1
|
Baptista RC, Ferrocino I, Pavani M, Guerreiro TM, Câmara AA, Lang É, Dos Santos JLP, Catharino RR, Alves Filho EG, Rodrigues S, de Brito ES, Caturla MYR, Sant'Ana AS, Cocolin L. Microbiota diversity of three Brazilian native fishes during ice and frozen storage. Food Microbiol 2024; 124:104617. [PMID: 39244369 DOI: 10.1016/j.fm.2024.104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil; Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Matheus Pavani
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | - Antonio A Câmara
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Émilie Lang
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana L P Dos Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Faculty of Pharmaceutical Science, University of Campinas, Campinas, SP, Brazil
| | | | - Sueli Rodrigues
- Department of Food Technology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Magdevis Y R Caturla
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy
| |
Collapse
|
2
|
Rachmawati N, Ariyani F, Triwibowo R, Januar HI, Dwiyitno D, Yennie Y, Kusmarwati A, Poernomo A. Exposure assessment and semi-quantitative risk analysis of histamine in tuna and tuna-like fish from Indonesia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1498-1508. [PMID: 39311567 DOI: 10.1080/19440049.2024.2396971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to investigate histamine exposure associated with consumption of fresh tuna and tuna-like species in West Java, and to estimate risk of Scombroid Fish Poisoning (SFP) in Indonesia. A range of species, including tuna (Thunnus spp.), bullet tuna (Auxis sp.), and skipjack (Katsuwonus pelamis) were collected from local markets and fish landing sites. Subsequently, histamine concentrations were determined using NMR analysis and exposure was calculated in mg/day for toddlers, children, and adults. The results showed that skipjack had the highest histamine exposure for all age groups, followed by bullet and regular tuna. The highest EDI for histamine was from skipjack consumption, accounting for 38.67; 37.77 and 20.74 percentage of exposure for toddlers, children and adults, respectively. These values are below the defined thresholds levels (ARfD), indicating no potential risk of acute health effect. Cooked bullet tuna and skipjack were estimated to cause similar illnesses, accounting for 6-7 cases per 100,000 individuals, which was higher than cooked tuna at 1-2 cases per 100,000 individuals. Considering the preparation of raw tuna in restaurants following Good Hygienic Practices (GHP), the predicted annual cases decreased significantly to 4-5 cases per million individuals. This risk estimation only considered histamine levels in fresh fish, without including data from fish preparation. Therefore, further studies were recommended to estimate the risk level in raw/fresh tuna and similar species before consumption.
Collapse
Affiliation(s)
- Novalia Rachmawati
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Farida Ariyani
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Radestya Triwibowo
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Hedi Indra Januar
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Dwiyitno Dwiyitno
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Yusma Yennie
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Arifah Kusmarwati
- Research Center for Marine and Fisheries Product Processing and Biotechnology, Indonesian Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Achmad Poernomo
- Jakarta Technical University of Fisheries, Jakarta, Indonesia
| |
Collapse
|
3
|
Khan MU, Hamid K, Tolstorebrov I, Eikevik TM. A comprehensive investigation of the use of freeze concentration appro aches for the concentration of fish protein hydrolysates. Food Chem 2024; 452:139559. [PMID: 38744134 DOI: 10.1016/j.foodchem.2024.139559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Fish protein hydrolysates (FPH) are inherently unstable in their liquid form, necessitating either freezing or dewatering for stabilization. Gentle methods such as freeze concentration can be used to remove water, this can be achieved by freezing water in solution by decreasing the bulk temperature below freezing point and separating pure ice crystals from concentrated solution. This approach serves as an alternative to techniques like evaporation and reverse osmosis for concentrating solutions that have high water content, significant nutritional value, and thermolabile compounds. This is crucial as many bioactive compounds degrade when exposed to elevated temperatures. Another notable advantage of this technology is its potential to reduce energy consumption by up to 40% when integrated into the FPH drying process. Although this technology is currently industrialized primarily for juices, it can achieve concentrations of up to 60°Brix and manage viscosities up to 400 mPa.s. Numerous studies have been dedicated to enhancing design and processes, leading to a 35% reduction in the system's capital cost and a 20% reduction in energy consumption. Moreover, freeze concentration can synergize with other concentration techniques, creating more efficient hybrid processes. This review aims to introduce freeze concentration as a superior option for preserving fish protein hydrolysates, enhancing their stability, and maintaining their nutritional and bioactive qualities.
Collapse
Affiliation(s)
- Muhammad Umar Khan
- Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim 7491, Norway.
| | - Khalid Hamid
- Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim 7491, Norway.
| | - Ignat Tolstorebrov
- Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim 7491, Norway
| | - Trygve M Eikevik
- Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim 7491, Norway
| |
Collapse
|
4
|
Baptista RC, Oliveira RBA, Câmara AA, Lang É, Dos Santos JLP, Pavani M, Guerreiro TM, Catharino RR, Filho EGA, Rodrigues S, de Brito ES, Alvarenga VO, Bicca GB, Sant'Ana AS. Chilled Pacu (Piaractus mesopotamicus) fillets: Modeling Pseudomonas spp. and psychrotrophic bacteria growth and monitoring spoilage indicators by 1H NMR and GC-MS during storage. Int J Food Microbiol 2024; 415:110645. [PMID: 38430687 DOI: 10.1016/j.ijfoodmicro.2024.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (μmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, √μ = 0.016 (T + 10.13) and √μ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo B A Oliveira
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University, Niterói, RJ, Brazil
| | - Antonio A Câmara
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | - Émilie Lang
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil
| | | | - Matheus Pavani
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Tatiane M Guerreiro
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo R Catharino
- Innovare Laboratory, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Elenilson G A Filho
- Department of Food Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Department of Food Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Verônica O Alvarenga
- Department of Food, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Nikoo M, Regenstein JM, Yasemi M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023; 12:4470. [PMID: 38137273 PMCID: PMC10743304 DOI: 10.3390/foods12244470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, Iran
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Mehran Yasemi
- Department of Fisheries, Institute of Agricultural Education and Extension, Agricultural Research, Education, and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| |
Collapse
|
6
|
Sørensen ADM, Wu H, Hyldig G, Bøknæs N, Mejlholm O, Undeland I, Jacobsen C. Oxidative Stability of Side-Streams from Cod Filleting-Effect of Antioxidant Dipping and Low-Temperature Storage. Mar Drugs 2023; 21:591. [PMID: 37999415 PMCID: PMC10671878 DOI: 10.3390/md21110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, side-streams (e.g., head, backbone, tail, and intestines) generated in the fish processing industry often end up as low-value products for feed applications or even as waste. In order to upcycle such side-streams, they need to be preserved to avoid oxidative degradation of the lipids between the generation point and the valorization plant. In the cod filleting industry, three main solid side-streams: viscera, heads, and backbones, are obtained. Hence, this study aimed to identify the most efficient antioxidant for preserving the cod side-streams using a dipping-based strategy prior to pre-valorization storage at low temperatures (ice and frozen storage). The dipping solutions evaluated contained: (i) a lipophilic rosemary extract (0.05% and 0.2% in 0.9% NaCl), (ii) Duralox MANC (a mixture of rosemary extract, ascorbic acid, tocopherols, and citric acid; 2% in 0.9% NaCl), and (iii) NaCl (0.9%) w/w solution. One group was not dipped. No dipping and dipping in NaCl were included as controls. The results showed a positive effect of dipping with solutions containing antioxidants as measured by peroxide value (PV), TBA-reactive substances (TBARS), and sensory profiling, e.g., rancid odor. Moreover, the oxidative stability increased with decreased storage temperature. The cod side-streams were in general most efficiently preserved by Duralox MANC, followed by the lipophilic rosemary extract (0.2%), compared to no dipping and dipping in NaCl solution and the lower concentration of the lipophilic rosemary extract (0.05%). The efficiency of the antioxidant treatments was independent of the side-stream fraction and storage temperature. Thus, using antioxidant dipping combined with low temperature storage is an efficient preservation method for maintaining the quality of the lipids in cod solid side-streams during their pre-valorization storage.
Collapse
Affiliation(s)
| | - Haizhou Wu
- Food and Nutrition Science, Department of Life Sciences (LIFE), Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Grethe Hyldig
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (C.J.)
| | | | | | - Ingrid Undeland
- Food and Nutrition Science, Department of Life Sciences (LIFE), Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark (C.J.)
| |
Collapse
|
7
|
Shumilina E, Skavang PK, Dikiy A. Application of NMR spectroscopy for the detection and quantification of phthalic acid in fish muscles: The case of Atlantic Cod from Norwegian Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105973. [PMID: 37062112 DOI: 10.1016/j.marenvres.2023.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/11/2023]
Abstract
Plastic litter might contain phthalates that can be transferred to marine environment or can be introduced into the marine food chain. Phthalic acid is the final product of phthalate decomposition in marine organisms. Here we used NMR spectroscopy to determine and quantify phthalic acid and dimethyl phthalate in fish muscles. Spike-and-recovery experiments were carried out to confirm assignment of phthalates resonance signals in NMR spectra and to evaluate the method specificity, accuracy, and linearity. The LOQ and LOD of the rapid 1H NMR experiment with a standard setting were respectively 23.0 and 8.0 mg of phthalic acid in kg of fish muscles. Phthalic acid was detected in 13 out of 113 Atlantic cod and none in farmed Atlantic salmon from Norwegian sea.
Collapse
Affiliation(s)
- Elena Shumilina
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Saalandsvei, 6-8, 163, 7034, Trondheim, Norway.
| | - Pernille Kristiane Skavang
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Saalandsvei, 6-8, 163, 7034, Trondheim, Norway; SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Alexander Dikiy
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Saalandsvei, 6-8, 163, 7034, Trondheim, Norway
| |
Collapse
|
8
|
Formation of Oxidative Compounds during Enzymatic Hydrolysis of Byproducts of the Seafood Industry. Processes (Basel) 2023. [DOI: 10.3390/pr11020543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
There is a significant potential to increase the sustainability of the fishing and aquaculture industries through the maximization of the processing of byproducts. Enzymatic hydrolysis provides an opportunity to valorize downstream fish industry byproducts for the production of protein hydrolysates (FPH) as a source of bioactive peptides (BAP) with health benefits. Deteriorative oxidative reactions may occur during the enzymatic hydrolysis of byproducts, influencing the safety or bioactivities of the end product. Lipid oxidation, autolysis mediated by endogenous enzymes in viscera, protein degradation, and formation of low-molecular-weight metabolites are the main reactions that are expected to occur during hydrolysis and need to be controlled. These depend on the freshness, proper handling, and the type of byproducts used. Viscera, frames, trimmings, and heads are the byproducts most available for enzymatic hydrolysis. They differ in their composition, and, thus, require standardization of both the hydrolysis procedures and the testing methods for each source. Hydrolysis conditions (e.g., enzyme type and concentration, temperature, and time) also have a significant role in producing FPH with specific structures, stability, and bioactivity. Protein hydrolysates with good safety and quality should have many applications in foods, nutraceuticals, and pharmaceuticals. This review discusses the oxidative reactions during the enzymatic hydrolysis of byproducts from different fish industry sectors and possible ways to reduce oxidation.
Collapse
|
9
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Recht R, Omhover-Fougy L, Stahl V, Hamon E. Potential of multiparametric characterization of foodstuffs by nuclear magnetic resonance to better predict microbial behavior. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:719-729. [PMID: 35246874 DOI: 10.1002/mrc.5263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Numerous predictive microbiology models have been proposed to describe bacterial population behaviors in foodstuffs. These models depict the growth kinetics of particular bacterial strains based on key physico-chemical parameters of food matrices and their storage temperature. In this context, there is a prominent issue to accurately characterize these parameters, notably pH, water activity (aw ), and NaCl and organic acid concentrations. Usually, all these product features are determined using one destructive analysis per parameter at macroscale (>5 g). Such approach prevents an overall view of these characteristics on a single sample. Besides, it does not take into account the intra-product microlocal variability of these parameters within foods. Nuclear magnetic resonance (NMR) is a versatile non-invasive spectroscopic technique. Experiments can be recorded successively on a same collected sample without damaging it. In this work, we designed a dedicated NMR approach to characterize the microenvironment of foods using 10-mg samples. The multiparametric mesoscopic-scale approach was validated on four food matrices: a smear soft cheese, cooked peeled shrimps, cold-smoked salmon, and smoked ham. Its implementation in situ on salmon fillets enabled to observe the intra-product heterogeneity and to highlight the impact of process on the spatial distribution of pH, NaCl, and organic acids. This analytical development and its successful application can help address the shortcomings of monoparametric methods traditionally used for predictive microbiology purposes.
Collapse
|
11
|
Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods 2022; 11:foods11131897. [PMID: 35804712 PMCID: PMC9265959 DOI: 10.3390/foods11131897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affected by micro-organisms and endogenous enzymes, fish are highly perishable during storage, processing and transportation. Efficient evaluation of fish freshness to ensure consumer safety and reduce raw material losses has received an increasing amount of attention. Several of the conventional freshness assessment techniques have plenty of shortcomings, such as being destructive, time-consuming and laborious. Recently, various sensors and spectroscopic techniques have shown great potential due to rapid analysis, low sample preparation and cost-effectiveness, and some methods are especially non-destructive and suitable for online or large-scale operations. Non-destructive techniques typically respond to characteristic substances produced by fish during spoilage without destroying the sample. In this review, we summarize, in detail, the principles and applications of emerging approaches for assessing fish freshness including visual indicators derived from intelligent packaging, active sensors, nuclear magnetic resonance (NMR) and optical spectroscopic techniques. Recent developments in emerging technologies have demonstrated their advantages in detecting fish freshness, but some challenges remain in popularization, optimizing sensor selectivity and sensitivity, and the development of algorithms and chemometrics in spectroscopic techniques.
Collapse
|
12
|
Kwon JA, Yim DG, Kim HJ, Ismail A, Kim SS, Lee HJ, Jo C. Effect of temperature abuse on quality and metabolites of
frozen/thawed beef loins. Food Sci Anim Resour 2022; 42:341-349. [PMID: 35310560 PMCID: PMC8907796 DOI: 10.5851/kosfa.2022.e9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to examine the effect of temperature abuse prior
to cold storage on changes in quality and metabolites of frozen/thawed beef
loin. The aerobic packaged samples were assigned to three groups: refrigeration
(4°C) (CR); freezing (–18°C for 6 d) and thawing
(20±1°C for 1 d), followed by refrigeration (4°C) (FT);
temperature abuse (20°C for 6 h) prior to freezing (–18°C
for 6 d) and thawing (20±1°C for 1 d), followed by refrigeration
(4°C) (AFT). FT and AFT resulted in higher volatile basic nitrogen (VBN)
values than CR (p<0.05), and these values rapidly increased in the final
15 d. Cooking loss decreased significantly with an increase in the storage
period (p<0.05). In addition, cooking loss was lower in the FT and AFT
groups than in the CR owing to water loss after storage (p<0.05). A
scanning electron microscope (SEM) revealed that frozen/thawed beef samples were
influenced by temperature abuse in the structure of the fiber at 15 d.
Metabolomic analysis showed differences among CR, FT, and AFT from partial least
square discriminant analysis (PLS-DA) based on proton nuclear magnetic resonance
(1H NMR) profiling. The treatments differed slightly, with higher
FT than AFT values in several metabolites (phenylalanine, isoleucine, valine,
betaine, and tyrosine). Overall, temperature abuse prior to freezing and during
thawing of beef loin resulted in accelerated quality changes.
Collapse
Affiliation(s)
- Jeong A Kwon
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Dong-Gyun Yim
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Hyun-Jun Kim
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Azfar Ismail
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Sung-Su Kim
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Hag Ju Lee
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul
08826, Korea
- Institute of Green Bio Science and
Technology, Seoul National University, Pyeongchang
25354, Korea
- Corresponding author : Cheorun
Jo, Department of Agricultural Biotechnology, Center for Food and
Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul
National University, Seoul 08826, Korea, Tel: +82-2-880-4820, Fax:
+82-2-873-2271, E-mail:
| |
Collapse
|
13
|
An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022; 11:foods11030338. [PMID: 35159493 PMCID: PMC8834512 DOI: 10.3390/foods11030338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage. In this context, antimicrobial active packaging is one such promising solution to meet consumer demands. The main objective of this study was to evaluate the effects of an active polypropylene-based packaging functionalized with the antimicrobial peptide 1018K6 on microbial growth, physicochemical properties and the sensory attributes of raw salmon fillets. The results showed that application of 1018K6-polypropylene strongly inhibited the microbial growth of both pathogenic and specific spoilage organisms (SSOs) on fish fillets after 7 days. Moreover, salmon also kept its freshness as per volatile chemical spoilage indices (CSIs) during storage. Similar results were obtained on hamburgers of Sarda sarda performing the same analyses. This work provides further evidence that 1018K6-polymers have good potential as antimicrobial packaging for application in the food market to enhance quality and preserve the sensorial properties of fish products.
Collapse
|
14
|
Lerfall J, Shumilina E, Jakobsen AN. The significance of Shewanella sp. strain HSO12, Photobacterium phosphoreum strain HS254 and packaging gas composition in quality deterioration of fresh saithe fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Catalá R, López-Cobollo R, Berbís MÁ, Jiménez-Barbero J, Salinas J. Trimethylamine N-oxide is a new plant molecule that promotes abiotic stress tolerance. SCIENCE ADVANCES 2021; 7:7/21/eabd9296. [PMID: 34138745 PMCID: PMC8133759 DOI: 10.1126/sciadv.abd9296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions. In addition, our results reveal that TMAO operates as a protective osmolyte in plants, promoting appropriate protein folding and as an activator of abiotic stress-induced gene expression. Consistent with these functions, we show that TMAO enhances plant adaptation to low temperatures, drought, and high salt. We have thus uncovered a previously unidentified plant molecule that positively regulates abiotic stress tolerance.
Collapse
Affiliation(s)
- Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| | - Rosa López-Cobollo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - M Álvaro Berbís
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Jesús Jiménez-Barbero
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| |
Collapse
|
16
|
Ahmmed MK, Ahmmed F, Stewart I, Carne A, Tian HS, Bekhit AEDA. Omega-3 phospholipids in Pacific blue mackerel (Scomber australasicus) processing by-products. Food Chem 2021; 353:129451. [PMID: 33714118 DOI: 10.1016/j.foodchem.2021.129451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
The present study investigated phospholipid content, fatty acid composition and the positional distribution (sn-1,3 and sn-2) of n-3 fatty acids in four blue mackerel processing by-products (head, skin, roe, and male gonad). Total lipid was extracted using hexane/ethanol (1:2) and the analyses were carried out using NMR and GC-FID techniques. On the basis of g wet tissue, blue mackerel roe was a better source of phospholipids (38.6 µmol), compared to head (9.89 µmol), skin (13.5 µmol), and male gonad (10.0 µmol). Total lipid extracted from roe was found to have a higher proportion of n-3 fatty acids (44.4%) including EPA (11.3%) and DHA (27.5%), compared to head (total n-3 = 36.6%; EPA, 9.08%: DHA, 21.9%), skin (total n-3 = 34.8%; EPA, 9.63%; DHA, 19.5%) and male gonad (total n-3 = 42.5%; EPA, 12.1%; DHA, 24.7%). The proportion of EPA in the sn-2 position was substantially higher in fish roe (12.6%) compared to the other by-products (head, 1.91%; skin, 2.22%; male gonad, 2.02%). However, the DPA and DHA content in the sn-2 position did not vary significantly among the various parts (p > 0.05). Phospholipid esterified n-3 fatty acids were higher in roe (55.5%) compared to head (40.9%), skin (21.8%) and male gonad (32%). The present study suggests that blue mackerel roe is the best source of marine n-3 phospholipids among the blue mackerel commercially produced by-products.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Bangladesh, Khulshi Chittagong-4225, Bangladesh.
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Ian Stewart
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
17
|
Franceschelli L, Berardinelli A, Dabbou S, Ragni L, Tartagni M. Sensing Technology for Fish Freshness and Safety: A Review. SENSORS 2021; 21:s21041373. [PMID: 33669188 PMCID: PMC7919655 DOI: 10.3390/s21041373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Standard analytical methods for fish freshness assessment are based on the measurement of chemical and physical attributes related to fish appearance, color, meat elasticity or texture, odor, and taste. These methods have plenty of disadvantages, such as being destructive, expensive, and time consuming. All these techniques require highly skilled operators. In the last decade, rapid advances in the development of novel techniques for evaluating food quality attributes have led to the development of non-invasive and non-destructive instrumental techniques, such as biosensors, e-sensors, and spectroscopic methods. The available scientific reports demonstrate that all these new techniques provide a great deal of information with only one test, making them suitable for on-line and/or at-line process control. Moreover, these techniques often require little or no sample preparation and allow sample destruction to be avoided.
Collapse
Affiliation(s)
- Leonardo Franceschelli
- Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi-University of Bologna, Via Dell’Università, 50, 47521 Cesena, Italy;
- Correspondence:
| | - Annachiara Berardinelli
- Department of Industrial Engineering, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy;
- Centre Agriculture Food Environment, University of Trento, Via E. Mach, 1, S. Michele All’Adige, 38010 Trento, Italy;
| | - Sihem Dabbou
- Centre Agriculture Food Environment, University of Trento, Via E. Mach, 1, S. Michele All’Adige, 38010 Trento, Italy;
| | - Luigi Ragni
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy;
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Via Q. Bucci 336, 47521 Cesena, Italy
| | - Marco Tartagni
- Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi-University of Bologna, Via Dell’Università, 50, 47521 Cesena, Italy;
| |
Collapse
|
18
|
Aspevik T, Thoresen L, Steinsholm S, Carlehög M, Kousoulaki K. Sensory and Chemical Properties of Protein Hydrolysates Based on Mackerel (Scomber scombrus) and Salmon (Salmo salar) Side Stream Materials. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1868644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tone Aspevik
- Department of Nutrition and Feed Technology, Nofima, Bergen, Norway
| | - Lars Thoresen
- Department of Nutrition and Feed Technology, Nofima, Bergen, Norway
| | - Silje Steinsholm
- Department of Nutrition and Feed Technology, Nofima, Bergen, Norway
| | - Mats Carlehög
- Department of Consumer and Sensory Sciences, Nofima, Ås, Norway
| | | |
Collapse
|
19
|
Alexi N, Hvam J, Lund BW, Nsubuga L, de Oliveira Hansen RM, Thamsborg K, Lofink F, Byrne DV, Leisner JJ. Potential of novel cadaverine biosensor technology to predict shelf life of chilled yellowfin tuna (Thunnus albacares). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Metabolomics analysis of sea cucumber (Apostichopus japonicus) in different geographical origins using UPLC–Q-TOF/MS. Food Chem 2020; 333:127453. [DOI: 10.1016/j.foodchem.2020.127453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022]
|
21
|
Use of Flavin-Containing Monooxygenases for Conversion of Trimethylamine in Salmon Protein Hydrolysates. Appl Environ Microbiol 2020; 86:AEM.02105-20. [PMID: 32978141 PMCID: PMC7688232 DOI: 10.1128/aem.02105-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Enzyme-based conversion of marine biomass to high-quality peptide ingredients leaves a distinct smell of “fish” caused by the presence of trimethylamine, which limits their economic potential. We suggest an enzymatic solution for converting trimethylamine to the odorless trimethylamine N-oxide as a novel strategy to improve the smell quality of marine protein hydrolysates. Following a systematic investigation of 45 putative bacterial trimethylamine monooxygenases from several phyla, we expand the repertoire of known active trimethylamine monooxygenases. As a proof-of-concept, we demonstrate that three of these enzymes oxidized trimethylamine in an industry-relevant salmon protein hydrolysate. Our results add new oxidoreductases to the industrial biocatalytic toolbox and provide a new point of departure for enzyme process developments in marine biorefineries. Enzymatic processing of fish by-products for recovery of peptides (hydrolysates) is a promising technology to reach food grade ingredients of high nutritional quality. Despite this, their bitter taste and “fish” odor block implementation in food products and limit their economic potential. Trimethylamine (TMA) is a known contributor to malodor in fish. Current strategies to mask or remove the odor either are not effective or give rise to undesirable side effects. As an alternative approach to remediate TMA, we propose a novel enzymatic strategy to convert TMA into the odorless trimethylamine N-oxide (TMAO) using TMA monooxygenases (Tmms). We identified a diverse set of bacterial Tmms using a sequence similarity network. Purified, recombinant enzymes were assessed for their biocatalytic capacity by monitoring NADPH consumption and TMAO generation. Selected Tmms were subjected to biochemical characterization and investigated for their ability to oxidize TMA in an industry-relevant substrate. From the 45 bacterial Tmm candidates investigated, eight enzymes from four different taxa were selected for their high activity toward TMA. The three most active enzymes were shown to vary in temperature optimum, with the highest being 45°C. Enzymatic activity dropped at high temperatures, likely due to structural unfolding. The enzymes were all active from pH 6.0 to 8.5, with functional stability being lowest around the optimal pH. All three Tmms, given sufficient NADPH cofactor, were found to generate TMAO in the TMA-rich salmon protein hydrolysate. The Tmms serve as unique starting points for engineering and should be useful for guiding process development for marine biorefineries. IMPORTANCE Enzyme-based conversion of marine biomass to high-quality peptide ingredients leaves a distinct smell of “fish” caused by the presence of trimethylamine, which limits their economic potential. We suggest an enzymatic solution for converting trimethylamine to the odorless trimethylamine N-oxide as a novel strategy to improve the smell quality of marine protein hydrolysates. Following a systematic investigation of 45 putative bacterial trimethylamine monooxygenases from several phyla, we expand the repertoire of known active trimethylamine monooxygenases. As a proof-of-concept, we demonstrate that three of these enzymes oxidized trimethylamine in an industry-relevant salmon protein hydrolysate. Our results add new oxidoreductases to the industrial biocatalytic toolbox and provide a new point of departure for enzyme process developments in marine biorefineries.
Collapse
|
22
|
Abualtaher M, Bar ES. Food-Loss Control at the Macronutrient Level: Protein Inventory for the Norwegian Farmed Salmon Production System. Foods 2020; 9:foods9081095. [PMID: 32796653 PMCID: PMC7465451 DOI: 10.3390/foods9081095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
The growing world population and the growing need for food are raising the importance of more efficient and sustainable food production systems. Food loss is a significant global challenge and a major stressor on natural resources. True assessment of food loss is a precursor to its reduction. This study aimed to assess the actual food loss in the Norwegian farmed salmon production system in the year 2019 by quantifying the protein flows and stocks in the system. Protein served as an indicator substance of the true systemic food loss. This study highlights the system's qualitative value-adding conversion of plant protein into higher quality marine animal protein, with deposited vital trace minerals harvested from the sea and carried to the human food chain. However, it takes a lot of protein from multiple sources to produce salmon. We found that the total invested feed protein is about four times more than the harvested salmon protein, and about 40% of that harvested protein in the salmon biomass departs the human food chain by flowing to other non-food industries. The current post-harvest practices, material trade-offs, and waste management solutions could be adjusted to a context that prioritizes human food security. An alternative scenario is presented in this study, based on a hypothetical new food product in parallel to the main salmon fillet product. The alternative scenario turned 99% of the harvested protein into food and adjusted the ratio between the invested marine protein and the human food product protein. The originality of this research is in its approach to food loss assessment at the industrial level by means of a systemic macronutrient (protein) inventory.
Collapse
|
23
|
Kim HC, Baek KH, Ko YJ, Lee HJ, Yim DG, Jo C. Characteristic Metabolic Changes of the Crust from Dry-Aged Beef Using 2D NMR Spectroscopy. Molecules 2020; 25:molecules25133087. [PMID: 32645838 PMCID: PMC7411603 DOI: 10.3390/molecules25133087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022] Open
Abstract
Two-dimensional quantitative nuclear magnetic resonance (2D qNMR)-based metabolomics was performed to understand characteristic metabolic profiles in different aging regimes (crust from dry-aged beef, inner edible flesh of dry-aged beef, and wet-aged beef striploin) over 4 weeks. Samples were extracted using 0.6 M perchlorate to acquire polar metabolites. Partial least squares-discriminant analysis showed a good cumulative explained variation (R2 = 0.967) and predictive ability (Q2 = 0.935). Metabolites of crust and aged beef (dry- and wet-aged beef) were separated in the first week and showed a completely different aspect in the second week via NMR-based multivariable analyses. Moreover, NMR-based multivariable analyses could be used to distinguish the method, degree, and doneness of beef aging. Among them, the crust showed more unique metabolic changes that accelerated proteolysis (total free amino acids and biogenic amines) and inosine 5′-monophosphate depletion than dry-aged beef and generated specific microbial catabolites (3-indoxyl sulfate) and γ-aminobutyric acid (GABA), while asparagine, glutamine, tryptophan, and glucose in the crust were maintained or decreased. Compared to the crust, dry-aged beef showed similar patterns of biogenic amines, as well as bioactive compounds and GABA, without a decrease in free amino acids and glucose. Based on these results, the crust allows the inner dry-aged beef to be aged similarly to wet-aged beef without microbial effects. Thus, 2D qNMR-based metabolomic techniques could provide complementary information about biochemical factors for beef aging.
Collapse
Affiliation(s)
- Hyun Cheol Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.C.K.); (K.H.B.); (H.J.L.)
| | - Ki Ho Baek
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.C.K.); (K.H.B.); (H.J.L.)
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Korea;
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.C.K.); (K.H.B.); (H.J.L.)
| | - Dong-Gyun Yim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.C.K.); (K.H.B.); (H.J.L.)
- Correspondence: (D.-G.Y.); (C.J.); Tel.: +82-2-880-4820 (D.-G.Y.); Tel.: +82-2-880-4804 (C.J.)
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.C.K.); (K.H.B.); (H.J.L.)
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Correspondence: (D.-G.Y.); (C.J.); Tel.: +82-2-880-4820 (D.-G.Y.); Tel.: +82-2-880-4804 (C.J.)
| |
Collapse
|
24
|
Wen D, Liu Y, Yu Q. Metabolomic approach to measuring quality of chilled chicken meat during storage. Poult Sci 2020; 99:2543-2554. [PMID: 32359590 PMCID: PMC7597405 DOI: 10.1016/j.psj.2019.11.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
The metabolites of stored, chilled chicken meat were analyzed using liquid chromatograph-mass spectrometry and metabolomics. The results showed significant differences in the metabolites of chicken meat stored at 4°C for 0 D and meat stored for longer periods of 2 D, 4 D, 6 D, and 10 D, when analyzed based on a variable of importance >2 and P < 0.05. These changed metabolites included amino acids, amines, nucleosides, nucleotides, carbohydrates, organic acids, and other substances. The data from this study provide a holistic understanding of food quality changes in chicken meat during deterioration in storage.
Collapse
Affiliation(s)
- Dongling Wen
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China
| | - Yue Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China
| | - Qian Yu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China.
| |
Collapse
|
25
|
Morisasa M, Kimura K, Sumida M, Fukumoto S, Tamura T, Takeuchi R, Mori T, Goto-Inoue N. Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Evaluating the Quality of Fish Fillets. Foods 2020; 9:E402. [PMID: 32244617 PMCID: PMC7230717 DOI: 10.3390/foods9040402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Consumption of fish is rapidly increasing worldwide. It is important to evaluate fish fillet quality because fish undergoes physical and chemical changes during frozen storage. Fish fillets exhibit formaldehyde (FA) accumulation from the decomposition of trimethylamine N-oxide. FA is a powerful protein denaturant; thus, it is important to avoid FA buildup during fish processing to preserve fish quality, especially texture. To determine where FA accumulates, in order to maintain the quality of fish fillets, we performed matrix-assisted laser desorption/ionization mass spectrometry imaging, aiming to identify muscle-derived peptides, which reflect conditions such as denaturation and/or aggregation. We used frozen sections from which lipophilic molecules were washed out and detected various peptide peaks. Furthermore, we tried to identify indices to represent fish fillet softening by protease treatment. We could detect characteristic peaks owing to FA and protease treatment; the findings were consistent with the results of texture profiles showing fish fillet's real solidity. These molecules might thus serve as effective markers to evaluate fish fillet quality.
Collapse
Affiliation(s)
- Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; (M.M.); (K.K.); (T.M.)
| | - Keisuke Kimura
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; (M.M.); (K.K.); (T.M.)
| | - Motoki Sumida
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan; (M.S.); (S.F.); (T.T.); (R.T.)
| | - Saya Fukumoto
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan; (M.S.); (S.F.); (T.T.); (R.T.)
| | - Tadashi Tamura
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan; (M.S.); (S.F.); (T.T.); (R.T.)
| | - Riko Takeuchi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan; (M.S.); (S.F.); (T.T.); (R.T.)
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; (M.M.); (K.K.); (T.M.)
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan; (M.M.); (K.K.); (T.M.)
| |
Collapse
|
26
|
Shumilina E, Møller IA, Dikiy A. Differentiation of fresh and thawed Atlantic salmon using NMR metabolomics. Food Chem 2020; 314:126227. [PMID: 31986341 DOI: 10.1016/j.foodchem.2020.126227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 11/18/2022]
Abstract
NMR metabolomics approach was used to distinguish fresh and thawed Atlantic salmon. Statistical analysis revealed significant differences in the concentration of some metabolites in reference and frozen-thawed fish during its storage. It was found that salmon freezing/thawing caused a significant increase in the concentration of fumarate and phenylalanine in stored salmon muscle. The concentration of fumarate increased until the 3rd-5th day after thawing and then gradually decreased, reaching zero after two weeks of storage. The concentration of phenylalanine was constantly increased during the storage time. Furthermore, it was detected that aspartate was formed in the flesh of only thawed fish after the second day of storage. Its concentration followed the same trend as fumarate reaching its maximal concentration on the 3rd-5th day after thawing (up to 3.8 mg in 100 g of muscle) and gradually decreased to zero. Aspartate formation was influenced by storage time after thawing and not by the time after slaughter. We propose to use the formation of aspartate in stored salmon flesh as a marker of salmon freezing/thawing.
Collapse
Affiliation(s)
- Elena Shumilina
- Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Ida Aksland Møller
- Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Alexander Dikiy
- Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
27
|
Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Kirkholt EM, Dikiy A, Shumilina E. Changes in the Composition of Atlantic Salmon upon the Brown Seaweed ( Saccharina latissima) Treatment. Foods 2019; 8:E625. [PMID: 31795426 PMCID: PMC6963436 DOI: 10.3390/foods8120625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
This study shows the potential of improving the taste and shelf life of salmon by storing it in conjunction with sugar kelp. The influence of the addition of wet sugar kelp to Atlantic salmon fillet was assessed using a Nuclear Magnetic Resonance (NMR) metabolomics approach. Seaweed treatment caused significant changes in the polar and non-polar metabolic composition of salmon muscle upon its storage. The mutual diffusion of sugar kelp and salmon metabolites caused a significant decrease of the formation of the off-smelling compound trimethylamine and the biogenic amines, along with an increase of umami-related compounds (aspartate and succinic acid). Carotenoid composition of the seaweed-treated samples significantly differs from the reference samples. The amount of wet seaweeds used for the treatment and the time passed after the fish slaughter influence salmon quality parameters.
Collapse
Affiliation(s)
| | | | - Elena Shumilina
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (E.M.K.); (A.D.)
| |
Collapse
|
29
|
Abel N, Rotabakk BT, Rustad T, Ahlsen VB, Lerfall J. Physiochemical and Microbiological Quality of Lightly Processed Salmon (
Salmo salar L
.) Stored Under Modified Atmosphere. J Food Sci 2019; 84:3364-3372. [DOI: 10.1111/1750-3841.14852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Nanna Abel
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | | | - Turid Rustad
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | - Vidar B. Ahlsen
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | - Jørgen Lerfall
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| |
Collapse
|
30
|
Li W, Liu Y, Jiang W, Yan X. Proximate Composition and Nutritional Profile of Rainbow Trout ( Oncorhynchus mykiss) Heads and Skipjack tuna ( Katsuwonus Pelamis) Heads. Molecules 2019; 24:E3189. [PMID: 31480782 PMCID: PMC6749204 DOI: 10.3390/molecules24173189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 02/05/2023] Open
Abstract
In order to evaluate the application potential of rainbow trout (Oncorhynchus mykiss) heads and skipjack tuna (Katsuwonus pelamis) heads; proximate composition, amino acids, fatty acids, carnosine, and anserine contents were analyzed in this study. Rainbow trout heads showed significantly higher protein (29.31 g/100 g FW, FW is abbreviation of fresh weight) and lipid (6.03 g/100 g FW) contents than skipjack tuna heads (18.47 g/100 g FW protein and 4.83 g/100 g FW lipid) (p < 0.05). Rainbow trout heads and skipjack tuna heads exhibited similar amino acid composition. Essential amino acids constituted more than 40% of total amino acids in both rainbow trout head and skipjack tuna head. The fatty acid profile was different between rainbow trout heads and skipjack tuna heads. Rainbow trout heads mainly contained 38.64% polyunsaturated fatty acids (PUFAs) and 38.57% monounsaturated fatty acids (MUFAs), whereas skipjack tuna heads mainly contained 54.46% saturated fatty acids (SFAs). Skipjack tuna heads contained 4563 mg/kg FW anserine and 1761 mg/kg FW carnosine, which were both significantly higher than those of rainbow trout heads (p < 0.05). These results demonstrate that both rainbow trout heads and skipjack tuna heads may be used as materials for recycling high-quality protein. Meanwhile, rainbow trout heads can be used to extract oil with high contents of unsaturated fatty acids, while skipjack tuna heads may be a source for obtaining carnosine and anserine.
Collapse
Affiliation(s)
- Weinan Li
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiaojun Yan
- Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
31
|
Zhao X, Wu J, Chen L, Yang H. Effect of vacuum impregnated fish gelatin and grape seed extract on metabolite profiles of tilapia (Oreochromis niloticus) fillets during storage. Food Chem 2019; 293:418-428. [DOI: 10.1016/j.foodchem.2019.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022]
|
32
|
Jääskeläinen E, Jakobsen LMA, Hultman J, Eggers N, Bertram HC, Björkroth J. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage. Int J Food Microbiol 2018; 293:44-52. [PMID: 30639999 DOI: 10.1016/j.ijfoodmicro.2018.12.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
Abstract
Microbial (colony counts, 16S rRNA gene amplification), chemical (pH, 1H NMR spectroscopy) and sensory changes in raw Atlantic Salmon (Salmo salar) and tuna (Thunnus albacares) fillets stored under vacuum at 3 °C were evaluated over a period of 12 days. Both species of fish are globally important and among the ten most consumed fishes in the world. Although the sensory analyses showed a decrease in the quality of both fish species, only the salmon fillets were considered spoiled at the end of the storage period. In salmon, trimethylamine was the main spoilage product and bacterial colony counts reached an average of 7.3 log10 cfu/g. The concentration of glucose decreased and the concentration of organic acids increased during storage revealing glucose fermentation. Photobacterium was the dominating genus in the salmon studied. In the tuna studied, the bacterial colony counts reached only an average of 4.6 log10 cfu/g. The dominating bacteria in tuna were Pseudomonas spp. Glucose levels did not decrease, suggesting that amino acids and lactate most likely acted as carbon sources for bacteria in tuna. In conclusion, the study revealed that salmon was clearly a more perishable fish than tuna.
Collapse
Affiliation(s)
- Elina Jääskeläinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Nina Eggers
- Department of Food Science, Aarhus University, Aarslev, Denmark
| | - Hanne C Bertram
- Department of Food Science, Aarhus University, Aarslev, Denmark
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Esposito G, Sciuto S, Acutis PL. Quantification of TMA in fishery products by direct sample analysis with high resolution mass spectrometry. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Khemakhem I, Fuentes A, Lerma-García MJ, Ayadi MA, Bouaziz M, Barat JM. Olive leaf extracts for shelf life extension of salmon burgers. FOOD SCI TECHNOL INT 2018; 25:91-100. [DOI: 10.1177/1082013218795816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the effect of the addition of olive leaf extracts on the quality of vacuum-packed salmon burgers stored at 4 ℃ during 16 days has been studied. Olive leaf extract and its hydrolysate were initially characterized and then incorporated to salmon burgers. A shelf life study was conducted in three different batches (control, olive leaf extract, and hydrolyzed olive leaf extract burgers). Among the chemical indices determined, total volatile base nitrogen values were lower in hydrolyzed olive leaf extract and olive leaf extract burgers than in control samples. Lipid oxidation was lower in salmon burger with olive leaf extract. Salmon mince treated with hydrolyzed olive leaf extract showed lower microbial counts during the whole study, which extended the shelf life of the fish product. Therefore, the potential of olive leaf extracts to preserve salmon burgers during cold storage has been demonstrated.
Collapse
Affiliation(s)
- Ibtihel Khemakhem
- Laboratoire d’Analyse, Valorisation et Sécurité des Aliments, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
- Laboratoire d’Electrochimie et Environnement, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ana Fuentes
- Grupo de Investigación e Innovación Alimentaria, Universidad Politécnica de Valencia, Valencia, Spain
| | - María Jesús Lerma-García
- Grupo de Investigación e Innovación Alimentaria, Universidad Politécnica de Valencia, Valencia, Spain
| | - Mohamed Ali Ayadi
- Laboratoire d’Analyse, Valorisation et Sécurité des Aliments, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Bouaziz
- Laboratoire d’Electrochimie et Environnement, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - José Manuel Barat
- Grupo de Investigación e Innovación Alimentaria, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
35
|
Shumilina E, Dykyy A, Dikiy A. Development of a statistical model to detect quality and storage conditions of Atlantic salmon. Food Chem 2018; 258:381-386. [DOI: 10.1016/j.foodchem.2018.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 11/24/2022]
|
36
|
Endogenous and food-derived polyamines: determination by electrochemical sensing. Amino Acids 2018; 50:1187-1203. [DOI: 10.1007/s00726-018-2617-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
37
|
Tanaka R, Uchida K, Ishimaru M, Ito M, Matsumoto N, Taoka Y, Hatate H. Effect of seawater reared on the nutritional composition and antioxidant activity of edible muscle in smoltified-landlocked masu salmon (Oncorhynchus masou masou). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9631-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|