic acid, with bioaccessibilities of up to 97%. The main soluble sugars (fructose, glucose, and sucrose) and organic acids (succinic, citric, and acetic acids) detected in the olive leaf samples showed different behaviors during gastrointestinal digestion: sugars increased in the oral and gastric phases but decreased in the intestinal phase, with high bioaccessibility despite reduced recovery, while organic acids remained mostly stable, except for citric acid, which decreased significantly in the intestinal phase, all showing close to 100% bioaccessibility. These results provide the first detailed evidence of the digestive fate of ground olive leaf bioactive compounds, reinforcing its potential as a functional ingredient. Its natural availability, without requiring pre-treatment, combined with its high antioxidant potential and bioaccessibility, highlights its relevance for the development of innovative food ingredients, aligning with circular economy principles and sustainable food strategies.
Collapse
Affiliation(s)
- Mónica Sánchez-Gutiérrez
- Departamento de Ciencia y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Campus de Excelencia Internacional en Agroalimentación (CeiA3), Universidad de Córdoba Rabanales, Edificio Darwin-Anexo, 14071 Cordoba, Spain;
| | - Ricardo Gómez-García
- Laboratório Associado, Escola Superior de Biotecnologia CBQF—Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.); (M.P.)
| | - Elena Carrasco
- Departamento de Ciencia y Tecnología de los Alimentos, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), Campus de Excelencia Internacional en Agroalimentación (CeiA3), Universidad de Córdoba Rabanales, Edificio Darwin-Anexo, 14071 Cordoba, Spain;
| | - Alejandro Rodríguez
- Grupo Biopren (RNM940), Departamento de Ingeniería Química, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Campus de Excelencia Internacional en Agroalimentación (CeiA3), Universidad de Córdoba, 14071 Cordoba, Spain;
| | - Manuela Pintado
- Laboratório Associado, Escola Superior de Biotecnologia CBQF—Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.); (M.P.)
| |
Collapse
|
2
|
Cheng L, Liu X, Ma Y, Huang X, Zhang X, Liu J, Song L, Qiao M, Li T, Wang T. Effects of different processing methods on phenolic compounds in flaxseed meal. Food Chem X 2024; 24:101934. [PMID: 39582661 PMCID: PMC11582773 DOI: 10.1016/j.fochx.2024.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
This study examined effects of different processing methods on phenolic compounds in flaxseed meal. The optimal SE treatment was 1.0 MPa for 3 min, and the contents of total flavonoids and phenolic acid were 2.26 times and 1.63 times of the control group, respectively. Notably, erucic acid increased 85.76 %. Optimal extrusion conditions (15 % moisture content, 140 °C, 29 hz) led to the presence of rutin and a 2.81 times increase in protocatechuic acid content over the control. Fermenting with 3 % Bacillus subtilis for 4 days yielded gallic acid in bound form and vanillic acid in free form, with protocatechuic acid increasing 40.65 % compared to the control. Among all the treatments, extrusion produced the highest levels of phenolic compounds in flaxseed meal. Each treatment significantly increased the open ring isomer ester phenol (SDG) compared to the control. Overall, various processing methods impacted the phenolic content and composition in flaxseed meal differently.
Collapse
Affiliation(s)
- Lin Cheng
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xinru Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Jinrui Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
3
|
Halysh V, Romero-García JM, Vidal AM, Kulik T, Palianytsia B, García M, Castro E. Apricot Seed Shells and Walnut Shells as Unconventional Sugars and Lignin Sources. Molecules 2023; 28:molecules28031455. [PMID: 36771117 PMCID: PMC9918925 DOI: 10.3390/molecules28031455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The present study focuses on using apricot seeds shells and walnut shells as a potential renewable material for biorefinery in Ukraine. The goal of the research work was to determine the relationship between the chemical composition of solid residues from biomass after acid pretreatment with H2SO4, alkaline pretreatment with NaOH, and a steam explosion pretreatment and the recovery of sugars and lignin after further enzymatic hydrolysis with the application of an industrial cellulase Cellic CTec2. Apricot seeds shells and walnut shells consist of lots of cellulose (35.01 and 24.19%, respectively), lignin (44.55% and 44.63%, respectively), hemicelluloses (10.77% and 26.68%, respectively), and extractives (9.97% and 11.41%, respectively), which affect the efficiency of the bioconversion of polysaccharides to sugars. The alkaline pretreatment was found to be more efficient in terms of glucose yield in comparison with that of acid and steam explosion, and the maximum enzymatic conversions of cellulose reached were 99.7% and 94.6% for the solids from the apricot seeds shells and the walnut shells, respectively. The maximum amount of lignin (82%) in the residual solid was obtained during the processing of apricot seed shells submitted to the acid pretreatment. The amount of lignin in the solids interferes with the efficiency of enzymatic hydrolysis. The results pave the way for the efficient and perspective utilization of shells through the use of inexpensive, simple and affordable chemical technologies, obtaining value-added products, and thus, reducing the amount of environmental pollution (compared to the usual disposal practice of direct burning) and energy and material external dependency (by taking advantage of these renewable, low-cost materials).
Collapse
Affiliation(s)
- Vita Halysh
- Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Juan Miguel Romero-García
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (J.M.R.-G.); (E.C.); Tel.: +34-9532182163 (E.C.)
| | - Alfonso M. Vidal
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Tetiana Kulik
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Borys Palianytsia
- Laboratory of Kinetics and Mechanisms of Chemical Reactions on the Surface of Solids, Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Str., 17, 03164 Kyiv, Ukraine
| | - Minerva García
- Tecnológico Nacional de México/Instituto Tecnológico de Zitácuaro, Av. Tecnológico No. 186 Manzanillos, Zitácuaro 61534, Michoacán, Mexico
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
- Correspondence: (J.M.R.-G.); (E.C.); Tel.: +34-9532182163 (E.C.)
| |
Collapse
|
4
|
Wan F, Feng C, Luo K, Cui W, Xia Z, Cheng A. Effect of steam explosion on phenolics and antioxidant activity in plants: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Song G, Liu J, Shui R, Sun J, Weng Q, Qiu S, Wang D, Liu S, Xiao G, Chen X, Shen Q, Gong J, Zheng F. Effect of steam explosion pretreatment on the composition and bioactive characteristic of phenolic compounds in Chrysanthemum morifolium Ramat cv. Hangbaiju powder with various sieve fractions. Food Sci Nutr 2022; 10:1888-1898. [PMID: 35702289 PMCID: PMC9179122 DOI: 10.1002/fsn3.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Steam explosion (SE) pretreatment is an efficient technique to promote the fiber degradation and disrupt materials' cell wall. In this study, the effect of SE pretreatment on the changes in phenolic profile, and the in vitro digestion property of a Chinese indigenous herb "Hangbaiju" (HBJ) powder with various sieve fractions (150-, 180-, 250-, 425-, and 850-μm sieves) were studied. After SE pretreatment, the morphological structure, color attributes, and composition of phenolic compounds were altered significantly (p < .05). The composition and content of phenolic compounds were strongly correlated with particle sizes. The higher extraction yield of phenolic compounds was reached in the intermediate sieve fraction (ca. 250-μm sieves). During in vitro digestion, the changes in phenolic compounds were significant due to the transition from an acidic to the alkaline environment (p < .05). Based on the multivariate statistical analysis, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and linarin, were viewed as the characteristic compounds among various samples. The results highlighted that the phytochemical properties mainly including the composition of phenolic compounds, and in vitro digestion properties of HBJ powder with intermediate sieve fraction could be improved after SE pretreatment.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Jiayuan Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Ruofan Shui
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Jiachen Sun
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Qian Weng
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Shaoping Qiu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
- Beijing Laboratory of Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Shiwang Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Gongnian Xiao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
| | - Xi Chen
- Zhejiang Provincial People’s HospitalAffiliated People’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep ProcessingZhejiang Province Joint Key Laboratory of Aquatic Products ProcessingInstitute of SeafoodZhejiang Gongshang UniversityHangzhouChina
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm ProductSchool of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouChina
- Beijing Laboratory of Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and SafetyBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
6
|
Kandah MI. Production of Biodegradable Bioplastics filled with Jordanian Olive Tree Leaves. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Munther Issa Kandah
- Chemical Engineering Department Jordan University of Science and Technology P.O.Box 3030 Irbid 22110 Jordan
| |
Collapse
|
7
|
Ruiz HA, Galbe M, Garrote G, Ramirez-Gutierrez DM, Ximenes E, Sun SN, Lachos-Perez D, Rodríguez-Jasso RM, Sun RC, Yang B, Ladisch MR. Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. BIORESOURCE TECHNOLOGY 2021; 342:125961. [PMID: 34852440 DOI: 10.1016/j.biortech.2021.125961] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal processes are an attractive clean technology and cost-effective engineering platform for biorefineries based in the conversion of biomass to biofuels and high-value bioproducts under the basis of sustainability and circular bioeconomy. The deep and detailed knowledge of the structural changes by the severity of biomasses hydrothermal fractionation is scientifically and technological needed in order to improve processes effectiveness, reactors designs, and industrial application of the multi-scale target compounds obtained by steam explosion and liquid hot water systems. The concept of the severity factor [log10 (Ro)] established>30 years ago, continues to be a useful index that can provide a simple descriptor of the relationship between the operational conditions for biomass fractionation in second generation of biorefineries. This review develops a deep explanation of the hydrothermal severity factor based in lignocellulosic biomass fractionation with emphasis in research advances, pretreatment operations and the applications of severity factor kinetic model.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Diana M Ramirez-Gutierrez
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Bin Yang
- Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| |
Collapse
|
8
|
Krafft MJ, Berger J, Saake B. Analytical Characterization and Inhibitor Detection in Liquid Phases Obtained After Steam Refining of Corn Stover and Maize Silage. Front Chem 2021; 9:760657. [PMID: 34722463 PMCID: PMC8551624 DOI: 10.3389/fchem.2021.760657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The utilization of agricultural products and residues for the production of value-added and biobased products is a highly relevant topic in present research. Due to the natural recalcitrance of lignocellulosic biomass against enzymatic degradation, pretreatments are important requirement for further processes. For the raw material in this study, corn stover (CS) as highly available agricultural residue and maize silage (MS) as model substrate for an ensiled agricultural product were pretreated by steam refining. However, after processing a liquid fraction and fibers are present. Subsequent to steaming the fiber fraction is well characterized. Nonetheless, in depth characterizations of the filtrates are also important for their subsequent utilization. Decreasing molar masses from 7,900 g/mol to 1,100 g/mol for CS filtrates and 100.000–12.900 g/mol for MS filtrates were determined with increasing severity. Due to their proven inhibitory effect on microorganisms weak acids, furans and phenolic compounds within the liquid phased were analyzed. Especially formic acid increases with increasing severity from 0.27 to 1.20% based on raw material for CS and from 0.07 to 0.23% based on raw material for MS. Further GC/MS measurements indicate, that up to 8.25% (CS filtrate) and 5.23% (MS filtrates) of the total peak area is related to inhibitory phenols. Considering the data, detoxification strategies are of non-negligible importance for filtrates after steam refining and should be considered for further research and process or parameter optimizations. An alternative may be the application of milder process conditions in order to prevent the formation of inhibitory degradation products or the dilution of the gained filtrates.
Collapse
Affiliation(s)
- Malte Jörn Krafft
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| | - Jens Berger
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| | - Bodo Saake
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| |
Collapse
|
9
|
Doménech P, Duque A, Higueras I, Fernández JL, Manzanares P. Analytical Characterization of Water-Soluble Constituents in Olive-Derived By-Products. Foods 2021; 10:foods10061299. [PMID: 34198861 PMCID: PMC8229305 DOI: 10.3390/foods10061299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023] Open
Abstract
Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.
Collapse
|
10
|
Espeso J, Isaza A, Lee JY, Sörensen PM, Jurado P, Avena-Bustillos RDJ, Olaizola M, Arboleya JC. Olive Leaf Waste Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olive trees are the oldest known cultivated trees in the world and present-day cultivation is widespread, with an estimated magnitude of 9 million hectares worldwide. As the olive oil industry has continued to grow, so has the environmental impact of olive oil production, such as the energy and water consumption, gas emissions and waste generation. The largest contributor to waste generation are the olive leaves, an abundant and unavoidable byproduct of olive-oil production due to the necessity of tree-pruning. It is estimated that an annual 1.25 million tons of olive leaf waste are generated in Spain alone, around 50% of the total world production. The leaves are currently used for biomass production or animal feed. However, because of their polyphenolic composition, olive leaves have potential in numerous other applications. In this review we analyze the chemical composition of olive leaves, and discuss current processing methods of the olive leaf waste, including thermochemical, biochemical, drying, extraction and condensation methods. We also examine current applications of the treated olive leaves in sectors relating to cattle feed, fertilizers, novel materials, energy generation, and food and pharmaceutical products. The aim of this review is to provide a resource for producers, policy makers, innovators and industry in shaping environmentally sustainable decisions for how olive leaf waste can be utilized and optimized.
Collapse
|
11
|
Gong J, Weng Q, Sun J, Wang D, Qiu S, Li L, Chu B, Xiao G, Liu S, Zheng F. Steam explosion pretreatment alters the composition of phenolic compounds and antioxidant capacities in
Chrysanthemum
morifolium
Ramat
cv
. “Hangbaiju”. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qian Weng
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Jiachen Sun
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Shaoping Qiu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Bingquan Chu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Gongnian Xiao
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Shiwang Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
12
|
Guerras L, Sengupta D, Martín M, El-Halwagi MM. Multilayer Approach for Product Portfolio Optimization: Waste to Added-Value Products. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:6410-6426. [PMID: 34796044 PMCID: PMC8592024 DOI: 10.1021/acssuschemeng.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A multistage multilayer systematic procedure has been developed for the selection of the optimal product portfolio from waste biomass as feedstock for systems involving water-energy-food nexus. It consists of a hybrid heuristic, metric-based, and optimization methodology that evaluates the economic and environmental performance of added-value products from a particular raw material. The first stage preselects the promising products. Next, a superstructure optimization problem is formulated to valorize or transform waste into the optimal set of products. The methodology has been applied within the waste to power and chemicals initiative to evaluate the best use of the biomass residue from the olive oil industry toward food, chemicals, and energy. The heuristic stage is based on the literature review to analyze the feasible products and techniques. Next, simple metrics have been developed and used to preselect products that are promising. Finally, a superstructure optimization approach is used to design the facility that processes leaves, wood chips, and olives into final products. The best technique to recover phenols from "alperujo", a wet solid waste/byproduct of the process, consists of the use of membranes, while the adsorption technique is used for the recovery of phenols from olive leaves and branches. The investment required to process waste adds up to €110.2 million for a 100 kt/yr for the olive production facility, while the profit depends on the level of integration. If the facility is attached to an olive oil production, the generated profit ranges between 14.5 MM €/yr (when the waste is purchased at prices of €249 per ton of alperujo and €6 per ton of olive leaves and branches) and 34.3 MM €/yr when the waste material is obtained for free.
Collapse
Affiliation(s)
- Lidia
S. Guerras
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Debalina Sengupta
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
| | - Mariano Martín
- Department
of Chemical Engineering, University of Salamanca, Plz. Caídos 1-5, 37008 Salamanca, Spain
| | - Mahmoud M. El-Halwagi
- Gas
and Fuels Research Center, Texas A&M
Engineering Experiment Station, 7607 Eastmark Drive, College
Station, Texas 77840, United States
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, 100 Spence Street, College Station, Texas 77843, United States
| |
Collapse
|
13
|
Contreras MDM, Gómez-Cruz I, Romero I, Castro E. Olive Pomace-Derived Biomasses Fractionation through a Two-Step Extraction Based on the Use of Ultrasounds: Chemical Characteristics. Foods 2021; 10:111. [PMID: 33430320 PMCID: PMC7825784 DOI: 10.3390/foods10010111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Olive-derived biomass is not only a renewable bioenergy resource but also it can be a source of bioproducts, including antioxidants. In this study, the antioxidant composition of extracted olive pomace (EOP) and a new byproduct, the residual fraction from olive pit cleaning (RFOPC or residual pulp) was characterized and compared to olive leafy biomass, which have been extensively studied as a source of antioxidants and other bioactive compounds with pharmacological properties. The chemical characterization showed that these byproducts contain a high amount of extractives; in the case of EOP, it was even higher (52.9%) than in olive leaves (OL) and olive mill leaves (OML) (35.8-45.1%). Then, ultrasound-assisted extraction (UAE) was applied to recover antioxidants from the extractive fraction of these biomasses. The solubilization of antioxidants was much higher for EOP, correlating well with the extractives content and the total extraction yield. Accordingly, this also affected the phenolic richness of the extracts and the differences between all biomasses were diminished. In any case, the phenolic profile and the hydroxytyrosol cluster were different. While OL, OML, and EOP contained mainly hydroxytyrosol derivatives and flavones, RFOPC presented novel trilignols. Other compounds were also characterized, including secoiridoids, hydroxylated fatty acids, triterpenoids, among others, depending on the bioresource. Moreover, after the UAE extraction step, alkaline extraction was applied recovering a liquid and a solid fraction. While the solid fraction could of interest for further valorization as a biofuel, the liquid fraction contained proteins, sugars, and soluble lignin, which conferred antioxidant properties to these extracts, and whose content depended on the biomass and conditions applied.
Collapse
Affiliation(s)
- María del Mar Contreras
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Inmaculada Romero
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Campus Las Lagunillas, Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain; (I.G.-C.); (I.R.); (E.C.)
- Center for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
14
|
Influence of Free and Encapsulated Olive Leaf Phenolic Extract on the Storage Stability of Single and Double Emulsion Salad Dressings. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Lama-Muñoz A, del Mar Contreras M, Espínola F, Moya M, Romero I, Castro E. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem 2020; 329:127153. [DOI: 10.1016/j.foodchem.2020.127153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
|
16
|
Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants (Basel) 2020; 9:antiox9101010. [PMID: 33080930 PMCID: PMC7603280 DOI: 10.3390/antiox9101010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Exhausted olive pomace (EOP) is the waste generated from the drying and subsequent extraction of residual oil from the olive pomace. In this work, the effect of different aqueous solvents on the recovery of antioxidant compounds from this lignocellulosic biomass was assessed. Water extraction was selected as the best option for recovering bioactive compounds from EOP, and the influence of the main operational parameters involved in the extraction was evaluated by response surface methodology. Aqueous extraction of EOP under optimised conditions (10% solids, 85 °C, and 90 min) yielded an extract with concentrations (per g EOP) of phenolic compounds and flavonoids of 44.5 mg gallic acid equivalent and 114.9 mg rutin equivalent, respectively. Hydroxytyrosol was identified as the major phenolic compound in EOP aqueous extracts. Moreover, these extracts showed high antioxidant activity, as well as moderate bactericidal action against some food-borne pathogens. In general, these results indicate the great potential of EOP as a source of bioactive compounds, with potential uses in several industrial applications.
Collapse
|
17
|
Contreras MDM, Romero I, Moya M, Castro E. Olive-derived biomass as a renewable source of value-added products. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech 2020; 10:432. [PMID: 32999810 DOI: 10.1007/s13205-020-02426-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present work, bioethanol was produced by sugar fermentation obtained from water hyacinth using a novelty hybrid method composed of steam explosion and enzymatic hydrolysis, using hydrolytic enzymes produced by solid-state fermentation and water hyacinth as substrate. The highest activity, 42 U for xylanase and 2 U for cellulase per gram of dry matter, respectively, was obtained. Steam explosion pretreatment was performed at 190 ℃ for 1, 5, and 10 min, using water hyacinth sampled from the Maria Lizamba Lagoon, the Arroyo Hondo and the Amapa River. The highest amounts of reducing sugars of water hyacinth were obtained form the samples from the lagoon (5.4 g/50 g of dry matter) after 10 min of treatment. Steamed biomass was hydrolysed using the enzymes obtained by solid-state fermentation, obtained reducing sugars (maximum 15.5 g/L); the efficiency of enzymatic hydrolysis was 0.51 g of reducing sugars per gram of water hyacinth. Finally, reducing sugars were fermented using Saccharomyces cerevisiae for conversion to ethanol, with the highest ethanol concentration (7.13 g/L) and an ethanol yield of 0.23 g/g of dry matter.
Collapse
|
19
|
Gullón P, Gullón B, Astray G, Carpena M, Fraga-Corral M, Prieto MA, Simal-Gandara J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res Int 2020; 137:109683. [PMID: 33233259 DOI: 10.1016/j.foodres.2020.109683] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the last years, the consumption of olive oil has experienced a sharp rise due to its organoleptic and healthy properties and with this the wastes and by-products derived from the olive production and the olive oil industry have also increased causing important environmental and economic issues. However, the high content in bioactive compounds of these wastes and by-products makes that its recovery is both a great challenge and an excellent opportunity for the olive oil sector. AIM OF THE REVIEW This review encompasses the more outstanding aspects related to the advances achieved until date in the olive oil by-products valorisation and added-value applications for innovative functional foods. CONCLUSION Taking into account the information reported in this manuscript, the development of a multiproduct biorefinery in cascade using eco-friendly technologies interchangable seems a suitable stratety to obtaining high added value compounds from olive oil by-products with applications in the field of innovative functional foods. In addition, this would allow an integral valorization of these residues enhancing the profitability of the olive oil industry. On the other hand, the biocompounds fom olive oil by-products have been described by their interesting bioactivities with beneficial properties for the consumers' health; therefore, their incorporation into the formulation of functional foods opens new possibilities in the field of innovative foods. Future perspective: Despite the studies descibed in the literature, more research on the healthy properties of the recovered compounds and their interactions with food components is key to allow their reintegration in the food chain and therefore, the removal of the olive oil by-products.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo, Ourense Campus, Ourense, Spain
| | - María Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - María Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain.
| |
Collapse
|
20
|
Abstract
The agricultural and processing activities of olive crops generate a substantial amount of food by-products, particularly olive leaves, which are mostly underexploited, representing a significant threat to the environment. Olive leaves are endowed with endogenous bioactive compounds. Their beneficial/health-promoting potential, together with environmental protection and circular economy, merit their exploitation to recover and reuse natural components that are potentially safer alternatives to synthetic counterparts. These biomass residues have great potential for extended industrial applications in food/dietary systems but have had limited commercial uses so far. In this regard, many researchers have endeavoured to determine a green/sustainable means to replace the conventional/inefficient methods currently used. This is not an easy task as a sustainable bio-processing approach entails careful designing to maximise the liberation of compounds with minimum use of (i) processing time, (ii) toxic solvent (iii) fossil fuel energy, and (iv) overall cost. Thus, it is necessary to device viable strategies to (i) optimise the extraction of valuable biomolecules from olive leaves and enable their conversion into high added-value products, and (ii) minimise generation of agro-industrial waste streams. This review provides an insight to the principal bioactive components naturally present in olive leaves, and an overview of the existing/proposed methods associated with their analysis, extraction, applications, and stability.
Collapse
|
21
|
Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion. ENERGIES 2020. [DOI: 10.3390/en13174517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This work addresses for the first time the study of olive stone (OS) biomass pretreatment by reactive extrusion technology using NaOH as the chemical agent. It is considered as a first step in the biological conversion process of the carbohydrates contained in the material into bio-based products. OS is a sub-product of the olive oil extraction process that could be used in a context of a multi-feedstock and multi-product biorefinery encompassing all residues generated around the olive oil production sector. OS biomass is pretreated in a twin-screw extruder at varying temperatures—100, 125 and 150 °C and NaOH/biomass ratios of 5% and 15% (dry weight basis), in order to estimate the effectiveness of the process to favour the release of sugars by enzymatic hydrolysis. The results show that alkaline extrusion is effective in increasing the sugar release from OS biomass compared to the raw material, being necessary to apply conditions of 15% NaOH/biomass ratio and 125 °C to attain the best carbohydrate conversion rates of 55.5% for cellulose and 57.7% for xylan in relation to the maximum theoretical achievable. Under these optimal conditions, 31.57 g of total sugars are obtained from 100 g of raw OS.
Collapse
|
22
|
Chen Y, Shan S, Cao D, Tang D. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity. Food Chem 2020; 319:126552. [PMID: 32151898 DOI: 10.1016/j.foodchem.2020.126552] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
The resource utilization of soybean seed coats is currently poor. In this study, steam flash explosion (SFE) pretreatment was performed to extract valuable phytochemicals from soybean seed coats. The total content of phytochemicals and the antioxidant activity of extracts from SFE-treated soybean seed coat were systematically evaluated. On the basis of the application value of antioxidant activity, we optimized the process parameters of SFE-pretreated soybean seed coat to maximize the antioxidant activity. Additionally, the subsequently obtained ethyl acetate fraction with the highest antioxidant activity was analysed using HPLC-DAD-Q-Orbitrap HRMS/MS analysis. The results indicated that SFE could enhance the release of both aglycone and acetylglucoside forms of isoflavones from the cellular structure and enhance the antioxidant activity of soybean seed coats. This study provides evidence that SFE is a novel thermal processing technology with high efficiency and low energy consumption that improves the phytochemical composition and bioactivity of soybean seed coats.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510632, China
| | - Dongmin Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Zhao G, Kuang G, Wang Y, Yao Y, Zhang J, Pan ZH. Effect of steam explosion on physicochemical properties and fermentation characteristics of sorghum (Sorghum bicolor (L.) Moench). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Li W, Zhang X, He X, Li F, Zhao J, Yin R, Ming J. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics. Food Funct 2020; 11:4648-4658. [PMID: 32401260 DOI: 10.1039/d0fo00493f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steam explosion (SE) is an efficient technology to disrupt materials for improving their quality. In this study, SE was applied to release phenolics and improve the roughening of tartary buckwheat bran. The results showed that SE promoted the dissolution of phenolics, particularly, the content of the bound fraction was nearly increased by two times (0.36 vs. 0.99 mg GAE per g DW). The analysis of the phenolic composition showed that SE improved the liberation of bound pyrogallic acid, protocatechuic acid and caffeic acid. The biological activity tests indicated that SE effectively enhanced the oxygen radical absorbance capacity (ORAC) in vitro of the extract of bound phenolics by 270%. It also improved the cellular antioxidant activity (CAA) in vitro of the extract of free phenolics by 215%. Furthermore, SE showed potential in improving the antiproliferative activity of the total phenolic extract against Caco-2 cells as well as the bound phenolic extract against HepG2 cells in vitro.
Collapse
Affiliation(s)
- Weizhou Li
- College of Food Science, Southwest University, Chongqing, 400715, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Coelho JMP, Johann G, da Silva EA, Palú F, Vieira MGA. Extraction of natural antioxidants from strawberry guava leaf by conventional and non-conventional techniques. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1755658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Gracielle Johann
- Bioprocesss Engineering and Biotechnology Course, Federal University of Technology – Parana (UTFPR), Dois Vizinhos, Brazil
| | | | - Fernando Palú
- Chemical Engineering Course, Western State University of Paraná, Toledo, Brazil
| | | |
Collapse
|
26
|
Lama-Muñoz A, Contreras MDM, Espínola F, Moya M, Romero I, Castro E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem 2020; 320:126626. [PMID: 32222659 DOI: 10.1016/j.foodchem.2020.126626] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Olive leaves are considered a promising source of bioactives such as phenolic compounds and mannitol. The extraction of high added value products is an issue of great interest and importance from the point of view of their exploitation. However, the content of these compounds can differ between cultivars and extraction methods. In this work, six olive leaves cultivars, including three wild cultivars, and two extraction processes (an innovative and alternative technique, pressurized liquid extraction, and a conventional Soxhlet extraction) were evaluated and compared towards the selective recovery of bioactive compounds. The wild cultivars showed the highest content of phenolic and flavonoid compounds, being oleuropein the compound present in higher amount. Findings also revealed that the highest mannitol content in the extracts was observed with the commercial cultivars, specifically in Arbequina. It is thus possible to decide which cultivars to use in order to obtain the highest yield of each bioproduct.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain.
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| |
Collapse
|
27
|
Cavaca LA, López-Coca IM, Silvero G, Afonso CA. The olive-tree leaves as a source of high-added value molecules: Oleuropein. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817903-1.00005-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Steam explosion modification on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Integrated Process for Sequential Extraction of Bioactive Phenolic Compounds and Proteins from Mill and Field Olive Leaves and Effects on the Lignocellulosic Profile. Foods 2019; 8:foods8110531. [PMID: 31671747 PMCID: PMC6915506 DOI: 10.3390/foods8110531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022] Open
Abstract
The extraction of bioactive compounds in a biorefinery context could be a way to valorize agri-food byproducts, but there is a remaining part that also requires attention. Therefore, in this work the integrated extraction of phenolic compounds, including the bioactive oleuropein, and proteins from olive mill leaves was addressed following three schemes, including the use of ultrasound. This affected the total phenolic content (4475.5-6166.9 mg gallic acid equivalents/100 g), oleuropein content (675.3-1790.0 mg/100 g), and antioxidant activity (18,234.3-25,459.0 µmol trolox equivalents/100 g). No effect was observed on either the protein recovery or the content of sugars and lignin in the extraction residues. Concerning the recovery of proteins, three operational parameters were evaluated by response surface methodology. The optimum (63.1%) was achieved using NaOH 0.7 M at 100 °C for 240 min. Then, the selected scheme was applied to olive leaves from the field, observing differences in the content of some of the studied components. It also changed the lignocellulosic profile of the extraction residues of both leaf types, which were enriched in cellulose. Overall, these results could be useful to diversify the valorization chain in the olive sector.
Collapse
|
30
|
Bedoić R, Ćosić B, Duić N. Technical potential and geographic distribution of agricultural residues, co-products and by-products in the European Union. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:568-579. [PMID: 31185404 DOI: 10.1016/j.scitotenv.2019.05.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 05/10/2023]
Abstract
Value waste chain generates a significant amount of different agricultural wastes, co-products and by-products (AWCB) that occur during three major stages of a complex path, from farm to fork. This paper presents stages where and how waste occurs along the path from the ground to the table for a period of 7 years, from 2010 to 2016 in the 28 member countries of the European Union (EU28). Considering the specific conditions of the EU28 community, four different sectors with 26 commodities and waste types that occur in those sectors were analysed: 5 commodities in the Fruit sector, 10 commodities in the Vegetable sector, 7 commodities in the Cereal sector and 4 commodities in the Animal sector. The analysis consists of three stages of waste appearance: production (harvesting, farming), processing and consumption (raw, uncooked food). Production data were taken from Eurostat, import and export data were taken from FAOSTAT. Methodology and calculations consist of relations between specific values. Those specific values for every commodity are the production data, import and export data, and consumption of raw food by the inhabitants of a country. Total consumption of raw food by inhabitant is calculated from the specific consumption per capita and population. The results of the study showed that from 2010 to 2016 in the EU28 the estimated quantity of the AWCB appeared to be around 18.4 billion tonnes, with the sector percentages as follows: Animal ~31%, Vegetable ~44%, Cereal ~22% and Fruit ~2%. In the Animal sector, the most dominant were developed countries, with high population density and high level of industrialisation. The Cereal, Fruit and Vegetable sectors have shown to generate higher AWCB quantities in the countries with more available land area and appropriate climate conditions.
Collapse
Affiliation(s)
- Robert Bedoić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
| | - Boris Ćosić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
| | - Neven Duić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia.
| |
Collapse
|
31
|
Lama-Muñoz A, Rubio-Senent F, Bermúdez-Oria A, Fernández-Bolaños J, Prior ÁF, Rodríguez-Gutiérrez G. The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Determination of the Lignocellulosic Components of Olive Tree Pruning Biomass by Near Infrared Spectroscopy. ENERGIES 2019. [DOI: 10.3390/en12132497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The determination of chemical composition of lignocellulose biomass by wet chemistry analysis is labor-intensive, expensive, and time consuming. Near infrared (NIR) spectroscopy coupled with multivariate calibration offers a rapid and no-destructive alternative method. The objective of this work is to develop a NIR calibration model for olive tree lignocellulosic biomass as a rapid tool and alternative method for chemical characterization of olive tree pruning over current wet methods. In this study, 79 milled olive tree pruning samples were analyzed for extractives, lignin, cellulose, hemicellulose, and ash content. These samples were scanned by reflectance diffuse near infrared techniques and a predictive model based on partial least squares (PLS) multivariate calibration method was developed. Five parameters were calibrated: Lignin, cellulose, hemicellulose, ash, and extractives. NIR models obtained were able to predict main components composition with R2cv values over 0.5, except for lignin which showed lowest prediction accuracy.
Collapse
|
33
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
34
|
Lama-Muñoz A, Del Mar Contreras M, Espínola F, Moya M, de Torres A, Romero I, Castro E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem 2019; 293:161-168. [PMID: 31151597 DOI: 10.1016/j.foodchem.2019.04.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/11/2019] [Accepted: 04/21/2019] [Indexed: 01/11/2023]
Abstract
Olive leaves have become a promising source of phenolic compounds and flavonoids with high added value. Phenolic compounds and flavonoids are important sources of antioxidants and bioactives, and one of the processes used to effectively produce them is extraction via solvents, using aqueous ethanol solutions. To obtain the highest extraction yield per kg of biomass, olive leaves were extracted using a conventional technique (dynamic maceration) and an emerging technology, such as pressurized liquid extraction. Studies of the factors that influence these processes were performed: temperature, leaf moisture content, solvent/solid, and aqueous ethanol concentration were optimized using the central composite and Box-Behnken experiment designs. Pressurized liquid extraction resulted in more efficient oleuropein and luteolin-7-O-glucoside extraction than dynamic maceration. The operational conditions for maximizing the recovery of phenolic compounds and flavonoids and antioxidant capacity were determined to be 190 °C, leaf moisture content of 5%, and aqueous ethanol concentration of 80%.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain.
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Antonia de Torres
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| |
Collapse
|
35
|
Martínez-Patiño JC, Gullón B, Romero I, Ruiz E, Brnčić M, Žlabur JŠ, Castro E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. ULTRASONICS SONOCHEMISTRY 2019; 51:487-495. [PMID: 29880395 DOI: 10.1016/j.ultsonch.2018.05.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/14/2023]
Abstract
Olive tree pruning biomass (OTP) and olive mill leaves (OML) are the main residual lignocellulosic biomasses that are generated from olive trees. They have been proposed as a source of value-added compounds and biofuels within the biorefinery concept. In this work, the optimization of an ultrasound-assisted extraction (UAE) process was performed to extract antioxidant compounds present in OTP and OML. The effect of the three parameters, ethanol/water ratio (20, 50, 80% of ethanol concentration), amplitude percentage (30, 50, 70%) and ultrasonication time (5, 10, 15 min), on the responses of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities (DPPH, ABTS and FRAP) were evaluated following a Box-Behnken experimental design. The optimal conditions obtained from the model, taking into account simultaneously the five responses, were quite similar for OTP and OML, with 70% amplitude and 15 min for both biomasses and a slight difference in the optimum concentration of ethanol. (54.5% versus 51.3% for OTP and OML, respectively). When comparing the antioxidant activities obtained with OTP and OML, higher values were obtained for OML (around 40% more than for OTP). The antioxidant activities reached experimentally under the optimized conditions were 31.6 mg of TE/g of OTP and 42.5 mg of TE/g of OML with the DPPH method, 66.5 mg of TE/g of OTP and 95.9 mg of TE/g of OML with the ABTS method, and 36.4 mg of TE/g of OTP and 49.7 mg of TE/g of OML with the FRAP method. Both OTP and OML could be a potential source of natural antioxidants.
Collapse
Affiliation(s)
- José Carlos Martínez-Patiño
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Mladen Brnčić
- Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
36
|
Arsyad MA, Akazawa T, Nozaki C, Yoshida M, Oyama K, Mukai T, Ogawa M. Effects of olive leaf powder supplemented to fish feed on muscle protein of red sea bream. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1299-1308. [PMID: 29790092 DOI: 10.1007/s10695-018-0521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Olive leaf is known to have the high polyphenol content of 6-9% in dry weight. We investigated the effects of olive leaf powder (OLP) supplemented to fish feed on muscle protein of red sea bream (Pagrus major). Fish reared with feed containing 8% OLP for 40 days had 1.4 times higher myofibril content and 2.2 times higher acid-soluble collagen content than fish reared with control feed for the same period. On the other hand, sarcoplasmic protein content and collagenase activity of the muscle were almost the same between the control fish and OLP-diet fish. Microstructure observation of fish muscle showed that OLP-diet fish has more rigid endomysium structure than that of the control-diet fish. Since collagen fiber in endomysium is responsible for the texture of the muscle, feeding OLP to aquaculture fish will lead to a harder muscle texture. The present study suggests that OLP is a useful feed additive to enhance the texture of aquaculture red sea bream muscle through strengthening of the collagen structure in the muscle.
Collapse
Affiliation(s)
- Muh Ali Arsyad
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Science, Ehime University Affiliated to Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
- Pangkep State of Agriculture Polytechnic, Jalan Poros Makassar-Pare Km. 83, Kabupaten Pangkep, Sulawesi Selatan, Indonesia
| | - Takashi Akazawa
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Science, Ehime University Affiliated to Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Chie Nozaki
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Makoto Yoshida
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Kenichi Oyama
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Tatsuo Mukai
- Kagawa Prefectural Fisheries Experimental Station, 75-5 Yashima higashi machi, Takamatsu, Kagawa, 761-0111, Japan
| | - Masahiro Ogawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan.
| |
Collapse
|
37
|
Guo Z, Jia X, Zheng Z, Lu X, Zheng Y, Zheng B, Xiao J. Chemical composition and nutritional function of olive (Olea europaea L.): a review. PHYTOCHEMISTRY REVIEWS 2018; 17:1091-1110. [DOI: 10.1007/s11101-017-9526-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Cifá D, Skrt M, Pittia P, Di Mattia C, Poklar Ulrih N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci Nutr 2018; 6:1128-1137. [PMID: 29983977 PMCID: PMC6021698 DOI: 10.1002/fsn3.654] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to optimize the extraction of oleuropein from olive leaves through a systematic study of the effects of different parameters of ultrasound-assisted extraction (USAE) on the oleuropein yield, in comparison with conventional maceration extraction. A range of operational parameters were investigated for both conventional maceration extraction and USAE: solvent type, olive leaf mass-to-solvent volume ratio, and extraction time and temperature. Oleuropein yield was determined using high-performance liquid chromatography, with total phenolics content also determined. The optimized conditions (water-ethanol, 30:70 [v/v]; leaf-to-solvent ratio, 1:5 [w/v]; 2 hr; 25°C) provided ~30% greater oleuropein extraction yield compared to conventional maceration extraction. The total phenolics content obtained using the optimized USAE conditions was greater than reported in other studies. USAE is shown to be an efficient alternative to conventional maceration extraction techniques, as not only can it offer increased oleuropein extraction yield, but it also shows a number of particular advantages, such as the possibility of lower volumes of solvent and lower extraction times, with the extraction carried out at lower temperatures.
Collapse
Affiliation(s)
- Domenico Cifá
- Faculty of Bioscience and Technology for Food, Agriculture and the EnvironmentUniversity of TeramoTeramoItaly
| | - Mihaela Skrt
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and the EnvironmentUniversity of TeramoTeramoItaly
| | - Carla Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and the EnvironmentUniversity of TeramoTeramoItaly
| | - Nataša Poklar Ulrih
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP)LjubljanaSlovenia
| |
Collapse
|
39
|
Khemakhem I, Abdelhedi O, Trigui I, Ayadi MA, Bouaziz M. Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int J Biol Macromol 2018; 106:425-432. [DOI: 10.1016/j.ijbiomac.2017.08.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022]
|
40
|
Rizzo M, Ventrice D, Giannetto F, Cirinnà S, Santagati NA, Procopio A, Mollace V, Muscoli C. Antioxidant activity of oleuropein and semisynthetic acetyl-derivatives determined by measuring malondialdehyde in rat brain. J Pharm Pharmacol 2017; 69:1502-1512. [PMID: 28879679 DOI: 10.1111/jphp.12807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/26/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The purpose of this study was the evaluation of the antioxidant activity of natural and semisynthetic polyphenol derivatives from Olea europea L., by assessing malondialdehyde (MDA), an important marker of oxidative stress. METHODS Polyphenol as hydroxytyrosol, oleuropein, oleuropein aglycone as mix of four tautomeric forms and their respective acetyl-derivatives were obtained from olive leaves using semisynthetic protocols. These compounds were administered intraperitoneally to Wistar rats treated with paraquat, an herbicide which is able to cause oxidative stress after central administration. Malondialdehyde was derivatized with 2,4-dinitrophenylhydrazine to produce hydrazone that was purified by solid-phase extraction. Using high-performance liquid chromatography coupled with a diode array, free and total MDA was measured on homogenate rat brain as marker of lipid peroxidation. The analytical method was fully validated and showed linearity in the tested concentration range, with detection limit of 5 ng/ml. Recovery ranged from 94.1 to 105.8%. KEY FINDINGS Both natural and semisynthetic polyphenol derivatives from a natural source as olive leaves were able to reduce MDA detection. The more lipophilic acetyl-derivatives showed an antioxidant activity greater than parent compounds. This potency seems to put in evidence a strict correlation between lipophilicity and bioavailability.
Collapse
Affiliation(s)
- Milena Rizzo
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | | | | | - Antonio Procopio
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, University of Magna Graecia, Catanzaro, Italy
| |
Collapse
|
41
|
Liang X, Ran J, Sun J, Wang T, Jiao Z, He H, Zhu M. Steam-explosion-modified optimization of soluble dietary fiber extraction from apple pomace using response surface methodology. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1333158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Tianlin Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, People’s Republic of China
| | - Hongju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| | - Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|