1
|
Chi H, Wen X, Li H, Tang J, Zhang X, Chen H. An electrochemical immunosensing of electrochemically modified carbon cloth electrode based on functionalized gold nanoparticle-Prussian blue for the detection of aflatoxin B1 in vegetable oil industry. Food Chem 2025; 471:142765. [PMID: 39793356 DOI: 10.1016/j.foodchem.2025.142765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
This study developed an electrochemical immunosensor for the detection of aflatoxin B1 (AFB1) in vegetable oil, based on an electrochemical modified carbon cloth (EMCC) electrode modified with a composite functional layer of cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs)/Prussian Blue (PB). The EMCC electrode substrate was prepared by modifying carbon cloth through electrochemical methods to increase its surface area, which allowed for the effective deposition of o-ATP@AuNPs/PB composite functional layer and improved the conductivity of the electrode material. The synergistic effect of o-ATP@AuNPs and PB significantly enhanced the sensitivity of the electrochemical sensor. Additionally, the AuS bond between L-Cysteine (L-Cys) and o-ATP@AuNPs improved the stability of the sensing interface. Under optimal conditions, the BSA/anti-AFB1/L-Cys/o-ATP@AuNPs/PB/EMCC sensor was able to detect AFB1 in the range of 0 to 20 ng mL-1 using square wave voltammetry (SWV), with a detection limit of 0.015 ng mL-1. The proposed sensor holds promise for future applications in the sensitive detection of AFB1 in vegetable oils.
Collapse
Affiliation(s)
- Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xuefei Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huan Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongrui Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
2
|
Deng J, Jiang H, Chen Q. Qualitative and quantitative analysis of mineral oil pollution in peanut oil by Fourier transform near-infrared spectroscopy. Food Chem 2025; 469:142590. [PMID: 39721443 DOI: 10.1016/j.foodchem.2024.142590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Emerging contaminants pose a potential threat to the safety of edible oils. This study combined Fourier Transform Near-Infrared (FT-NIR) spectroscopy with chemometrics for the qualitative and quantitative analysis of five contaminants in peanut oil. The results show that the Partial Least Squares Discriminant Analysis (PLS-DA) classifier effectively differentiates between normal and contaminated samples with a classification accuracy of 100 %. In specific contaminant identification, PLS-DA achieved 100 % accuracy for diesel, white mineral oil, and lubricating oil, and 97.04 % for kerosene and engine oil. Quantitative results revealed that Support Vector Regression (SVR) exhibited high precision in predicting diesel (RP = 0.9852), white mineral oil (RP = 0.9908), and lubricating oil (RP = 0.9929), while Partial Least Squares Regression (PLSR) demonstrated good predictive ability for kerosene (RP = 0.9335) and engine oil (RP = 0.9270). Therefore, NIR spectroscopy can be an effective tool for monitoring the safety of edible oils.
Collapse
Affiliation(s)
- Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Moscato G, Bonavita S, Regina TMR. Assessing Olive Oil Quality Using Different DNA-Based Methods. PLANTS (BASEL, SWITZERLAND) 2024; 13:3220. [PMID: 39599429 PMCID: PMC11598648 DOI: 10.3390/plants13223220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Olive oil is appreciated worldwide for its unique nutritional and organoleptic properties. It is rich in unsaturated fatty acids and antioxidants, which are well-known for their health benefits. The qualitative characteristics of olive oil can be adversely affected by various biotic and abiotic factors. Particularly, microbial pathogens, such as mold fungi, can cause the deterioration of the oil and, thus, be a serious risk to consumer health. In this study, the effectiveness of DNA-based methods, i.e., endpoint PCR, Real-Time PCR (RT-PCR), and loop-mediated isothermal amplification (LAMP), all based on the ITS2-28S region, were used to evaluate the fungal contamination of samples of extra virgin olive oil. All the DNA techniques were able to detect, albeit at different levels, fungal infections affecting some of the basic quality parameters of the olive oils analyzed. However, compared to endpoint PCR and/or RT-PCR, the LAMP assay greatly simplified and accelerated the identification of pathogenic mold in the oil samples. This may encourage the olive oil industry to adopt this method in order to offer the consumer an oil with specific health parameters and therefore guarantee the safety and quality of this precious food product.
Collapse
Affiliation(s)
- Giovanna Moscato
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, Via Ponte P. Bucci, 87036 Arcavacata di Rende, Italy;
| | - Savino Bonavita
- Laboratorio Dolciaria Monardo Srl, Località Carromonaco, 89831 Soriano Calabro, Italy;
| | - Teresa Maria Rosaria Regina
- Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, Via Ponte P. Bucci, 87036 Arcavacata di Rende, Italy;
| |
Collapse
|
4
|
Jiang H, Wang Z, Deng J, Ding Z, Chen Q. Quantitative detection of heavy metal Cd in vegetable oils: A nondestructive method based on Raman spectroscopy combined with chemometrics. J Food Sci 2024; 89:8054-8065. [PMID: 39366770 DOI: 10.1111/1750-3841.17436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Heavy metal contaminants in vegetable oils can cause irreversible damage to human health. In this study, the quantitative detection of Cd in vegetable oils was investigated based on Raman spectroscopy combined with chemometric methods. The necessary preprocessing of the Raman signal was performed using baseline calibration and the Savitzky-Golay method. Three variable optimization methods were applied to the preprocessed Raman spectra. Namely, bootstrap soft shrinkage, multiple feature spaces ensemble strategy with least absolute shrinkage and selection operator, and competitive adaptive reweighted sampling (CARS), respectively. Partial least squares regression (PLSR) modeling for the determination of Cd in vegetable oils. The results show that three variable optimization algorithms improved the predictive performance of the model. Among them, the CARS-PLSR model has strong generalization performance and robustness. Its prediction coefficient of determination (R P 2 $R_{\mathrm{P}}^2$ ) was 0.9995, the root mean square error of prediction was 0.3533 mg/kg, and the relative prediction deviation was 44.3748, respectively. In summary, rapid quantitative analysis of Cd contamination in vegetable oils can be realized based on Raman spectroscopy combined with chemometrics.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ziyu Wang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Zhidong Ding
- Product Quality Supervision and Inspection Center of Zhenjiang City, Zhenjiang, P. R. China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
5
|
Xu L, Qu W, Hao X, Fang M, Yang Q, Li Y, Gong Z, Li P. Immunochromatographic Strip Based on Tetrahedral DNA Immunoprobe for the Detection of Aflatoxin B 1 in Rice Bran Oil. Foods 2024; 13:2410. [PMID: 39123601 PMCID: PMC11311855 DOI: 10.3390/foods13152410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a widespread contaminant in food and feeds, poses a threat to the health of animals and humans. Consequently, it is significant to develop a rapid, precise and highly sensitive analytical method for the detection of AFB1. Herein, we developed an immunochromatographic strip (ICS) based on a tetrahedral DNA (TDN) immunoprobe for AFB1 determination in rice bran oil. Three sizes of TDN immunoprobes (AuNP-TDN13bp-mAb, AuNP-TDN17bp-mAb, AuNP-TDN26bp-mAb) were constructed, and the performance of these three immunoprobes, including the effective antibody labeling density and immunoaffinity, was measured and compared with that of the immunoprobe (AuNP-mAb) developed using the physical adsorption method. Subsequently, the optimal TDN immunoprobe, namely AuNP-TDN13bp-mAb, was selected to prepare the immunochromatographic strip (ICS) for the qualitative and quantitative detection of AFB1 in rice bran oil. The visual limits of detection (vLODs) of the ICS based on AuNP-TDN13bp-mAb and AuNP-mAb were 0.2 ng/mL and 2 ng/mL, with scanning quantitative limits (sLOQs) of 0.13 ng/mL and 1.4 ng/mL, respectively. The ICS demonstrated a wide linear range from 0.02 ng/mL to 0.5 ng/mL, with good specificity, accuracy, precision, repeatability, and stability. Moreover, a high consistency was observed between the constructed ICS and ultra-high-performance liquid chromatography (UPLC) in the quantification of AFB1. The results indicated that the introduction of TDN was beneficial for promoting efficient antibody labeling, protecting the bioactivity of immunoprobes, and increasing the sensitivity of detection, which would provide new perspectives for the achievement of the highly sensitive detection of mycotoxins.
Collapse
Affiliation(s)
- Lin Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wenli Qu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Xiaotong Hao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Min Fang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
6
|
Gao YN, Wang ZW, Su CY, Wang JQ, Zheng N. Omics analysis revealed the intestinal toxicity induced by aflatoxin B1 and aflatoxin M1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116336. [PMID: 38691883 DOI: 10.1016/j.ecoenv.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan-You Su
- College of Animal Science, Henan Agriculture University, Zhengzhou 450000, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Indore NS, Chaudhry M, Jayas DS, Paliwal J, Karunakaran C. Non-Destructive Assessment of Microstructural Changes in Kabuli Chickpeas during Storage. Foods 2024; 13:433. [PMID: 38338568 PMCID: PMC10855213 DOI: 10.3390/foods13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The potential of hyperspectral imaging (HSI) and synchrotron phase-contrast micro computed tomography (SR-µCT) was evaluated to determine changes in chickpea quality during storage. Chickpea samples were stored for 16 wk at different combinations of moisture contents (MC of 9%, 11%, 13%, and 15% wet basis) and temperatures (10 °C, 20 °C, and 30 °C). Hyperspectral imaging was utilized to investigate the overall quality deterioration, and SR-µCT was used to study the microstructural changes during storage. Principal component analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were used as multivariate data analysis approaches for HSI data. Principal component analysis successfully grouped the samples based on relative humidity (RH) and storage temperatures, and the PLS-DA classification also resulted in reliable accuracy (between 80 and 99%) for RH-based and temperature-based classification. The SR-µCT results revealed that microstructural changes in kernels (9% and 15% MC) were dominant at higher temperatures (above 20 °C) as compared to lower temperatures (10 °C) during storage due to accelerated spoilage at higher temperatures (above 20 °C). Chickpeas which had internal irregularities like cracked endosperm and air spaces before storage were spoiled at lower moisture from 8 wk of storage.
Collapse
Affiliation(s)
- Navnath S. Indore
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Mudassir Chaudhry
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Digvir S. Jayas
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
- President’s Office, A762 University Hall, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
| | - Chithra Karunakaran
- Department of Biosystems Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada; (N.S.I.); (M.C.); (J.P.); (C.K.)
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
8
|
Li S, Zhang S, Li X, Zhou S, Ma J, Zhao X, Zhang Q, Yin X. Determination of multi-mycotoxins in vegetable oil via liquid chromatography-high resolution mass spectrometry assisted by a complementary liquid-liquid extraction. Food Chem X 2023; 20:100887. [PMID: 38144739 PMCID: PMC10740109 DOI: 10.1016/j.fochx.2023.100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 12/26/2023] Open
Abstract
The simultaneous determination of multi-mycotoxins in food commodities are highly desirable due to their potential toxic effects and mass consumption of foods. Herein, liquid chromatography-quadrupole exactive orbitrap mass spectrometry was proposed to analyze multi-mycotoxins in commercial vegetable oils. Specifically, the method featured a successive liquid-liquid extraction process, in which the complementary solvents consisted of acetonitrile and water were optimized. Resultantly, matrix effects were reduced greatly. External calibration approach revealed good quantification property for each analyte. Under optimal conditions, the recovery ranging from 80.8% to 109.7%, relative standard deviation less than 11.7%, and good limit of quantification (0.35 to 45.4 ng/g) were achieved. The high accuracy of proposed method was also validated. The detection of 20 commercial vegetable oils revealed that aflatoxins B1 and B2, zearalenone were observed in 10 real samples. The as-developed method is simple and low-cost, which merits the wide applications for scanning mycotoxins in oil matrices.
Collapse
Affiliation(s)
- Shuangqing Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Siyao Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaomin Li
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Shukun Zhou
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Jiahui Ma
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaotong Zhao
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qinghe Zhang
- Food Safety Analysis Laboratory, Division of Chemical Metrology and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing 100029, PR China
| | - Xiong Yin
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
9
|
Munjanja BK, Nomngongo PN, Mketo N. Mycotoxins in Vegetable Oils: A Review of Recent Developments, Current Challenges and Future Perspectives in Sample Preparation, Chromatographic Determination, and Analysis of Real Samples. Crit Rev Anal Chem 2023; 55:316-329. [PMID: 38133964 DOI: 10.1080/10408347.2023.2286642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.
Collapse
Affiliation(s)
- Basil K Munjanja
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nomvano Mketo
- Department of Chemistry, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
10
|
Fakhri Y, Omar SS, Mehri F, Hoseinvandtabar S, Mahmudiono T. Global systematic review and meta-analysis on prevalence and concentration of aflatoxins in peanuts oil and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:697-712. [PMID: 36040365 DOI: 10.1515/reveh-2022-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Exposure to mycotoxins in food is largely unavoidable, and concerns about their health effects are growing. Consumption of vegetable oils such as peanuts oil has increased, hence several studies have been conducted on concentration of aflatoxins (AFs) in peanuts oil. Search was performed in Scopus and PubMed databases on prevalence and concentration of AFs in peanuts oil from 1 January 2005 to 15 April 29, 2022. Prevalence and concentration of AFs in peanuts oil was meta-analyzed based on country and type of AFs subgroups. In addition, health risk was calculated using monte carlo simulation method. Pooled prevalence of AFB1 in peanuts oil was 47.9%; AFB2, 46.45%; AFG1, 46.92% and AFG2, 54.01%. The Overall prevalence of AFTs was 49.30%, 95%CI (35.80-62.84%). Pooled concentration of AFB1 in peanuts oil was 2.30 μg/kg; AFB2, 0.77 μg/kg; AFG1, 0.07 μg/kg; AFG1, 0.28 μg/kg. The sort of country based on mean of MOEs in the adults consumers was Japan (47,059) > China (17,670) > Ethiopia (7,398) > Sudan (6,974) > USA (1,012) and sort of country based on mean of MOEs in the children was Japan (120,994) > China (46,991) > Ethiopia (19,251) > Sudan (18,200) > USA (2,620). Therefore, adults consumers were in considerable health risk in Ethiopia, Sudan and USA and for children in USA (MOE < 10,000).
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sharaf S Omar
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, AL-Balqa Applied University, Amman, Jordan
| | - Fereshteh Mehri
- Nutrition Health Research Center, Health Sciences & Technology Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Hoseinvandtabar
- Student Research committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
11
|
Pradanas-González F, Aragoneses-Cazorla R, Merino-Sierra MÁ, Andrade-Bartolomé E, Navarro-Villoslada F, Benito-Peña E, Moreno-Bondi MC. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents. Food Chem 2023; 429:136846. [PMID: 37467670 DOI: 10.1016/j.foodchem.2023.136846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
In this work, we developed an environmentally friendly liquid-liquid microextraction method using a natural deep eutectic solvent in combination with liquid chromatography for the simultaneous determination of four mycotoxins (deoxynivalenol, alternariol, ochratoxin A and zearalenone) in edible vegetable oils. A chemometric approach assessed the effect of the operational parameters on the mycotoxin extraction efficiency. The extracts were analyzed by HPLC coupled with a diode array and fluorescence detector. The optimum NADES composition resulted in the highest extraction recoveries, and it was applied to coextract the target mycotoxins in several types of edible vegetable oils without using hazardous solvents or requiring further clean-up. The limits of detection ranged from 0.07 to 300 µg kg-1, and recoveries were close to 100%, except for zearalenone (viz. 35%), with relative standard deviations below 9% in all cases. The proposed method was validated following the European Commission 2002/657/EC and 2006/401/EC.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rubén Aragoneses-Cazorla
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Miguel Ángel Merino-Sierra
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Elena Andrade-Bartolomé
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María Cruz Moreno-Bondi
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
12
|
Ma F, Guo Q, Zhang Z, Ding X, Zhang L, Li P, Yu L. Simultaneous removal of aflatoxin B 1 and zearalenone in vegetable oils by hierarchical fungal mycelia@graphene oxide@Fe 3O 4 adsorbent. Food Chem 2023; 428:136779. [PMID: 37413832 DOI: 10.1016/j.foodchem.2023.136779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Physical adsorbents for detoxification are widely used in vegetable oil industry. So far, the high-efficiency and low-cost adsorbents have not been well explored. Here, a hierarchical fungal mycelia@graphene oxide@Fe3O4 (FM@GO@Fe3O4) was fabricated as an efficient adsorbent for simultaneous removal of aflatoxin B1 (AFB1) and zearalenone (ZEN). The morphological, functional and structural characteristics of the prepared adsorbents were systematic investigated. Batch adsorption experiments in both single and binary systems were conducted, and the adsorption behaviours and mechanism were explored. The results indicated that the adsorption process occurred spontaneously and the mycotoxin adsorption could be described as physisorption through hydrogen bonding, π-π stacking, electrostatic and hydrophobic interactions. Due to good biological safety, magnetic manipulability, scalability, recyclability and easy regeneration, FM@GO@Fe3O4 performance is suitable for application as a detoxification adsorbent in vegetable oil industry. Our study addresses a novel green strategy for removing multiple mycotoxins by integrating the toxigenic isolates with advanced nanomaterials.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Hubei Hongshan Laboratory, Wuhan 430070, PR China; Zhejiang Xianghu Laboratory, Hangzhou 311231, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| |
Collapse
|
13
|
Huang N, Sheng W, Jin Z, Bai D, Sun M, Ren L, Wang S, Wang Z, Tang X, Ya T. Colorimetric and photothermal dual-mode immunosensor based on Ti 3C 2T x/AuNPs nanocomposite with enhanced peroxidase-like activity for ultrasensitive detection of zearalenone in cereals. Mikrochim Acta 2023; 190:479. [PMID: 37994918 DOI: 10.1007/s00604-023-06073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
A novel peroxidase-like nanozyme has been constructed by decorating two-dimensional Ti3C2Tx nanosheets (Ti3C2Tx NSs) with gold nanoparticles (AuNPs) to develop a colorimetric and photothermal dual-mode immunosensor. The Ti3C2Tx/AuNPs nanocomposite-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 reaction system produces the one-electron oxidation product of TMB (oxTMB), which exhibits color change and strong near-infrared (NIR) laser-driven photothermal effect at 808 nm laser irradiation. Given these characteristics, the developed immunosensor achieves ultrasensitive dual-mode detection of zearalenone (ZEN) by measuring colorimetric and photothermal signals with a microplate reader and a portable infrared thermometer, respectively. Under optimal working conditions, the limit of detection (LOD) of ZEN is 0.15 pg mL-1 for the colorimetric mode and 0.48 pg mL-1 for the photothermal mode. In the analysis of actual contaminated cereals samples, the test result of this method was consistent with that of UPLC-MS/MS. The proposed colorimetric and photothermal dual-mode immunosensor offers a new strategy for the low-cost detection of hazardous substances. The application of a widely used household infrared thermometer makes the signal readout more convenient, which provides great prospects in food safety and environment inspection applications.
Collapse
Affiliation(s)
- Na Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dongmei Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meiyi Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lishuai Ren
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xinshuang Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tingting Ya
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
14
|
Siddiqui SA, Fernando I, Nisa' K, Shah MA, Rahayu T, Rasool A, Aidoo OF. Effects of undesired substances and their bioaccumulation on the black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae)-a literature review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:823. [PMID: 37291225 DOI: 10.1007/s10661-023-11186-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/01/2023] [Indexed: 06/10/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (L.) (Diptera: Stratiomyidae), is predominantly reared on organic wastes and other unused complementary substrates. However, BSF may have a buildup of undesired substances in their body. The contamination of undesired substance, e.g., heavy metals, mycotoxins, and pesticides, in BSF mainly occurred during the feeding process in the larval stage. Yet, the pattern of accumulated contaminants in the bodies of BSF larvae (BSFL) is varied distinctively depending on the diets as well as the contaminant types and concentrations. Heavy metals, including cadmium, copper, arsenic, and lead, were reported to have accumulated in BSFL. In most cases, the cadmium, arsenic, and lead concentration in BSFL exceeded the recommended standard for heavy metals occurring in feed and food. Following the results concerning the accumulation of the undesired substance in BSFL's body, they did not affect the biological parameters of BSFL, unless the amounts of heavy metals in their diets are highly exceeding their thresholds. Meanwhile, a study on the fate of pesticides and mycotoxins in BSFL indicates that no bioaccumulation was detected for any of the target substances. In addition, dioxins, PCBs, PAHs, and pharmaceuticals did not accumulate in BSFL in the few existing studies. However, future studies are needed to assess the long-term effects of the aforementioned undesired substances on the demographic traits of BSF and to develop appropriate waste management technology. Since the end products of BSFL that are contaminated pose a threat to both human and animal health, their nutrition and production process must be well managed to create end products with a low contamination level to achieve a closed food cycle of BSF as animal feed.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany.
| | - Ito Fernando
- Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang, East Java, 65145, Indonesia
| | - Khoirun Nisa'
- Department of Environmental Engineering, Sepuluh Nopember Institute of Technology, Sukolilo, Surabaya, East Java, 60111, Indonesia
| | - Mohd Asif Shah
- Woxsen University, Kamkole, Sadasivpet, Hyderabad, Telangana, 502345, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya, 60189, Jawa Timur, Indonesia
| | - Adil Rasool
- Department of Management, Bakhtar University, Kabul, Afghanistan.
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, 00233, Somanya, Ghana
| |
Collapse
|
15
|
Shavakhi F, Rahmani A, Piravi-Vanak Z. A global systematic review and meta-analysis on prevalence of the aflatoxin B 1 contamination in olive oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1255-1264. [PMID: 35034978 PMCID: PMC8753009 DOI: 10.1007/s13197-022-05362-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Olive oil can be contaminated by fungal toxins; therefore, it is necessary to monitor the incidence of mycotoxins in this oil. In the present study, the pooled prevalence of detectable aflatoxin B1 (AFB1) in olive oil was evaluated using systematic review and meta-analysis approach from 1 January 1991 to 31 December 2020 (30 years study). The search was conducted via electronic databases involving Scopus, Web of Science, PubMed, Agris and Agricola. Synonyms were collected from combination of the MESH, Agrovoc and free text method. After screening and selection process of primary researches, full texts of eligible researches (46 studies) were evaluated and data of the nine studies as included researches were extracted. Random effect model was used to estimate the pooled prevalence of AFB1 in olive oil and weighing model of Dersimonian-Laired was applied. Summary measure of mycotoxin prevalence was estimated using Metaprop module of STATA and 95% confidence interval (CI) were calculated using the Binomial Exact Method. Pooled prevalence of AFB1 in olive oils were 32% (95% CI 8-56%) which means that 68% of olive oil were free of detectable contaminants of AFB1. Due to controversy over the results of primary studies, future researches and consequent subgroup analysis based on the main variables affecting the aflatoxins contamination in olive oil are recommended to achieve the conclusive results.
Collapse
Affiliation(s)
- Forough Shavakhi
- Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box: 31585-845, Karaj, Iran
| | - Anosheh Rahmani
- Department of Food, Halal and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| | - Zahra Piravi-Vanak
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran
| |
Collapse
|
16
|
Sun S, Yang J, Liu Y, Xie Y, Mwabulili F. Porous Graphitic phase carbon nitride/graphene oxide hydrogel microspheres for efficient and recyclable degradation of aflatoxin B 1 in peanut oil. Food Chem 2023; 417:135964. [PMID: 36934709 DOI: 10.1016/j.foodchem.2023.135964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Removal of aflatoxin is an urgent issue in agricultural products. A porous graphitic carbon nitride/graphene oxide hydrogel microsphere (CN/GO/SA) was synthesized and used to degrade AFB1 in peanut oil. CN/GO/SA was characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD) and FT-IR. The introduction of GO significantly improved the adsorption capacity and visible light activity of photocatalysts. About 98.4% AFB1 in peanut oil was removed by 20% CN/GO/SA under visible light for 120 min. ‧O2- and h+ were the main active species during photoreaction, and five degradation products were identified by UPLC-Q-Orbitrap MS analysis. At the same time, the quality of treated peanut oil was still acceptable. More importantly, CN/GO/SA showed excellent cycle stability, and the degradation rate of AFB1 in peanut oil remained above 95% after five-time recycling. This work provides a practical way for developing efficient and sustainable photocatalysts to degrade mycotoxins in edible oil.
Collapse
Affiliation(s)
- Shumin Sun
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Jiayi Yang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Yajie Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - Fred Mwabulili
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| |
Collapse
|
17
|
Wang S, Cai R, Liu X, Qi L, Wang L, Yue T, Yuan Y, Wang Z. The detoxification of ochratoxin A in wine and grape juice by different enzymes and evaluation of their effects on the quality. EFOOD 2023. [DOI: 10.1002/efd2.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Saiqun Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Rui Cai
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Xiaoshuang Liu
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Lige Qi
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Leran Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Tianli Yue
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Zhouli Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| |
Collapse
|
18
|
Zhu X, Hua Y, Li X, Kong X, Chen Y, Zhang C. Growing of fungi on the stored low denatured defatted soybean meals and the hydrolysis of proteins and isoflavone glycosides by fungal enzymes. Food Res Int 2023; 163:112261. [PMID: 36596172 DOI: 10.1016/j.foodres.2022.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, more and more attention has been paid to the effects of fungal contamination and fungal enzymes secreted in raw grain on product quality. As the starting material of protein and active components, the quality of low denatured defatted soybean meals (LDSM) directly determines the qualities of subsequent products. In previous studies, we have revealed that infection with Aspergillus ochraceus protease causes significant hydrolysis of proteins. In this study, growing of fungi on the stored low denatured defatted soybean meals (LDSM) was analyzed by high-throughput sequencing and real-time PCR, which revealed that the abundance of Aspergillus increased significantly after storage. Twenty fungal proteases and 9 fungal glucosidases were found in stored LDSM and zymography showed that the proteases were of serine-type with some cysteine and aspartic activities. Proteolysis of the soybean storage proteins mainly occurred after the hydration of LDSM and the average molecular weight of soy proteins decreased from 57.9 kDa to 30.7 kDa after 60 min's of hydrolysis. Two-dimensional electrophoresis (2-DE) analysis found the polypeptide fragments from soybean 7S and 11S proteins with molecular weight around 10-25 kDa in the hydrated LDSM. Glycosylated isoflavones were hydrolyzed in both dry and hydrated stored LDSM which resulted in significant (p < 0.05) increase in the contents of isoflavone aglycones. This study suggested that fungi contamination be a new factor affecting the properties of LDSM derived soy protein products.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
19
|
Çetinkaya N, Pazarlar S, Paylan İC. Ozone treatment inactivates common bacteria and fungi associated with selected crop seeds and ornamental bulbs. Saudi J Biol Sci 2022; 29:103480. [DOI: 10.1016/j.sjbs.2022.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
|
20
|
Lu T, Guo Y, Shi J, Li X, Wu K, Li X, Zeng Z, Xiong Y. Identification and Safety Evaluation of Ochratoxin A Transformation Product in Rapeseed Oil Refining Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14931-14939. [PMID: 36331822 DOI: 10.1021/acs.jafc.2c04532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is an important mycotoxin detected in edible oil, and it can be effectively removed by classical edible oil refining processes. However, the fate of OTA in the refining process has not been reported. In this study, we systematically tracked the OTA changes during the oil refining process by fortifying 100 μg/kg OTA in crude rapeseed oil. Results showed that about 10.57%, 88.85%, and 0.58% of OTA were removed during the degumming, deacidification, and decolorization processes. Among them, 16.25% OTA was transferred to the byproducts, including 9.85% in degumming wastewater, 5.68% in soap stock, 0.14% in deacidification wastewater, and 0.58% in the decolorizer; 83.75% OTA was found to transform into the lactone ring opened OTA (OP-OTA) during the deacidification stage, which is attributed to the hydrolysis of the lactone ring of OTA in the alkali refining. The OP-OTA was verified to distribute in the soap stock, and small amounts of OP-OTA could be transferred to deacidified wastewater when the OTA pollution level reached 500 μg/kg in crude rapeseed oil. The OP-OTA exhibited strong toxicity, especially nephrotoxicity, as reflected by the cell viability assay and in silico toxicity. Therefore, the safety of the soap stock processing products from OTA-contaminated rapeseed deserves attention.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Jiachen Shi
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Kesheng Wu
- Jiangxi Agricultural Technology Extension Center, Nanchang, Jiangxi 330096, P.R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, P.R. China
| |
Collapse
|
21
|
Li J, Wang Q, Xiong C, Deng Q, Zhang X, Wang S, Chen MM. An ultrasensitive CH3NH3PbBr3 quantum dots@SiO2-based electrochemiluminescence sensing platform using an organic electrolyte for aflatoxin B1 detection in corn oil. Food Chem 2022; 390:133200. [DOI: 10.1016/j.foodchem.2022.133200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 12/23/2022]
|
22
|
Kluczkovski A, Bezerra L, Januário B, Lima E, Campelo P, Machado M, Bezerra J. Nuclear Magnetic Resonance Approach in Brazil Nut Oil and the Occurrence of Aflatoxins. J Oleo Sci 2022; 71:1439-1444. [PMID: 36089397 DOI: 10.5650/jos.ess22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carcinogenic metabolites of fungi such as aflatoxins play a toxic role in some tree nuts and need to be monitored in their by-products, such as oil. In this context, Brazil nut (Bertholletia excelsa) oil, which is a commodity of great economic importance to Brazil, requires attention to monitor the presence of these toxic agents. Therefore, this study aimed to evaluate the presence of aflatoxins in Brazil nut oil and relate it to the presence of fatty acids in the oil as a surveillance tool for food safety. Brazil nut oil samples (n= 25) were acquired in northern Brazil as (a) non-branded products (n= 07) produced by local farmers using artisanal methods from nuts to be discarded by the industry and (b) industrialized products (n= 18). The samples were analyzed for total aflatoxin content by high-performance liquid chromatography and fatty acid content by nuclear magnetic resonance imaging. Seven (28%) samples were positive for the aflatoxin fractions (B1 + B2 + G1 + G2), ranging from undetected (<2.32) to 50.87 μg/kg. Of the aflatoxin positive samples evaluated by NMR analysis, it was not possible to state that the presence of a particular fatty acid can interfere or influence aflatoxin contamination. This was the first study with data on aflatoxin occurrence in Brazil nut oil. Nevertheless, further research is required to relate saturated or unsaturated fatty acid content with aflatoxin levels. We also suggest the implementation of systems to prevent contamination of the raw materials (seed) and detoxification of the oil to guarantee the product's safety and quality.
Collapse
Affiliation(s)
| | - Leticia Bezerra
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas
| | - Beatriz Januário
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas
| | - Emerson Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas
| | - Pedro Campelo
- College of Agricultural Sciences, Federal University of Amazonas
| | | | - Jaqueline Bezerra
- Analitic Central, Campus Manaus Centro, Institute of Education, Science and Technology of Amazonas
| |
Collapse
|
23
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
24
|
Chen M, Li M, Zhang W, Bai H, Ma Q. Natural Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Coupled with Direct Analysis in Real Time Mass Spectrometry: A Green Temperature-Mediated Analytical Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10919-10928. [PMID: 36000560 DOI: 10.1021/acs.jafc.2c03561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green analytical chemistry (GAC) represents a rapidly growing research field that aims at developing novel analytical approaches with minimal consumption of hazardous reagents and solvents. The current study reports on a GAC methodology exploiting the unique physicochemical properties of natural deep eutectic solvents (NADESs), a supposedly environmentally friendly class of solvents. Based on a temperature-mediated strategy, the NADESs were manipulated to undergo multiple phase transitions for favorable functionality and performance. As proof-of-concept demonstrations, both hydrophobic and hydrophilic NADESs were prepared for the extraction and analysis of eight phthalate esters in aqueous samples (food simulants) and three aflatoxins in oily samples (edible oils), respectively. NADES-based dispersive liquid-liquid microextraction (DLLME) was employed to achieve high-efficiency sample pretreatment. Afterward, the NADESs were transformed from liquids into solids by tuning the peripheral temperature for a convenient phase separation from the sample matrices. The solidified NADES extracts were melted and vaporized at elevated temperatures by transmission-mode direct analysis in real time (DART) for further quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS) analysis. The developed protocol was validated, achieving good repeatability with relative standard deviations (RSDs) of less than 9% and satisfactory sensitivity with limits of detection (LODs) and quantitation (LOQs) ranging from 0.1 to 0.8 and 0.2 to 2.0 μg/kg, respectively. The greenness of the analytical methodology was assessed with the calculated scores of 0.66 and 0.57 for the hydrophobic and hydrophilic NADES-based protocols, respectively. The method was applied to marketed samples, highlighting the great potential for green chemical analysis.
Collapse
Affiliation(s)
- Meng Chen
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ming Li
- School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
| | - Wenxi Zhang
- Shaanxi Product Quality Supervision and Inspection Institute, Xi'an 710048, China
| | - Hua Bai
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
25
|
Boron-doped activated carbon nanocomposite as a selective adsorbent for rapid extraction of aflatoxins in nut samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
A facile molecularly imprinted column coupled to GC-MS/MS for sensitive and selective determination of polycyclic aromatic hydrocarbons and study on their migration in takeaway meal boxes. Talanta 2022; 243:123385. [DOI: 10.1016/j.talanta.2022.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
|
27
|
Gao YN, Yang X, Wang JQ, Liu HM, Zheng N. Multi-Omics Reveal Additive Cytotoxicity Effects of Aflatoxin B1 and Aflatoxin M1 toward Intestinal NCM460 Cells. Toxins (Basel) 2022; 14:toxins14060368. [PMID: 35737029 PMCID: PMC9231300 DOI: 10.3390/toxins14060368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a common crop contaminant, while aflatoxin M1 (AFM1) is implicated in milk safety. Humans are likely to be simultaneously exposed to AFB1 and AFM1; however, studies on the combined interactive effects of AFB1 and AFM1 are lacking. To fill this knowledge gap, transcriptomic, proteomic, and microRNA (miRNA)-sequencing approaches were used to investigate the toxic mechanisms underpinning combined AFB1 and AFM1 actions in vitro. Exposure to AFB1 (1.25–20 μM) and AFM1 (5–20 μM) for 48 h significantly decreased cell viability in the intestinal cell line, NCM460. Multi-omics analyses demonstrated that additive toxic effects were induced by combined AFB1 (2.5 μM) and AFM1 (2.5 μM) in NCM460 cells and were associated with p53 signaling pathway, a common pathway enriched by differentially expressed mRNAs/proteins/miRNAs. Specifically, based on p53 signaling, cross-omics showed that AFB1 and AFM1 reduced NCM460 cell viability via the hsa-miR-628-3p- and hsa-miR-217-5p-mediated regulation of cell surface death receptor (FAS), and also the hsa-miR-11-y-mediated regulation of cyclin dependent kinase 2 (CDK2). We provide new insights on biomarkers which reflect the cytotoxic effects of combined AFB1 and AFM1 toxicity.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.-N.G.); (X.Y.); (J.-Q.W.); (H.-M.L.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.-N.G.); (X.Y.); (J.-Q.W.); (H.-M.L.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.-N.G.); (X.Y.); (J.-Q.W.); (H.-M.L.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui-Min Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.-N.G.); (X.Y.); (J.-Q.W.); (H.-M.L.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.-N.G.); (X.Y.); (J.-Q.W.); (H.-M.L.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069
| |
Collapse
|
28
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
29
|
Wicaksono T, Illés CB. From resilience to satisfaction: Defining supply chain solutions for agri-food SMEs through quality approach. PLoS One 2022; 17:e0263393. [PMID: 35108334 PMCID: PMC8809543 DOI: 10.1371/journal.pone.0263393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Since it is an important human need and many organizations are involved in the value chain, the agricultural food supply chain is exposed to various risks that arise naturally or through human actions. This study aims to develop the application of a quality function deployment approach to increase the resilience of the food supply chain by understanding customer needs and logistical risks in the food supply chain. In-depth studies with empirical analysis were conducted to determine the importance of customer needs, food supply chain risks, and actions to improve supply chain resilience of SMEs in the agri-food industry. The result shows that the top three customer needs are "attractive, bright color", "firm texture" and "fresh smell". The top three risks in the agri-food supply chain are "improper storage," "Harvest Failure" and "Human Resource Risks" and the top three resilience actions are "continuous training," "preventive maintenance," and "supply chain forecasting." The implications of this study are to propose an idea that broadens the perspective of supply chain resilience in the agri-food industry by incorporating the needs of customers in considering how to mitigate the existing risks to the satisfaction of customers, and it also highlights the relatively low skill and coordination of the workforce in agri-food supply chains.
Collapse
Affiliation(s)
- Tutur Wicaksono
- Doctoral School of Economic and Regional Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
- Faculty of Economics and Business, Universitas Al Azhar Indonesia (UAI), Jakarta, Indonesia
| | - Csaba Bálint Illés
- Institute of Economic Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| |
Collapse
|
30
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
31
|
Kholif OT, Sebaei AS, Eissa FI, Elhamalawy OH. Determination of aflatoxins in edible vegetable oils from Egyptian market: Method development, validation, and health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Karapınar HS, Bilgiç A. A new magnetic Fe3O4@SiO2@TiO2-APTMS-CPA adsorbent for simple, fast and effective extraction of aflatoxins from some nuts. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
He X, Zhang Y, Yang X, Chen M, Pang Y, Shen F, Fang Y, Liu Q, Hu Q. Estimating bulk optical properties of AFB 1 contaminated edible oils in 300-900 nm by combining double integrating spheres technique with laser induced fluorescence spectroscopy. Food Chem 2021; 375:131666. [PMID: 34848090 DOI: 10.1016/j.foodchem.2021.131666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
An optical detection platform based on laser induced spectroscopy and double integrating spheres techniques was developed to obtain absorption (μa), reduced scattering coefficients (μ's) and fluorescence intensity of oil. The validation experiment carried on liquid phantoms showed that the developed system could achieve high linearity, and the results of spectra analysis indicated that the fluorescence intensity has a significant negative correlation with both μa and μ's. A total of 1620 oils with six categories were detected. The reason for the difference of fluorescence and μa spectra was analyzed by comparing the measured chlorophyll, polyphenol and α-tocopherol contents. Linear discriminant analysis combined with principal component analysis based on fluorescence and μa spectra was employed, to calibrate the AFB1 classification models. The discrimination results manifested that by integrating μa with fluorescence signal, the correct classification rate could be improved by more than 10%, and the false negative rate was greatly reduced.
Collapse
Affiliation(s)
- Xueming He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yue Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyun Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Min Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yanyan Pang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
34
|
Junsai T, Poapolathep S, Sutjarit S, Giorgi M, Zhang Z, Logrieco AF, Li P, Poapolathep A. Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography-Tandem Mass Spectrometry. Foods 2021; 10:2795. [PMID: 34829076 PMCID: PMC8619327 DOI: 10.3390/foods10112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
The prevalence of mycotoxins is often increased by the climatic conditions prevailing in tropical regions. Reports have revealed the contamination of mycotoxins in some types of vegetable oil. However, vegetable oil is one of the essential ingredients used in food preparation. Thus, this study determined the occurrence of multi-mycotoxins in six types of vegetable oils commercially available in Thailand to assess the consumer health risk. In total, 300 vegetable oil samples (olive oil, palm oil, soybean oil, corn oil, sunflower oil, and rice bran oil) collected from various markets in Thailand were analyzed for the presence of nine mycotoxins, namely, aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), beauvericin (BEA), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) using a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based procedure and a triple quadrupole mass spectrometer equipped with an electrospray ionization source. The incidences of mycotoxin contamination varied among the different types of oil samples. AFB1, AFB2, ZEA, FB1, and FB2 were most frequently found in contaminated samples. AFB2, BEA, ZEA, FB1, and FB2 contaminated olive oil samples, whereas AFB1, AFB2, AFG2, and OTA contaminated palm oil samples. AFB1, AFB2, and ZEA were found in soybean oils, whereas ZEA, FB1, and FB2 contaminated corn oil samples. AFB1 and AFG1 contaminated sunflower oil samples, whereas AFB1, AFB2, AFG1, and OTA were detected in rice bran oil samples. However, the contamination levels of the analyzed mycotoxins were below the regulatory limits.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| | - Samak Sutjarit
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | | | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Z.Z.); (P.L.)
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (T.J.); (S.P.)
| |
Collapse
|
35
|
Bartkiene E, Bartkevics V, Berzina Z, Klementaviciute J, Sidlauskiene S, Isariene A, Zeimiene V, Lele V, Mozuriene E. Fatty acid profile and safety aspects of the edible oil prepared by artisans' at small-scale agricultural companies. Food Sci Nutr 2021; 9:5402-5414. [PMID: 34646511 PMCID: PMC8497834 DOI: 10.1002/fsn3.2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to analyze the fatty acid (FA) profiles and mycotoxin and polycyclic aromatic hydrocarbon (PAH) concentrations in sea buckthorn (SB1, SB2), flaxseed (FL3, FL4, FL5), hempseed (HE6, HE7, HE8), camelina (CA9, CA10), and mustard (MU11) edible oils, prepared by artisans' by artisanal at small-scale agricultural companies in Lithuania. The dominant FAs were palmitic and oleic acids in SB; palmitic, stearic, oleic, linoleic, and α-linolenic acids in FL; palmitic, stearic, oleic, linoleic, and α-linolenic acids in HE; palmitic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in CA; and oleic, linoleic, α-linolenic, eicosenoic, and erucic acids in MU. In SB2 oil samples, T-2 toxin and zearalenone concentrations higher than 1.0 µg/kg were found (1.7 and 3.0 µg/kg, respectively). In sample FL4, an ochratoxin A concentration higher than 1.0 µg/kg was established (1.2 µg/kg); also, in HE8 samples, 2.0 µg/kg of zearalenone was found. None of the tested edible oils exceeded the limits for PAH concentration. Finally, because of the special place of edible oils in the human diet, not only should their contamination with mycotoxins and PAHs be controlled but also their FA profile, as an important safety characteristic, must be taken into consideration to ensure higher safety standards.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Vadims Bartkevics
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Zane Berzina
- Institute of Food SafetyAnimal Health and Environment BIORRigaLatvia
| | - Jolita Klementaviciute
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | - Sonata Sidlauskiene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | | | - Vaida Zeimiene
- National Food and Veterinary Risk Assessment InstituteVilniusLithuania
| | - Vita Lele
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Erika Mozuriene
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|
36
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Zhao X, Liu D, Zhang L, Zhou Y, Yang M. Development and optimization of a method based on QuEChERS-dSPE followed by UPLC-MS/MS for the simultaneous determination of 21 mycotoxins in nutmeg and related products. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Le LHT, Tran-Lam TT, Nguyen HQ, Quan TC, Nguyen TQ, Nguyen DT, Dao YH. A study on multi-mycotoxin contamination of commercial cashew nuts in Vietnam. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Modi B, Timilsina H, Bhandari S, Achhami A, Pakka S, Shrestha P, Kandel D, GC DB, Khatri S, Chhetri PM, Parajuli N. Current Trends of Food Analysis, Safety, and Packaging. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9924667. [PMID: 34485507 PMCID: PMC8410450 DOI: 10.1155/2021/9924667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/07/2021] [Indexed: 12/22/2022]
Abstract
Food is a basic necessity for life, growth, survival, and maintaining a proper body function. Rising food demand leads both producers and consumers to search for alternative food sources with high nutritional value. However, food products may never be completely safe. The oxidation reaction may alter both the physicochemical and immunological properties of food products. Maillard and caramelization nonenzymatic browning reactions can play a pivotal role in food acceptance through the ways they influence quality factors such as flavor, color, texture, nutritional value, protein functionality, and digestibility. There is a multitude of adulterated foods that portray adverse risks to the human condition. To maintain food safety, the packaging material is used to preserve the quality and freshness of food products. Food safety is jeopardized by plenty of pathogens by the consumption of adulterated food resulting in multiple foodborne illnesses. Though different analytical tools are used in the analysis of food products, yet, adulterated food has repercussions for the community and is a growing issue that adversely impairs human health and well-being. Thus, pathogenic agents' rapid and effective identification is vital for food safety and security to avoid foodborne illness. This review highlights the various analytical techniques used in the analysis of food products, food structure, and quality of food along with chemical reactions in food processing. Moreover, we have also discussed the effect on health due to the consumption of adulterated food and focused on the importance of food safety, including the biodegradable packaging material.
Collapse
Affiliation(s)
- Bindu Modi
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Hari Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sobika Bhandari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ashma Achhami
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sangita Pakka
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Prakash Shrestha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Devilal Kandel
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Dhan Bahadur GC
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Sabina Khatri
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Pradhumna Mahat Chhetri
- Department of Chemistry, Amrit Campus, Tribhuvan University, Leknath Marg, Kathmandu 44600, Nepal
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
40
|
Einolghozati M, Talebi-Ghane E, Ranjbar A, Mehri F. Concentration of aflatoxins in edible vegetable oils: a systematic meta-analysis review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03844-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Das S, Singh VK, Chaudhari AK, Dwivedy AK, Dubey NK. Fabrication, physico-chemical characterization, and bioactivity evaluation of chitosan-linalool composite nano-matrix as innovative controlled release delivery system for food preservation. Int J Biol Macromol 2021; 188:751-763. [PMID: 34384804 DOI: 10.1016/j.ijbiomac.2021.08.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to encapsulate linalool into chitosan nanocomposite (Nm-linalool) for developing novel controlled release delivery system in order to protect stored rice against fungal infestation, aflatoxin B1 (AFB1) contamination, and lipid peroxidation. The chitosan-linalool nanocomposite showed spherical shapes, smooth surface with monomodal distribution as revealed by SEM and AFM investigation. FTIR and XRD represented peak shifting and changes in degree of crystallinity after incorporation of linalool into chitosan nanocomposite. Nanoencapsulation of linalool showed higher zeta potential and lowered polydispersity index. TGA analysis reflected the stability of Nm-linalool with reduced weight loss at varying temperatures. Biphasic pattern, with initial rapid release followed by sustained release illustrated controlled delivery of linalool from chitosan nanocomposite, a prerequisite for shelf-life enhancement of stored food products. Chitosan nanocomposite incorporating linalool displayed prominent antifungal and antiaflatoxigenic activity during in vitro as well as in situ investigation in rice with improved antioxidant potentiality. Further, Nm-linalool displayed considerable reduction of lipid peroxidation in rice without exerting any adverse impact on organoleptic attributes. In conclusion, the investigation strengthens the application of chitosan-linalool nanocomposite as an innovative controlled nano-delivery system for its practical application as novel environmentally friendly eco-smart preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
42
|
Chen J, Liu F, Li Z, Tan L, Zhang M, Xu D. Solid phase extraction based microfluidic chip coupled with mass spectrometry for rapid determination of aflatoxins in peanut oil. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Kholif OT, Sebaei AS, Eissa FI, Elhamalawy OH. Size-exclusion chromatography selective cleanup of aflatoxins in oilseeds followed by HPLC determination to assess the potential health risk. Toxicon 2021; 200:110-117. [PMID: 34280411 DOI: 10.1016/j.toxicon.2021.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Aflatoxins (AFs) are one of the most harmful carcinogenic natural toxins that affect food. Crops containing reasonably high oil content may be affected by Aspergillus species and consequently by AF contamination. In this study, a proposed testing method for AF detection in oilseed was developed, validated, and used for a market survey to assess the probabilistic risk exposure caused by consuming contaminated oilseeds including corn, sunflower seed, and soybean. The test method was optimized for selective extraction and then validated for fitness of purpose; the limits of quantification (LOQs) were 0.2, 0.4, 0.2, and 0.2 μg kg-1 for aflatoxin G1 (AFG1), aflatoxin B1 (AFB1), aflatoxin G2 (AFG2), and aflatoxin B2 (AFB2), respectively. The method was linear from the LOQs up to 20 μg kg-1, and its budget of measurement uncertainties were estimated at 25, 24, 26, and 30 for AFG1, AFB1, AFG2, and AFB2, respectively. The contamination levels were from <LOQ to 2.65 μg kg-1 and from <LOQ to 26.9 μg kg-1 for corn and sunflower oilseed samples, respectively, whereas the soybean samples were AF-free. According to the consumption rate of corn and sunflower seeds, the estimated margins of exposure to AFB1 were 721 and > 10,000 body weight (BW) day-1, respectively. The main finding of the present study highlights the possibility of some risk of AF exposure from corn consumption, which may represent a health concern.
Collapse
Affiliation(s)
- Omar Tawfik Kholif
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt; Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza, 12311, Egypt
| | - Ahmed Salem Sebaei
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza, 12311, Egypt.
| | - Fawzy I Eissa
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Osama H Elhamalawy
- Environment and Bio-Agriculture Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
44
|
Senturk S, Karaca H. First report on the presence of aflatoxins in fig seed oil and the efficacy of adsorbents in reducing aflatoxin levels in aqueous and oily media. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1937226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Xu H, Sun J, Wang H, Zhang Y, Sun X. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes. Food Chem 2021; 365:130409. [PMID: 34256225 DOI: 10.1016/j.foodchem.2021.130409] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
A new, green, and cost-effective magnetic solid-phase extraction of aflatoxins and ochratoxins from edible vegetable oils samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes (PDA@Fe3O4-MWCNTs) as the absorbent. PDA@Fe3O4-MWCNTs nanomaterials were prepared by chemical co-precipitation and in situ oxidation and self-polymerization of dopamine and was characterized. Factors affecting MSPE and the adsorption behavior of the adsorbent to mycotoxins were studied, and the optimal extraction conditions of MSPE and the complexity of the adsorption process were determined. Based on this, the magnetic solid-phase extraction-high-performance liquid chromatography-fluorescence detection method (MSPE-HPLC-FLD) was established for determining six mycotoxins [aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2, and ochratoxin A (OTA) and OTB)] in vegetable oils. The recovery was 70.15%~89.25%, and RSD was ≤6.4%. PDA@Fe3O4-MWCNTs showed a high affinity toward aflatoxins and ochratoxins, allowing selective extraction and quantification of aflatoxins and ochratoxins from complex sample matrices.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China; Guangzhou Guangdian Metrology and Inspection Co., Ltd., Guangzhou 510627 China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China
| | - Haiming Wang
- Guangzhou Guangdian Metrology and Inspection Co., Ltd., Guangzhou 510627 China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Lihu Road 1800, 214122 Wuxi, China.
| |
Collapse
|
46
|
Ma F, Cai X, Mao J, Yu L, Li P. Adsorptive removal of aflatoxin B 1 from vegetable oils via novel adsorbents derived from a metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125170. [PMID: 33951856 DOI: 10.1016/j.jhazmat.2021.125170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Vegetable oils are essential daily diet, but they are simply contaminated with aflatoxin B1 (AFB1), a serious toxic compound to human health. Adsorption method due to the easy operation, high efficiency and low costing is set to become a main detoxification technique for AFB1. Unfortunately, previous reported adsorbents were rarely used for detoxification in food industry since they cannot meet the criteria of large-scale production of edible oils. Metal-organic frameworks (MOFs) with unique textural properties could be favorable precursors for synthesis of advanced materials. In this research, three kinds of Cu-BTC MOF-derived porous materials were prepared by different carbonization temperature and characterized by XRD, SEM, FT-IR, and nitrogen adsorption-desorption techniques. Isotherm and kinetic studies on the adsorption behaviour of AFB1 onto the three porous carbonaceous materials have been systematically conducted. The results revealed that the porous carbonaceous materials could act as the excellent adsorbents that were of enough adsorption sites for AFB1, mainly due to the hierarchical porous structure and large surface areas for the enhancement of adsorption capacity. Notably, the porous carbonaceous materials could not only remove more than 90% of AFB1 from real vegetable oils within 30 min, but also remain the treated oils at low cytotoxicity. Meanwhile, the detoxification process could little affect the quality of oils. Thus, the Cu-BTC MOF-derived porous carbonaceous materials with high efficiency, safe, practical and economic characteristics could be novel potential adsorbents used in the application of AFB1 removal from contaminated vegetable oils.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xinfa Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| |
Collapse
|
47
|
Peng LP, Hao Q, Men SQ, Wang XR, Huang WY, Tong NN, Chen M, Liu ZA, Ma XF, Shu QY. Ecotopic over-expression of PoCHS from Paeonia ostii altered the fatty acids composition and content in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 172:64-76. [PMID: 33247451 DOI: 10.1111/ppl.13293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.
Collapse
Affiliation(s)
- Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Si-Qi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Yuan Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Feng Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Pradanas-González F, Álvarez-Rivera G, Benito-Peña E, Navarro-Villoslada F, Cifuentes A, Herrero M, Moreno-Bondi MC. Mycotoxin extraction from edible insects with natural deep eutectic solvents: a green alternative to conventional methods. J Chromatogr A 2021; 1648:462180. [PMID: 33992990 DOI: 10.1016/j.chroma.2021.462180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Edible insects are widely consumed in Africa, Asia, Oceania and Latin America, but less commonly so in Western countries. Since the turn of the millennium, however, entomophagy has aroused growing interest worldwide in response to the increasing scarcity of food resources. In fact, edible insects can be a source of high-quality protein, and also of fat, energy, minerals and vitamins. However, the lack of regulatory guidelines for microbiologically or chemically hazardous agents potentially present in these new foods (e.g., mycotoxins) may make their consumption unsafe. In this work, we developed an environmentally friendly analytical method using natural deep eutectic solvents (NADES or natural DES) in combination with ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of six mycotoxins of great concern owing to their toxic effects on humans and animals (namely, fumonisin B1, fumonisin B2, T-2 toxin, HT-2 toxin, ochratoxin A and mycophenolic acid) in insect-based food products. The target mycotoxins were co-extracted from cricket flour by using the optimum DES composition (namely, a mixture of choline chloride and urea, in a 1:2 mole ratio, containing 15% water which resulted in the highest extraction recoveries for all toxins). An experimental design method (Fractional Factorial Design (FFD) was used to examine the influence of the operational variables DES volume and water content, amount of sample, extraction time and extraction temperature on the extraction efficiency for each mycotoxin. Under optimum conditions, extraction recoveries were close to 100% except for fumonisin B2 (70%) and T-2 toxin (50%), with relative standard deviations (RSDs) below 13% in all cases. The proposed NADES-UHPLC-MS/MS method was validated in accordance with the European Commission 2002/657/EC and 2006/401/EC decisions, and used to determine the target compounds in cricket flour, silkworm pupae powder and black cricket powder.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| |
Collapse
|
49
|
Valorized Food Processing By-Products in the EU: Finding the Balance between Safety, Nutrition, and Sustainability. SUSTAINABILITY 2021. [DOI: 10.3390/su13084428] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food businesses in the European Union are preparing for a carbon-neutral future by gradually transitioning to a circular way of operating. Building upon results from the EU REFRESH project, we consider the most valuable food processing by-streams in Europe and discuss potential food safety risks that must be considered while valorizing them for human consumption. These risks are weighed against the nutritional benefits offered by these products and their potential applications in food supply chains. Broadly, we examine whether it is possible for spent grains, cheese whey, fruit and vegetable scraps, meat processing waste, and oilseed cakes and meals to be safe, sustainable, and nutritionally valuable at the same time. The discussion highlights that valorizing by-products obtained from food processing operations is feasible on a large scale only if consumers deem it to be a safe and acceptable practice. Extracting valuable compounds from by-products and using them in the preparation of functional foods could be a way to gain consumer acceptance. Furthermore, we find that current EU food safety legislation does not sufficiently accommodate food processing by-products. A way to bridge this regulatory gap could be through the adoption of private food safety standards that have shown proclivity for sustainability-related issues in food supply chains. Finally, by proposing a decision tree, we show that it is indeed feasible for some food processing by-products to be valorized while ensuring sustainability, food safety, and nutritional relevance.
Collapse
|
50
|
Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, Sun X. Microbial detoxification of mycotoxins in food and feed. Crit Rev Food Sci Nutr 2021; 62:4951-4969. [PMID: 33663294 DOI: 10.1080/10408398.2021.1879730] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycotoxins are metabolites produced by fungi growing in food or feed, which can produce toxic effects and seriously threaten the health of humans and animals. Mycotoxins are commonly found in food and feed, and are of significant concern due to their hepatotoxicity, nephrotoxicity, carcinogenicity, mutagenicity, and ability to damage the immune and reproductive systems. Traditional physical and chemical detoxification methods to treat mycotoxins in food and feed products have limitations, such as loss of nutrients, reagent residues, and secondary pollution to the environment. Thus, there is an urgent need for new detoxification methods to effectively control mycotoxins and treat mycotoxin pollution. In recent years, microbial detoxification technology has been widely used for the degradation of mycotoxins in food and feed because this approach offers the potential for treatment with high efficiency, low toxicity, and strong specificity, without damage to nutrients. This article reviews the application of microbial detoxification technology for removal of common mycotoxins such as Aflatoxin, Ochratoxin, Zearalenone, Deoxynivalenol, and Fumonisins, and discusses the development trend of this important technology.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liangzhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|