1
|
Yang Y, Zhong C, Huang J, Dai J, Zhou C. Nanopore single-molecule investigation of aflatoxin B1-aptamer interactions for evolving the aptamer. Chem Commun (Camb) 2025; 61:5782-5785. [PMID: 40125576 DOI: 10.1039/d5cc00623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
By utilizing characteristic blocking signatures, the interactions between aflatoxin B1 (AFB1) and its aptamer were investigated. Furthermore, its aptamer sequence was evolved to have a higher affinity (Kd) calculated to be 18.74 nM for AFB1 than previous reports. This evolved aptamer-based nanopore strategy enabled the sensitive detection of trace AFB1 with a linear range from 0.5 to 100 nM.
Collapse
Affiliation(s)
- Yongqi Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Chunmeng Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Junjie Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Jia Y, Han B, Zhou G, Li Z, Xue M, Liang B, Liu P, Cheng Y. Light-activated aptasensor for plug-and-play detection of Aflatoxin B1 in food samples. Anal Chim Acta 2025; 1346:343786. [PMID: 40021332 DOI: 10.1016/j.aca.2025.343786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AFB1 contamination in food samples is a global concern, threatening food safety and human health. Numerous assays have been developed for AFB1 detection. Among them, fluorescent aptasensors are of great interest due to their simplicity of operation, easy to read signal output. Nevertheless, these aptasensors are "passive-type", means the target AFB1 bind with the aptamer directly and cause fluorescent signal response. They are "always active", may result in undesired signal generation and the process is hard to control. Generally, the "activable-type" aptasensor would avoid these defects. RESULTS Here we demonstrate a light activated aptasensor for plug-and-play detection of AFB1. The aptasensor is constructed by integrating an AFB1-specific aptamer with a complementary DNA strand (PC-strand) that incorporates a photocleavable o-nitrobenzyl group. The AFB1 aptamer is locked by PC-strand preventing it binding to target AFB1. With ultraviolet (UV) light irradiation, the o-nitrobenzyl group cleaves and releases the PC-strand to two short DNA fragments. This fragmentation reduces the hybridization stability with AFB1 aptamer, allowing target AFB1 to bind efficiently to AFB1 aptamer and accompanied by increasing in fluorescence signal. The aptasensor could be activated at desired time, provides a sensitive (0.074 ng/mL) and specific method for AFB1 detection. It has been demonstrated to be a reliable tool for the analysis of AFB1 in food samples (rice, corn, and soybean), yielding satisfactory results. SIGNIFICANCE AND NOVELTY The aptasensor is insert to the target AFB1, while its activity could be restored in a time-resolved manner by cleaving the PC-strand to two short strands using UV light irradiation. This approach provides a promising platform for the rapid screening of AFB1 contamination in food samples, contributing to food safety and quality control.
Collapse
Affiliation(s)
- Yongmei Jia
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China; Guangdong Engineering Technology Research Center of Tropical Characteristic Plant Resource Development, Zhanjiang, China
| | - Bing Han
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Guohua Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Zhiguo Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Mingyue Xue
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Bo Liang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China.
| | - Yong Cheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
3
|
Zhang Z, Wu C, Zhao Z. Detection of Aflatoxin B1 in Wheat Based on Nucleic Aptamer Chemiluminescence Sensor. SENSORS (BASEL, SWITZERLAND) 2025; 25:988. [PMID: 40006217 PMCID: PMC11859183 DOI: 10.3390/s25040988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
In this study, we developed a low-cost, high-sensitivity chemiluminescence competitive aptamer sensor for the detection of aflatoxin B1 (AFB1) in wheat samples. The optical fiber sensor was self-made, and it utilized biotin and streptavidin (SA) link aptamer and horseradish peroxidase (HRP) for the chemiluminescence detection, achieving competitive assay between the AFB1 and AFB1 antigen. We adjusted the experimental conditions of the sensor base on the date of optimization of the experimental conditions and chose coated antigens on the surface of carboxyl magnetic particles. Under conditions optimized by testing key parameters, the assay results showed that the chemiluminescence intensity and AFB1 concentration demonstrated a strong linear relationship (R2 = 0.995), the dynamic range was from 0.1 to 10 ng/mL with a detection limit of 0.09 ng/mL, and the aptamer exhibited good specificity and anti-interference ability. Testing the wheat samples showed that the spiked recovery rate ranged from 79.19% to 113.21%. The sensor possesses characteristics of low detection limits, simple manufacturing methods, and affordability, providing a novel solution for the development of low-cost and high-sensitivity AFB1 detection equipment.
Collapse
Affiliation(s)
| | | | - Zhike Zhao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China; (Z.Z.); (C.W.)
| |
Collapse
|
4
|
Wang C, Gu C, Zhao X, Yu S, Zhang X, Xu F, Ding L, Huang X, Qian J. Self-designed portable dual-mode fluorescence device with custom python-based analysis software for rapid detection via dual-color FRET aptasensor with IoT capabilities. Food Chem 2024; 457:140190. [PMID: 38924915 DOI: 10.1016/j.foodchem.2024.140190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lijun Ding
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Cheng S, Yin F, Wang Z, Zhao M, Ji W, Lin JM, Wang X, Hu Q. A biosensor method based on surfactant-mediated surface droplet evaporation for the detection of Aflatoxin B 1. Food Chem 2024; 453:139635. [PMID: 38759445 DOI: 10.1016/j.foodchem.2024.139635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin that is of significant global concern due to its impact on food safety. Herein, we innovatively develop a sensing platform to detect AFB1 based on evaporation of surfactant solutions on the hydrophobic surface, resulting in dried patterns with varied sizes. The surfactant CTAB solution produces a relatively large dried pattern due to the surface wetting. However, the reduction in the dried pattern size is found when the mixture of CTAB and AFB1 aptamer is tested, because the formation of CTAB/aptamer complex. Moreover, the dried pattern size of the mixture of CTAB, aptamer, and AFB1 increases due to the specific binding of AFB1 to its aptamer. Using this innovative strategy, the AFB1 detection can be fulfilled with a detection limit of 0.77 pg/mL. As a simple, convenient, inexpensive, and label-free method, the surfactant-mediated surface droplet evaporation-based biosensor is very promising for various potential applications.
Collapse
Affiliation(s)
- Supan Cheng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Fangchao Yin
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Zhongxing Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mei Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China.
| |
Collapse
|
6
|
Sun J, Zhang M, Gao Q, Shao B. Screening biotoxin aptamer and their application of optical aptasensor in food stuff: a review. Front Chem 2024; 12:1425774. [PMID: 39114265 PMCID: PMC11303198 DOI: 10.3389/fchem.2024.1425774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
Biotoxins are ranges of toxic substances produced by animals, plants, and microorganisms, which could contaminate foods during their production, processing, transportation, or storage, thus leading to foodborne illness, even food terrorism. Therefore, proposing simple, rapid, and effective detection methods for ensuring food free from biotoxin contamination shows a highly realistic demand. Aptamers are single-stranded oligonucleotides obtained from the systematic evolution of ligands by performing exponential enrichment (SELEX). They can specifically bind to wide ranges of targets with high affinity; thus, they have become important recognizing units in safety monitoring in food control and anti-terrorism. In this paper, we reviewed the technical points and difficulties of typical aptamer screening processes for biotoxins. For promoting the understanding of food control in the food supply chain, the latest progresses in rapid optical detection of biotoxins based on aptamers were summarized. In the end, we outlined some challenges and prospects in this field. We hope this paper could stimulate widespread interest in developing advanced sensing systems for ensuring food safety.
Collapse
Affiliation(s)
- Jiefang Sun
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Meng Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Qianlong Gao
- School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Yaiwong P, Iamsawat K, Wiratchan S, Jumpathong W, Semakul N, Bamrungsap S, Jakmunee J, Ounnunkad K. A toluidine blue/porous organic polymer/2D MoSe 2 nanocomposite as an electrochemical signaling platform for a sensitive label-free aflatoxin B1 bioassay in some crops. Food Chem 2024; 439:138147. [PMID: 38070230 DOI: 10.1016/j.foodchem.2023.138147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
A label-free electrochemical immunosensor using a toluidine blue (TB)/porous organic polymer (POP)/two-dimensional molybdenum diselenide (2D MoSe2) nanocomposite is developed for highly sensitive detection of aflatoxin B1 (AFB1) in selected crops. A POP/2D MoSe2 composite material is employed to modify the surface of a screen-printed carbon electrode (SPCE). Subsequently, TB is adsorbed on the modified SPCE surface, and the resulting TB/POP/2D MoSe2 composite is then used to construct a biosensor. The new POP/2D MoSe2 nanocomposite offers a high surface-to-volume area and is a good electroactive and biocompatible adsorbent for loading TB probe and capture antibodies. Adsorbed TB onto the POP/2D MoSe2 nanocomposite is utilized as a redox probe for the signal amplification unit. This TB/POP/2D MoSe2 nanocomposite provides good electron transfer properties of TB redox probe, good electrical conductivity, good biocompatibility, and likable adsorption ability, thus obtaining a sufficient immobilization quantity of antibodies for the sensor construction. After immobilization of the anti-AFB1 antibody and blocking with BSA on the composite surface, the immunosensor is obtained for the detection of AFB1. Under optimum conditions, the sensor shows a linear logarithmic range of 2.5-40 ng mL-1 with a limit of detection (LOD) of 0.40 ng mL-1. The developed sensor provides several advantages in terms of simplicity, low cost, short analysis time, high selectivity, stability, and reproducibility. Additionally, the proposed immunosensor is successfully validated by the detection of AFB1 in rice, corn, and peanut samples. Utilizing the TB/POP/2D MoSe2 nanocomposite, this label-free electrochemical immunosensor demonstrates outstanding sensitivity and selectivity in detecting AFB1, making it a valuable tool for ensuring the safety of agricultural products and enhancing food security.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonluck Iamsawat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirakorn Wiratchan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
9
|
Zhang C, Wang Q, Zhong C, Yang Y, Liang X, Chen P, Zhou L. A simple photoelectrochemical aptasensor based on MoS 2/rGO for aflatoxin B1 detection in grain crops. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1330-1340. [PMID: 38328893 DOI: 10.1039/d3ay01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Designing a simple and sensitive photoelectrochemical (PEC) sensor is crucial to addressing the limitations of routine analytical methods. The sensitivity of the PEC sensor, however, relies on the photoelectric material used. In this manuscript, composites of MoS2/rGO (MG) with a large area and layered structure are prepared by simple steps. This material exhibits sensitivity to visible light and demonstrates outstanding photoelectric conversion performance. The constructed PEC aptasensor using this material to detect aflatoxin B1 (AFB1) shows significantly higher sensitivity and stability compared to similar sensors. This may be attributed to the presence of surface defects in MoS2, which provide more active sites for photocatalysis. Additionally, graphene oxide (GO) is reduced to rGO by thiourea and forms a heterojunction with MoS2, enhancing charge carrier separation and interfacial electron transfer. Our research has revealed that the photocurrent intensity of the aptamer electrode decreases with an increase in AFB1 concentration, resulting in a "signal-off" PEC aptasensor. The detection limit of this aptasensor is 2.18 pg mL-1, with a linear range of 0.001 to 100 ng mL-1. This result will also provide a reference for the study of other mycotoxins in food.
Collapse
Affiliation(s)
- Cuizhong Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, School of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- Guangxi Key Laboratory for High-Value Utilization of Manganese Resources, Chongzuo 532200, China
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Chongzuo 532200, China
| | - Qiang Wang
- Guangxi Key Laboratory for High-Value Utilization of Manganese Resources, Chongzuo 532200, China
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Chongzuo 532200, China
| | - Chuanze Zhong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Ye Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xuexue Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Li Y, Sun Q, Chen X, Peng S, Kong D, Liu C, Zhang Q, Shi Q, Chen Y. Simultaneous detection of AFB1 and aflD gene by "Y" shaped aptamer fluorescent biosensor based on double quantum dots. Anal Bioanal Chem 2024; 416:883-893. [PMID: 38052994 DOI: 10.1007/s00216-023-05074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.
Collapse
Affiliation(s)
- Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
- Advanced Technology Institute of Suzhou, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| | - Qingyue Sun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Xin Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Shuangfeng Peng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
| |
Collapse
|
11
|
Fan Y, Amin K, Jing W, Lyu B, Wang S, Fu H, Yu H, Yang H, Li J. A novel Recjf Exo signal amplification strategy based on bioinformatics-assisted truncated aptamer for efficient fluorescence detection of AFB1. Int J Biol Macromol 2024; 254:128061. [PMID: 37963499 DOI: 10.1016/j.ijbiomac.2023.128061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
Aflatoxin B1 (AFB1) is a typical mycotoxin that signifacntly endangers public health and economy. In this study, we systematically studied the interaction of aptamers with AFB1 using circular dichroism, molecular dynamics, molecular docking, and fluorescence analysis. The truncated sequence aptamers were screened using molecular docking. We successfully obtained the AFB1 aptamer with higher affinity and its truncated form was enhanced by 5.2-fold compared to the initial AFB1 aptamer. In addition, for rapid detection of AFB1, we designed a fluorescent nano-adaptor sensing platform using RecJf exonuclease signal amplification strategy based on the optimal aptamer. The aptasensor showed satisfactory sensitivity towards AFB1 with a linear detection range of 1-400 ng/mL and a detection limit of 0.57 ng/mL. The aptasensor was successfully applied to the determination of AFB1 in soybean oil and corn oil with recoveries of 91.02 %-106.59 % and 87.39 %-110.61 %, respectively. The successful application of the AFB1 aptasensor, developed through bioinformatics truncation of the aptamer, provides a novel approach to creating a cost-effective, eco-friendly, and rapid aptamer sensing platform.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Life Science Chang Chun Normal University, Changchun 130032, China.
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| |
Collapse
|
12
|
Serebrennikova KV, Samokhvalov AV, Zherdev AV, Dzantiev BB. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement. Molecules 2023; 28:7889. [PMID: 38067619 PMCID: PMC10707992 DOI: 10.3390/molecules28237889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.
Collapse
Affiliation(s)
| | | | | | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia; (K.V.S.); (A.V.S.); (A.V.Z.)
| |
Collapse
|
13
|
Yang H, Lv L, Niu M, Zhang D, Guo Z. A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods 2023; 12:4332. [PMID: 38231791 DOI: 10.3390/foods12234332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
The determination of the aflatoxin B1 (AFB1) content has received widespread attention in the context of food safety, which is a global public health issue. Accordingly, a label-free and turn-on fluorescent AFB1 determination method is developed herein with an ss-DNA aptamer as the recognition element, 4, 4-(1E,1E)-2, 2-(anthracene-9, 10-diyl) bis(ethene-2, 1-diyl) bis(N, N, N-trimethylbenzenaminium iodide) (DSAI) as the aggregation-induced emission (AIE) fluorescent probe, and single-walled carbon nanohorns (SWCNHs) as the selective part with a fluorescence quenching effect. In the presence of AFB1, the AFB1-specific aptamer undergoes a structural transformation and switches from being a random helix to a folded structure. DSAI's fluorescence is protected as a result of the resistance of the transformed aptamer adsorbed on the SWCNHs' surface. Because DSAI's fluorescence is not quenchable, the fluorescence intensity is calculated as a function of the AFB1 concentration. By simply mixing DSAI, aptamer, AFB1 samples, and SWCNHs, the method can be carried out in 2 h, with a limit of detection (LOD) of 1.83 ng/mL. It has a high selectivity in the presence of other mycotoxins, and its performance is confirmed in soybean sauce with a known concentration of AFB1. The LOD was 1.92 ng/mL in the soy sauce samples and the recovery ranged from 95 to 106%, implying that the presented aptasensor has great potential for food analysis.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Lei Lv
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
14
|
Guo X, Wang M. Recent progress in optical and electrochemical aptasensor technologies for detection of aflatoxin B1. Crit Rev Food Sci Nutr 2023; 64:13093-13111. [PMID: 37778392 DOI: 10.1080/10408398.2023.2260508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
AFB1 (Aflatoxin B1) contamination is becoming a global concern issue due to its extraordinary occurrence, severe toxicity, as well as the great influence on the economic losses, food safety and environment. Therefore, it is desirable to develop novel analytical techniques for simple, rapid, accurate, and even point-of-care testing of AFB1. Fortunately, aptamer, considered as a new generation bioreceptor and even superior to classic antibody and enzyme, has been emerged remarkable application in food hazards detection. Correspondingly, aptasensors have been well-established toward AFB1 determination with outstanding performance. In this article, we first discuss and summarize the recent progress in optical and electrochemical aptasensors to monitor AFB1 over the past three years. In particular, the embedding of advanced nanomaterials for their improved analytical performance is highlighted. Furthermore, the critical analysis on various signal transduction strategies for aptasensors construction is discussed. Finally, we reveal the challenges and provide our opinion in future opportunities for aptasensor development.
Collapse
Affiliation(s)
- Xiaodong Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Fan Y, Yang H, Li J, Amin K, Lyu B, Jing W, Wang S, Fu H, Yu H, Guo Z. Single-Walled Carbon Nanohorn-Based Fluorescence Energy Resonance Transfer Aptasensor Platform for the Detection of Aflatoxin B1. Foods 2023; 12:2880. [PMID: 37569149 PMCID: PMC10417297 DOI: 10.3390/foods12152880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.
Collapse
Affiliation(s)
- Yiting Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Huanhuan Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Life Science, Chang Chun Normal University, Changchun 130032, China
| | - Jiaxin Li
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhijun Guo
- College of Agriculture, Yanbian University, Yanji 133002, China
| |
Collapse
|
16
|
Lu Y, Chen R, Dong Y, Zhao W, Ruan S, Yang W, Chen Y, Wang C. Magnetic relaxation switching immunoassay based on "limited-magnitude" particles for sensitive quantification of aflatoxin B 1. Anal Chim Acta 2023; 1266:341329. [PMID: 37244666 DOI: 10.1016/j.aca.2023.341329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic chemical substance that endangers food safety and human health. Magnetic relaxation switching (MRS) immunosensors are utilized in a variety of applications in food analysis due to its resistance to matrix interferences, but they often suffer from magnetic separation-based multi-washing steps and low sensitivity. Herein, we propose novel MRS strategy for the sensitive detection of AFB1 using "Limited-Magnitude" size particles: a single millimeter sized polystyrene spheres (PSmm) and 150 nm superparamagnetic nanoparticles (MNP150). Only a single PSmm is used as the microreactor to enhance all of the magnetic signal on its surface in high concentration by an immune competitive response, successfully preventing signal dilution, which can be transferred by pipette, simplifying the process of separation and washing. The established single polystyrene sphere magnetic relaxation switch biosensor (SMRS) was able to quantify AFB1 from 0.02 to 200 ng/mL with a detection limit of 14.3 pg/mL. SMRS biosensor has been successfully used for the detection of AFB1 in wheat and maize samples, and the results in agreement with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Benefiting from high sensitivity and convenient operation, the simple and enzyme-free method is promising in trace small molecules applications.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yongzhen Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Weiqi Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye, 435100, Hubei, China
| | - Weihai Yang
- Qingdao Customs District PR China, Qingdao, 266005, Shandong, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Shenzhen Institute of Food Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
17
|
Ma J, Guan Y, Xing F, Wang Y, Li X, Yu Q, Yu X. Smartphone-based chemiluminescence detection of aflatoxin B 1 via labelled and label-free dual sensing systems. Food Chem 2023; 413:135654. [PMID: 36796268 DOI: 10.1016/j.foodchem.2023.135654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
To develop a sensing platform for onsite determination of AFB1 in foodstuffs, we developed smartphone-based chemiluminescence detection of AFB1 via labelled and label-free dual modes. The labelled mode was characteristic of double streptavidin-biotin mediated signal amplification, obtaining limit of detection (LOD) of 0.04 ng/mL in the linear range of 1-100 ng/mL. To reduce the complexity in the labelled system, a label-free mode based on both split aptamer and split DNAzyme was fabricated. A satisfactory LOD of 0.33 ng/mL was generated in the linear range of 1-100 ng/mL. Both labelled and label-free sensing systems achieved outstanding recovery rate in AFB1-spiked maize and peanut kernel samples. Finally, two systems were successfully integrated into smartphone-based portable device based on custom-made components and android application, achieving comparable AFB1 detection ability to a commercial microplate reader. Our systems hold huge potential for AFB1 onsite detection in food supply chain.
Collapse
Affiliation(s)
- Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Yu
- Qingdao Tianxiang Foods Group Co., Ltd, Qingdao 266737, China
| | - Xiaohua Yu
- Qingdao Tianxiang Foods Group Co., Ltd, Qingdao 266737, China
| |
Collapse
|
18
|
Fan L, Zhang Q, Wang F, Yang H. Dummy molecularly imprinted solid-phase extraction-SERS determination of AFB1 in peanut. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122130. [PMID: 36459720 DOI: 10.1016/j.saa.2022.122130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
As a class I carcinogen, aflatoxin B1 (AFB1) contamination in foods and feeds accounts for 75 % of the total mycotoxin contamination. In this work, a simple and reliable surface-enhanced Raman spectroscopy (SERS) method for sensitive and selective detection of AFB1 in peanut samples integrated with dummy molecularly imprinted polymers (DMIPs) is developed. N-isopropylacrylamide (NIPAM) and 7-ethoxycoumarin (7-EOC) are chosen as monomer and dummy template, respectively and their ratio was screened through molecular design in both of kinetic and static adsorption views to form the optimal DMIPs. As-prepared dummy molecularly imprinted solid-phase extraction (DMISPE) could selectively enrich AFB1 from peanut samples. Finally, a liquid-liquid interface self-assembly constructed thioctic acid-decorated AgNPs monolayer film (TA-AgNPs MF) as a SERS-active substrate is employed to determine the amount of AFB1 eluted from DMISPE. SERS assay shows high detection sensitivity for AFB1 in peanut samples with limit of detection of 0.1 μg L-1 and a linear concentration relationship range from 0.1 to 10 μg L-1.
Collapse
Affiliation(s)
- Li Fan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Qiong Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China.
| |
Collapse
|
19
|
Aptasensor-based assay for dual-readout determination of aflatoxin B1 in corn and wheat via an electrostatic force-mediated FRET strategy. Mikrochim Acta 2023; 190:80. [PMID: 36729205 DOI: 10.1007/s00604-023-05641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023]
Abstract
A rapid and sensitive aptasensor was established for the dual-readout determination of aflatoxin B1 (AFB1) utilizing an electrostatically mediated fluorescence resonance energy transfer (FRET) signal amplification strategy. In the presence of AFB1, the aptamer preferentially bound to AFB1, resulting in the aggregation of bare gold nanoparticles (AuNPs) induced by NaCl, accompanied by a change of AuNP solution from wine-red to purple. This color change was used for colorimetric channel analysis. Then, the positively charged quantum dots were introduced into reaction system and interacted with negatively charged AuNPs, which successfully converted the color signal into a more sensitive fluorescence signal through FRET. The fluorescence quenching efficiency decreased with increasing concentrations of AFB1, and the fluorescence of aptasensor gradually recovered. The variation of fluorescence intensity was employed for fluorometric channel analysis. Under the optimal conditions, the color and fluorescence signals exhibited excellent response to AFB1 concentration within the ranges 10-320 ng·mL-1 and 3-320 ng·mL-1, respectively, and the limit of detection was as low as 7.32 ng·mL-1 and 1.48 ng·mL-1, respectively. The proposed aptasensor exhibited favorable selectivity, good recovery (85.3-113.4% in spiked corn and wheat samples), stable reproducibility (RSD<13.3%), and satisfactory correlation with commercial kits (R2=0.998). The aptasensor developed integrates advantages of modification-free, dual-readout, self-calibration, easy operation, and cost-effectiveness, while providing a simple and universal strategy for rapid and sensitive detection of mycotoxins in foodstuffs.
Collapse
|
20
|
Xiong J, He S, Zhang S, Qin L, Yang L, Wang Z, Zhang L, Shan W, Jiang H. A label-free aptasensor for dual-mode detection of aflatoxin B1 based on inner filter effect using silver nanoparticles and arginine-modified gold nanoclusters. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/11/2022]
Abstract
AbstractMycotoxins pose a grave global threat to human life and health by contaminating food and feed and cause enormous losses in healthcare and trading. Trace mycotoxin concentrations and diverse matrices in food make identification and measurement challenges, necessitating highly specific and sensitive detection methods. Electrochemical (EC) sensors are characterized by simple operation, outstanding sensitivity, low cost, and facile miniaturization and have become a promising strategy for addressing specificity and sensitivity in detection. Recent studies on EC sensors for mycotoxin detection for food safety are reviewed here. First, we summarize the fabrication of EC sensors and techniques with enhanced specificity and sensitivity. Then, we review state‐of‐the‐art EC sensors for detecting major mycotoxins. Challenges and opportunities for this technology are further discussed. Finally, in‐depth information is provided on using EC sensors to detect mycotoxins for food safety, as well as the development of EC sensors for academic study and practical application.
Collapse
Affiliation(s)
- Xiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| |
Collapse
|
22
|
Wang C, Zhu K, Yu J, Shi P. Complementary DNA Significantly Enhancing Signal Response and Sensitivity of a Molecular Beacon Probe to Aflatoxin B1. BIOSENSORS 2023; 13:195. [PMID: 36831960 PMCID: PMC9953557 DOI: 10.3390/bios13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
This paper reported an improved molecular beacon method for the rapid detection of aflatoxin B1 (AFB1), a natural mycotoxin with severe carcinogenicity. With the assistance of a complementary DNA (cDNA) chain, the molecular beacon which consists of a DNA aptamer flanked by FAM and BHQ1 displayed a larger fluorescent response to AFB1, contributing to the sensitive detection of AFB1. Upon optimization of some key experimental factors, rapid detection of AFB1 ranging from 1 nM to 3 μM, within 20 min, was realized by using this method. A limit of detection (LoD) of 1 nM was obtained, which was lower than the LoD (8 nM) obtained without cDNA assistance. This aptamer-based molecular beacon detection method showed advantages in easy operation, rapid analysis and larger signal response. Good specificity and anti-interference ability were demonstrated. This method showed potential in real-sample analysis.
Collapse
Affiliation(s)
- Chao Wang
- College of Medicine, Linyi University, Linyi 276005, China
| | - Kexiao Zhu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Jie Yu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
23
|
Zhan H, Yang S, Li C, Liu R, Chen W, Wang X, Zhao Y, Xu K. A highly sensitive competitive aptasensor for AFB 1 detection based on an exonuclease-assisted target recycling amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:70-78. [PMID: 36477094 DOI: 10.1039/d2ay01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is a typical mycotoxin found in agricultural products, and poses a huge threat to both humans and animals. Accurate and rapid measurement of AFB1 is essential for environmental analysis and food safety. Based on molecular docking simulation design and exonuclease-assisted target recycling amplification, we designed a competitive fluorescence aptasensor to detect AFB1 rapidly and sensitively. According to the molecular docking simulations, a complementary strand (cDNA) was designed by searching for potential binding sites of the aptamer, which had the lowest binding energy. Magnetic beads modified with biotin-Apt were used as the capture probe, while FAM-labeled cDNA acted as the reporter probe. By using EXO I for target recycling amplification, this aptasensor was highly sensitive and selective for AFB1. The detection limit of the suggested aptasensor under optimal conditions was 0.36 ng mL-1 (S/N = 3) in the range of 1-1000 ng mL-1 (R2 = 0.991). The developed aptasensor was successfully used to analyze AFB1 in oil samples.
Collapse
Affiliation(s)
- Hongyan Zhan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Si Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Rong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
| | - Wenliang Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, Shandong 261053, China
| | - Yansong Zhao
- Department of Ophthalmology, Clinical Medical Institute, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261031, China
| | - Kexin Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
24
|
Zhang M, Guo X. Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Zhu T, Li N, Huang J, Xu X, Su X, Ma Y, Yang R, Ruan J, Su H. An electrochemical aptasensor based on target triggered multiple-channel DNAzymes cycling amplification strategy with PtFe@Co-MOF as signal amplifier. Mikrochim Acta 2022; 189:388. [PMID: 36129574 DOI: 10.1007/s00604-022-05478-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
A novel electrochemical aptasensor for the detection of Aflatoxin B1 (AFB1) was developed for the first time by using the target-triggered multiple-channel deoxyribozymes (DNAzymes) cycling amplified assay with Pt Fe doped NH2-Co-MOF (PtFe@Co-MOF) as a signal amplifier. In the presence of AFB1, a self-assembling cross-over nucleic structure could be triggered by AFB1 via two aptamers' structure switching for strand displacement, resulting in four channels of Mg2+-dependent DNAzyme recycling simultaneously to multiply the detection signals. These DNAzymes cyclically split the substrate sequence to release the PtFe@Co-MOF labeled detection probe (DP), which is subsequently hybridized with the capture probes on the Au-deposited glassy carbon electrode. The fabrication procedure was characterized by differential pulse voltammetry, and the results of the morphological and element composition characteristics methods were analyzed to determine the successful preparation of PtFe@Co-MOF. The limit of detection (LOD) for AFB1 detection was 2 pg mL-1 with a linear range from 5 pg mL-1 to 80 ng mL-1. By comparison, the enhanced detection sensitivity has been found to originate from the efficient shearing of DNAzymes, enhanced peroxidase-like capability, and multiple active sites of PtFe@Co-MOF. Besides, this aptasensor showed high specificity for AFB1 compared with similar mycotoxins and exhibited high accuracy with low experimental cost and easy operation. Furthermore, the unique design of electrochemical aptasensors could provide a promising platform for the onsite determination of AFB1, as well as other targets by replacing the aptamer and other core recognition sequences.
Collapse
Affiliation(s)
- Tong Zhu
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Jiangjian Huang
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Xiaohansi Xu
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Xin Su
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Yi Ma
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China.
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, 610050, China.
- Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, 610050, China.
| |
Collapse
|
26
|
Wang C, Zhao X, Gu C, Xu F, Zhang W, Huang X, Qian J. Fabrication of a Versatile Aptasensing Chip for Aflatoxin B1 in Photothermal and Electrochemical Dual Modes. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
A Simple Structure-Switch Aptasensor Using Label-Free Aptamer for Fluorescence Detection of Aflatoxin B1. Molecules 2022; 27:molecules27134257. [PMID: 35807501 PMCID: PMC9268478 DOI: 10.3390/molecules27134257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Aflatoxin B1 (AFB1) is one of the mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus, and it causes contamination in foods and great risk to human health. Simple sensitive detection of AFB1 is important and demanded for food safety and quality control. Aptamers can specifically bind to targets with high affinity, showing advantages in affinity assays and biosensors. We reported an aptamer structure-switch for fluorescent detection of aflatoxin B1 (AFB1), using a label-free aptamer, a fluorescein (FAM)-labeled complementary strand (FDNA), and a quencher (BHQ1)-labeled complementary strand (QDNA). When AFB1 is absent, these three strands assemble into a duplex DNA structure through DNA hybridization, making FAM close to BHQ1, and fluorescence quenching occurs. In the presence of AFB1, the aptamer binds with AFB1, instead of hybridizing with QDNA. Thus, FAM is apart from BHQ1, and fluorescence increases with the addition of AFB1. This assay allowed detection of AFB1 with a detection limit of 61 pM AFB1 and a dynamic concentration range of 61 pM to 4 μM. This aptamer-based method enabled detection of AFB1 in complex sample matrix (e.g., beer and corn flour samples).
Collapse
|
28
|
Zhang H, Mao W, Hu Y, Wei X, Huang L, Fan S, Huang M, Song Y, Yu Y, Fu F. Visual detection of aflatoxin B1 based on specific aptamer recognition combining with triple amplification strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120862. [PMID: 35085996 DOI: 10.1016/j.saa.2022.120862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A highly sensitive and specific visual detection method for aflatoxin B1 (AFB1) based on the target specificity of aptamer, rolling circle amplification (RCA) and enzyme catalysis biological amplification effect has been established. In this work, AFB1 aptamer immobilized on the surface of magnetic beads (MB) serves as a molecular recognition probe. In the absence of AFB1, the aptamer and auxiliary linking probe (LP) maintain a double stranded state due to partial base pair complementarities. By contrast, in the presence of AFB1, the aptamer preferentially binds to AFB1 specifically, and the LP later restores to a single stranded state. Subsequently, the RCA reaction is triggered by above-mentioned single stranded LP to generate long DNA strands, which are employed to capture amounts of signal probes (SP) and horse radish peroxidases (HRP). Finally, amounts of HRP catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 and leads to a dramatic color change of the solution from colorlessness to deep blue as a signal indicator, obtaining a high sensitivity, high specificity and visual detection of AFB1. Under optimal conditions, a good linear detection range (0.5-40 pg·mL-1) was achieved, and the limit of detection (LOD) was 0.13 pg·mL-1. Besides, the proposed aptasensor showed excellent specificity for AFB1 compared with five other mycotoxins. More than that, all reactions occur on the surface of the magnetic beads, which not only facilitates the detection operation process including the efficient isolation and collection of AFB1 from sample matrix, but also gets better selectivity and stronger resistibility to target analyte in complex sample matrix, adequately indicating its potential application in AFB1 practical detection.
Collapse
Affiliation(s)
- Hongyan Zhang
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weiwei Mao
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yijin Hu
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaohong Wei
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lishan Huang
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shen Fan
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mingqing Huang
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yu Song
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yuyan Yu
- Fujian Provincial Key Lab of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - FengFu Fu
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
29
|
Pan LM, Zhao X, Wei X, Chen LJ, Wang C, Yan XP. Ratiometric Luminescence Aptasensor Based on Dual-Emissive Persistent Luminescent Nanoparticles for Autofluorescence- and Exogenous Interference-Free Determination of Trace Aflatoxin B1 in Food Samples. Anal Chem 2022; 94:6387-6393. [PMID: 35414169 DOI: 10.1021/acs.analchem.2c00861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensitive and accurate determination of aflatoxin B1 (AFB1) is of great significance to food safety and human health as it is recognized as the most toxic mycotoxin and carcinogenic. Herein, we report a ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles (PLNP) for the accurate determination of trace AFB1 in complex food samples without autofluorescence and exogenous interference. Dual-emissive PLNP ZnGa2O4:Cr0.0001 was prepared first and acted as the donor for energy transfer as well as the signal unit with phosphorescence at 714 and 508 nm (the detection and the reference signal, respectively). AFB1 aptamer was then bonded on the surface of PLNP to offer specific recognition ability. Aptamer complementary DNA modified with Cy5.5 was employed as the acceptor for energy transfer and the quenching group to eventually develop a turn-on ratiometric luminescence aptasensor. The developed ratiometric luminescence aptasensor combined the merits of long-lasting luminescence, in situ excitation and autofluorescence-free of PLNP, exogenous interference-free and self-calibration reading of ratiometric sensor, as well as the high selectivity of aptamer, holding great promise for accurate determination of trace AFB1 in complex matrix. The developed ratiometric aptasensor exhibited excellent linearity (0.05-70 ng mL-1), low limit of detection (0.016 ng mL-1), and good precision (2.3% relative standard deviation for 11 replicate determination of 1 ng mL-1 AFB1). The proposed ratiometric aptasensor was successfully applied for the determination of AFB1 in corn, wheat, peanut, millet, oats, and wheat kernels with recoveries of 95.1-106.5%.
Collapse
Affiliation(s)
- Lu-Ming Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiang Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Zhu C, Liu D, Li Y, Chen T, You T. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem 2022; 373:131443. [PMID: 34742048 DOI: 10.1016/j.foodchem.2021.131443] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 11/04/2022]
Abstract
Aflatoxin B1 (AFB1) contamination has raised global concerns in agricultural and food industry; thus, sensitive, accurate and rapid AFB1 sensors are essential in many circumstances. Herein, we developed a label-free and immobilization-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction (HCR) for facile and rapid determination of AFB1. Methylene blue (MB) and ferrocene (Fc) were used as label-free probes to produce a response signal (IMB) and a reference signal (IFc) in solution phase, respectively. The ratio of IMB/IFc was used as a yardstick to quantify AFB1. HCR was exploited to enlarge the intensity of IMB as well as ratiometric signal. By combining label-free homogeneous assay and ratiometric strategy, the resulting aptasensor offered sensitive, rapid, and reliable determinations of AFB1 with a detection limit of 38.8 pg mL-1. The aptasensor was then used to determine AFB1 in cereal samples with comparable reliability as HPLC-MS.
Collapse
Affiliation(s)
- Chengxi Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
31
|
Yan X, Chen H, Du G, Guo Q, Yuan Y, Yue T. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Hong Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Gengan Du
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Qi Guo
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Yangling 712100 China
- College of Food Science and Technology Northwest University Xi’ an 710000 China
| |
Collapse
|
32
|
Yang L, Wang J, Lv H, Ji XM, Liu JM, Wang S. Hollow-Structured Microporous Organic Networks Adsorbents Enabled Specific and Sensitive Identification and Determination of Aflatoxins. Toxins (Basel) 2022; 14:137. [PMID: 35202164 PMCID: PMC8875801 DOI: 10.3390/toxins14020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin (AFT) contamination, commonly in foods and grains with extremely low content while high toxicity, has caused serious economic and health problems worldwide. Now researchers are making an effort to develop nanomaterials with remarkable adsorption capacity for the identification, determination and regulation of AFT. Herein, we constructed a novel hollow-structured microporous organic networks (HMONs) material. On the basis of Fe3O4@MOF@MON, hydrofluoric acid (HF) was introduced to remove the transferable metal organic framework (MOF) to give hollow MON structures. Compared to the original Fe3O4@MOF@MON, HMON showed improved surface area and typical hollow cavities, thus increasing the adsorption capacity. More importantly, AFT is a hydrophobic substance, and our constructed HMON had a higher water contact angle, greatly enhancing the adsorption affinity. From that, the solid phase extraction (SPE-HPLC) method developed based on HMONs was applied to analyze four kinds of actual samples, with satisfied recoveries of 85-98%. This work provided a specific and sensitive method for the identification and determination of AFT in the food matrix and demonstrated the great potential of HMONs in the field of the identification and control of mycotoxins.
Collapse
Affiliation(s)
| | | | | | | | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (L.Y.); (J.W.); (H.L.); (X.-M.J.)
| |
Collapse
|
33
|
Qi X, Lv L, Wei D, Lee JJ, Niu M, Cui C, Guo Z. Detection of aflatoxin B 1 with a new label-free fluorescence aptasensor based on PVP-coated single-walled carbon nanohorns and SYBR Gold. Anal Bioanal Chem 2022; 414:3087-3094. [PMID: 35118572 DOI: 10.1007/s00216-022-03938-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/01/2022]
Abstract
This paper describes a novel fluorescence label-free aptasensor to detect aflatoxin B1 (AFB1) by utilizing SYBR Gold, aptamer, and single-walled carbon nanohorns (SWCNHs). In the presence of AFB1, the conformation of AFB1-specific aptamer went through and the spatial structure of this specific aptamer was transformed accordingly. Due to the resistance of the transformed aptamer when adsorbed on the surface of SWCNHs, the protection of the fluorescence of SYBR Gold was accomplished. Consequently, concentrations of AFB1 showed a strong association with fluorescence intensity. The detection limit (LOD) of AFB1 was 1.89 ng/mL, while the linear range was 5-200 ng/mL and fluorescence intensity satisfactorily correlated (R2 = 0.9919) with the logarithm of AFB1 concentration.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Lei Lv
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Dongxu Wei
- Technology Center of Harbin Customs, Harbin, 150008, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
34
|
Ren W, Pang J, Ma R, Liang X, Wei M, Suo Z, He B, Liu Y. A signal on-off fluorescence sensor based on the self-assembly DNA tetrahedron for simultaneous detection of ochratoxin A and aflatoxin B1. Anal Chim Acta 2022; 1198:339566. [DOI: 10.1016/j.aca.2022.339566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
|
35
|
Development of an electrochemical aptasensor based on Au nanoparticles decorated on metal-organic framework nanosheets and p-biphenol electroactive label for the measurement of aflatoxin B1 in a rice flour sample. Anal Bioanal Chem 2022; 414:1973-1985. [PMID: 35028689 DOI: 10.1007/s00216-021-03833-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/01/2022]
Abstract
This study purposes designing a new aptasensor to detect aflatoxin B1 (AFB1). The AFB1 aptasensor was developed by growing gold nanoparticles on the surface of nickel-based metal-organic framework nanosheets (AuNPs/Ni-MOF) and an electroactive indicator (p-biphenol, PBP). The AFB1 aptamer was immobilized on the AuNPs/Ni-MOF and then hybridized with the complementary DNA (cDNA). PBP was intercalated within the double helix of the cDNA-aptamer. The difference between electrochemical responses of intercalated PBP before and after incubation of AFB1 with the immobilized aptamer was considered as an analytical response. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to monitor the construction processes of the aptasensor. By recording the differential pulse voltammograms of PBP in phosphate buffer (pH 7.0, 0.1 M), the linear range and the detection limit of AFB1 were found to be 5.0 × 10-3-150.0 ng mL-1 and 1.0 × 10-3 ng mL-1 (S/N = 3), respectively. Finally, the designed aptasensor has been successfully used to measure AFB1 in a rice flour sample with satisfying results. Schematic illustrated the different steps of constructing the electrochemical aptasensor based on Au nanoparticles decorated on Ni-metal-organic framework nanosheets and p-biphenol electroactive label for measuring aflatoxin B1 (AFB1).
Collapse
|
36
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
An Aptamer-Array-Based Sample-to-Answer Biosensor for Ochratoxin A Detection via Fluorescence Resonance Energy Transfer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food toxins are a hidden threat that can cause cancer and tremendously impact human health. Therefore, the detection of food toxins in a timely manner with high sensitivity is of paramount importance for public health and food safety. However, the current detection methods are relatively time-consuming and not practical for field tests. In the present work, we developed a novel aptamer-chip-based sample-to-answer biosensor (ACSB) for ochratoxin A (OTA) detection via fluorescence resonance energy transfer (FRET). In this system, a cyanine 3 (Cy3)-labeled OTA-specific biotinylated aptamer was immobilized on an epoxy-coated chip via streptavidin-biotin binding. A complementary DNA strand to OTA aptamer at the 3′-end was labeled with a black hole quencher 2 (BHQ2) to quench Cy3 fluorescence when in proximity. In the presence of OTA, the Cy3-labeled OTA aptamer bound specifically to OTA and led to the physical separation of Cy3 and BHQ2, which resulted in an increase of fluorescence signal. The limit of detection (LOD) of this ACSB for OTA was 0.005 ng/mL with a linearity range of 0.01–10 ng/mL. The cross-reactivity of ACSB against other mycotoxins, ochratoxin B (OTB), aflatoxin B1 (AFB1), zearalenone (ZEA), or deoxynilvalenol (DON), was less than 0.01%. In addition, this system could accurately detect OTA in rice samples spiked with OTA, and the mean recovery rate of the spiked-in OTA reached 91%, with a coefficient of variation (CV) of 8.57–9.89%. Collectively, the ACSB may represent a rapid, accurate, and easy-to-use platform for OTA detection with high sensitivity and specificity.
Collapse
|
38
|
A Non-label Electrochemical Aptasensor Based on Cu Metal–Organic Framework to Measure Aflatoxin B1 in Wheat Flour. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02109-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Schieppati D, Patience NA, Campisi S, Patience GS. Experimental methods in chemical engineering: High performance liquid chromatography—HPLC. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dalma Schieppati
- Chemical Engineering, Polytechnique Montréal Montréal Québec Canada
| | | | | | | |
Collapse
|
40
|
Hu D, Xiao S, Guo Q, Yue R, Geng D, Ji D. Luminescence method for detection of aflatoxin B1 using ATP-releasing nucleotides. RSC Adv 2021; 11:24027-24031. [PMID: 35479041 PMCID: PMC9036674 DOI: 10.1039/d1ra03870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 02/03/2023] Open
Abstract
Determination of aflatoxin B1 (AFB1) is still a big issue in food safety. In this paper, we developed a luminescence AFB1 detection method combined with ATP-releasing nucleotides (ARNs) and AFB1 aptamer. Firstly, using a new coupling method, we synthesized two ARNs (dTP4A and dGP4A) in a yield of 67% and 58%, respectively. The newly prepared ARNs show a much lower background. Then, we developed a new isothermal polymerase amplification method. In this method, two DNA hairpins were used to substitute the circle DNA template in rolling circle amplification. Using this amplification method and combined with AFB1 aptamer, a new AFB1 detection method is developed. A detection limit as low as 0.3 pM is achieved. This method is simple and efficient, and will have a great potential to be used for food safety and public health. Schematic illustration of a luminescence short DNA sequence detection method using ATP-releasing nucleotides. Combined with AFB1 aptamer, this method is used to detect AFB1.![]()
Collapse
Affiliation(s)
- Dongyue Hu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Shusen Xiao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Qiaqia Guo
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Rongrong Yue
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| | - Demin Geng
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 PR China
| | - Debin Ji
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 PR China
| |
Collapse
|
41
|
Qiao Q, Guo X, Wen F, Chen L, Xu Q, Zheng N, Cheng J, Xue X, Wang J. Aptamer-Based Fluorescence Quenching Approach for Detection of Aflatoxin M 1 in Milk. Front Chem 2021; 9:653869. [PMID: 33842437 PMCID: PMC8024576 DOI: 10.3389/fchem.2021.653869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Aflatoxin M1 (AFM1), one of the most toxic mycotoxins, is a feed and food contaminant of global concern. In this study, we developed a fast and simple method for detection of AFM1 based on a structure-switching signaling aptamer. This aptasensor is based on the change in fluorescence signal due to formation of an AFM1/aptamer complex. To generate the aptasensor, the specific aptamer was modified with FAM (carboxyfluorescein), and their complementary DNAs (cDNA) were modified with a carboxytetramethylrhodamine (TAMRA) quenching group. In the absence of AFM1, the aptamers were hybridized with cDNA, resulting in quenching of the aptamer fluorescence due to the proximity of the aptamer's fluorophore to the quenching group on the cDNA. On the other hand, in the presence of AFM1, a structural switch in the aptamer was induced by formation of an AFM1/aptamer complex. Changes in the structure of the aptamer led to the release of the cDNA, causing the generation of a fluorescence signal. Thus, AFM1 concentrations could be quantitatively monitored based on the changes in fluorescences. Under optimized conditions, this assay exhibited a linear response to AFM1 in the range of 1-100 ng/mL and a limit of detection of 0.5 ng/mL was calculated. This proposed aptasensor was applied to milk samples spiked with a dilution series of AFM1, yielding satisfactory recoveries from 93.4 to 101.3%. These results demonstrated that this detection technique could be useful for high-throughput and quantitative determination of mycotoxin levels in milk and dairy products.
Collapse
Affiliation(s)
- Qinqin Qiao
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Information Engineering, Fuyang Normal University, Fuyang, China
- Anhui Agricultural University, Hefei, China
| | - Xiaodong Guo
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fang Wen
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Chen
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing, China
| | | | | | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Milk and Dairy Product Inspection Center of Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
42
|
Chi J, Zhu D, Chen Y, Huang G, Lin X. Online specific recognition of mycotoxins using aptamer-grafted ionic affinity monolith with mixed-mode mechanism. J Chromatogr A 2021; 1639:461930. [PMID: 33556780 DOI: 10.1016/j.chroma.2021.461930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a facile and practical aptamer-grafted ionic affinity monolith with mixed-mode mechanism was explored as a versatile platform for online specific recognition of polar and non-polar mycotoxins. The mixed-mode mechanism including molecular affinity adsorption (between aptamers and targets), hydrophilic interaction and ionic interaction (between stationary phase and targets) were adopted and provided a better flexibility in adjusting separation selectivity to reduce nonspecific adsorption with respect to the single mode. Preparation and characterization of aptamer-based affinity monoliths were investigated, The characterization of pore size distribution, Brunauer-Emmett-Teller (BET) surface area and the specificity and cross-reaction were also evaluated. As a result, the hydrophilic nature and negative charge on affinity monolith were obtained. Multiple interactions including aptamer affinity binding, hydrophilic interaction (HI) and ion exchange (IE) could be adopted for online selective extraction. Specific recognitions of polar ochratoxin A (OTA), non-polar zearalenone (ZEN) and aflatoxin B1 (AFB1) was fulfilled with LODs as 0.03, 0.05 and 0.05 μg/L, respectively. Applied to real cereals, good recoveries of the fortified OTA, AFB1 and ZEN were achieved as 92.6 ± 1.3% ~ 95.6 ± 1.3% (n=3), 93.9 ± 2.3% ~ 98.2 ± 3.4% (n=3) and 92.7 ± 2.0% ~ 96.9 ± 3.5% (n=3) in corn, wheat and rice, respectively. The results displayed that Apt-MCs with hydrophilic and ionic interaction mixed-mode mechanism were efficient enough and competent for the online recognition of mycotoxins in cereals.
Collapse
Affiliation(s)
- Jinxin Chi
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China
| | - Dandan Zhu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Yiqiong Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Guihua Huang
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China..
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China..
| |
Collapse
|
43
|
Zhao L, Mao J, Hu L, Zhang S, Yang X. Self-replicating catalyzed hairpin assembly for rapid aflatoxin B1 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:222-226. [PMID: 33346755 DOI: 10.1039/d0ay01827a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a rapid signal amplified aflatoxin B1 (AFB1) detection system based on self-replicating catalyzed hairpin assembly (SRCHA) has been constructed. In this SRCHA system, trigger DNA was initially blocked and two split trigger DNA sequences were integrated into two hairpin auxiliary probes, H1 and H2, respectively. In the presence of AFB1, the aptamer sequence was recognized by AFB1 and trigger DNA was released, which can initiate a CHA reaction and lead to the formation of a helix DNA H1-H2 complex. Then this complex can dissociate double-stranded probe DNA (F-Q) and the fluorescence signal was recovered. Meanwhile, the two split trigger DNA sequences came into close-enough proximity and a trigger DNA replica was formed. Then the obtained replicas can trigger an additional CHA reaction, leading to the rapid and significant enhancement of the fluorescence signal, and AFB1 can be detected within 15 min with a detection limit of 0.13 ng mL-1. This AFB1 detection system exhibits potential application in the on-site rapid detection of AFB1.
Collapse
Affiliation(s)
- Lijun Zhao
- Laboratory of Quality and Safety Risk Assessment for Livestock and Poultry Products(Chengdu), Ministry of Agriculture and Rural Affairs, Chengdu 610041, China and College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianfei Mao
- Analysis and Testing Center of Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Li Hu
- Analysis and Testing Center of Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Shu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiaofeng Yang
- Analysis and Testing Center of Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| |
Collapse
|
44
|
|
45
|
Hassan MM, Zareef M, Xu Y, Li H, Chen Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem 2020; 344:128652. [PMID: 33272760 DOI: 10.1016/j.foodchem.2020.128652] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a growing ultrasensitive analytical technique to quantify toxic molecules in foodstuffs. Monitoring the levels of chemical contaminants not only ensures food security but also offers a guideline on the production, processing, and risk analysis of consumer's health protection. The objective of this study was to point out the possible challenges associated with the detection of mycotoxins in foodstuffs. Herein, we have discussed briefly as to selectivity, accuracy, precision, robustness, ruggedness, non-specific adsorption (NSA), cross-reactivity (for both label-free and the target analyte capture approaches like the application of antibody, aptamer, molecularly imprinted polymer (MIP), linear polymer affinity agents and/or specific surface-modified nanomaterials) and their potential solution.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
46
|
Taghdisi SM, Danesh NM, Ramezani M, Alibolandi M, Nameghi MA, Gerayelou G, Abnous K. A novel electrochemical aptasensor for ochratoxin a sensing in spiked food using strand-displacement polymerase reaction. Talanta 2020; 223:121705. [PMID: 33303155 DOI: 10.1016/j.talanta.2020.121705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Herein, an aptasensor is presented for electrochemical determination of ochratoxin A (OTA) based on nontarget-triggered production of rolling circular amplification (RCA). The surface of gold electrode is modified with thiolated complementary strand of aptamer (CS) as both capture probe and primer and OTA aptamer (Apt) as both sensing molecule and padlock probe (PLP). Following the addition of OTA, Apt/OTA conjugate is formed and detached from the electrode surface. Therefore, no RCA is produced after incubation of the modified electrode with T4 DNA ligase and phi29 DNA polymerase and a sharp current signal occurs. The analytical response ranged from 30 pM to 120 nM with detection limit of 5 pM. The designed aptasensor showed superior analytical performance in comparison with other approaches for OTA detection. Also, the approach exhibited good performance for OTA determination in spiked grape juice samples. The technique presented in this study, can be applied to develop sensors for detecting different toxins by replacing the relevant aptamers and complementary strands.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golara Gerayelou
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Xiong Z, Wang Q, Xie Y, Li N, Yun W, Yang L. Simultaneous detection of aflatoxin B1 and ochratoxin A in food samples by dual DNA tweezers nanomachine. Food Chem 2020; 338:128122. [PMID: 33091999 DOI: 10.1016/j.foodchem.2020.128122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
a dual DNA tweezers nanomachine was developed for one-step simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples. The dual DNA tweezers are locked by the aptamers of mycotoxins, resulting the "turn off" of fluorescent signal. In the presence of AFB1 and OTA, the aptamers can bind with their corresponding targets, resulting the "open" of DNA tweezers and the "turn on" of the fluorescent signals. The limits of detections were 3.5 × 10-2 ppb for AFB1 and 0.1 ppb for OTA. Moreover, the applicability of the method was further demonstrated by conducting a limited survey on 5 samples collected from various sources. The recoveries of this method change from 90.0% to 110.0% for simultaneous detection of AFB1 or OTA and the RSDs vary from 4.1% to 9.2%. Detection uncertainties were within 5% (with a 95% confidence level).
Collapse
Affiliation(s)
- Zhengwei Xiong
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China; Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea
| | - Qiang Wang
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Yuejie Xie
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Ning Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
48
|
Lu Y, Yuan Z, Bai J, Lin Q, Deng R, Luo A, Chi Y, Deng S, He Q. Directly profiling intact Staphylococcus aureus in water and foods via enzymatic cleavage aptasensor. Anal Chim Acta 2020; 1132:28-35. [PMID: 32980108 DOI: 10.1016/j.aca.2020.07.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus (S. aureus) causes serious food-borne diseases, and tools able to directly profile intact S. aureus would greatly facilitate food safety and public health. Herein, we proposed a biosensing platform for culture-independent and separation-free profiling S. aureus, thus allow us to directly detect intact S. aureus in complex samples. The binding protection effect of aptamer-cell complex was introduced to construct the aptasensor, and it allowed to eliminate the optimization of aptamer probe sequences. The proposed aptasensor, terms enzymatic cleavage aptasensor could achieve a sensitive (a detection limit of 64 CFU/mL) and broad-concentration quantification (dynamic range 102-107 CFU/mL) of S. aureus. Furthermore, it could specifically identify intact S. aureus in complex samples, and the quantifying of S. aureus was achieved in tap water, milk and porker with high precision. Therefore, enzymatic cleavage aptasensor could be a good candidate for on-site biosensing platform of S. aureus, as well as other pathogens by replacing the aptamer sequences.
Collapse
Affiliation(s)
- Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Zilan Yuan
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Jinrong Bai
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Qi Lin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 10048, China.
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
49
|
A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020; 219:121342. [PMID: 32887071 DOI: 10.1016/j.talanta.2020.121342] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
The demand of simple, sensitive, selective and reliable assay for aflatoxin B1 (AFB1) detection is ubiquitous in food safety, due to its high toxic. Herein, a novel fluorescent aptasensor using metal-organic frameworks (UiO-66-NH2) and TAMRA label aptamer as sensing platform for AFB1 detection was developed. The TAMRA aptamer adsorbed on the surface of UiO-66-NH2 via van der Waals force and its fluorescence was quenched for the charge transfer from fluorescence dye TAMRA to metal ions of UiO-66-NH2. After introducing AFB1 to the system, the TAMRA aptamer binded to AFB1 and formed TAMRA aptamer/AFB1complex, making its conformation change and resulting in fluorescence recovery. Thus, the quantity of AFB1 could be analyzed according to the fluorescence signal change. Under optimize experimental conditions, the assay exhibited high sensitivity toward AFB1 in range of 0-180 ng mL-1 with low limit of detection of 0.35 ng mL-1 and good specificity against other toxins. Moreover, the aptamer/metal-organic frameworks sensing platform could be utilized to determine AFB1 content in food samples such as corn, rice and milk. It provided a reasonable method for other mycotoxin detection by changing the sequence of aptamer.
Collapse
|
50
|
Tang L, Huang Y, Lin C, Qiu B, Guo L, Luo F, Lin Z. Highly sensitive and selective aflatoxin B 1 biosensor based on Exonuclease I-catalyzed target recycling amplification and targeted response aptamer-crosslinked hydrogel using electronic balances as a readout. Talanta 2020; 214:120862. [PMID: 32278415 DOI: 10.1016/j.talanta.2020.120862] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The biosensors based on aptamer based stimuli-responsive hydrogels have the characters of high specificity, good stability, portability. Electronic balance is one of the most accurate equipment and can be reached nearly in all labs. Aflatoxin B1 (AFB1) is highly toxic and carcinogenic to humans and animals, it is necessary to develop simple and convenient detection method to apply in resource limited area. In this study, a novel strategy for quantitative detection of AFB1 has been developed by combining the high selectivity and convenient of target-responsive hydrogel and the simple of using electronic balance as readout devices. The AFB1 target responsive double crosslinked hydrogel has been constructed using linear hyaluronic acid grafted single-stranded DNA complex as the backbone, AFB1 aptamer and polyethyleneimine as crosslinkers. And platinum nanoparticles (PtNPs) had been embedded in the hydrogel firstly. The present of AFB1 can bind with the aptamer with high affinity and cause the releasing of aptamer from hydrogel. The addition of Exo I can specifically recognize and cleave the aptamer in AFB1-aptamer complex, resulting in the releasing of AFB1, which can react with the hydrogel again, thereby achieving the target cycle. By this means, the hydrogel will collapse and many pre-embedded PtNPs can be released. The transferring of the released PtNPs to a drainage device which contains H2O2 can results in the increasing of the internal pressure since the production of oxygen through the catalytic decomposition of H2O2 by PtNPs has low solubility. Which will cause the discharging of water from the system and this can be collected and weighed by an electronic balance easily. The weight of water has a linear relationship with AFB1 concentration. Under 30 min catalytic time, the linear range is 31.2 μg/kg - 6.2 mg/kg with the detection limit of 9.4 μg/kg (S/N = 3). The proposed method was successfully applied to the detection of AFB1 in peanut samples.
Collapse
Affiliation(s)
- Linyue Tang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaying Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|