1
|
Chen H, Zhou X, Du J, Ma Y, Zhong Y, Chen W, Qian H, Huang D. Solvent screening and extraction conditions prediction of subcritical extraction based on improved model: Extraction of lycopene as a case. Food Chem 2025; 475:143257. [PMID: 39952171 DOI: 10.1016/j.foodchem.2025.143257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In recent years, subcritical extraction has developed rapidly due to its environmental friendliness and high efficiency. In the extraction of low-polar and non-polar active substances, the addition of green low-polar solvents to subcritical extraction solvents can increase the yield of active substances. However, solvent screening and extraction conditions prediction are still a challenge. In this study, we employed the Williams formula to incorporate temperature and pressure correction into the Hansen solubility parameter to screen solvent under subcritical conditions by energetic spatial distance Ra between the solvent and solute. Then, an improved model along with corresponding dissolution factor e was established which allowed the prediction of optimum extraction condition range under subcritical conditions. Eventually, we chose the thermosensitive and non-polar substance lycopene as experimental case. Results showed that an e of 0.71 under experimental optimum extraction condition was within the predicted high extraction range, indicating the accuracy of the model predictions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jingwei Du
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
2
|
Khoza T, Masenya A, Khanyile N, Thosago S. Alleviating Plant Density and Salinity Stress in Moringa oleifera Using Arbuscular Mycorrhizal Fungi: A Review. J Fungi (Basel) 2025; 11:328. [PMID: 40278148 PMCID: PMC12028634 DOI: 10.3390/jof11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Moringa oleifera (LAM) is a multipurpose tree species with extensive pharmacological and ethnomedicinal properties. Production of important medicinal plants is facing decline under changing climatic conditions, which brings along exacerbated abiotic stresses like salinity and intraspecific competition, particularly high planting densities. Increasing plant density is seen as a strategy to increase production; however, the intraspecific competition and a lack of arable land limit productivity. Salinity has been estimated to harm approximately six percent of the Earth's landmass. This leads to a loss of over 20% of agricultural output annually. These stressors can significantly curtail moringa's growth and yield potential. Literature designates that Arbuscular Mycorrhizal Fungi (AMF), ubiquitous soil microorganisms forming symbiotic associations with plant roots, offer a promising avenue for mitigating these stresses. This narrative review aims to investigate the utilization of AMF to alleviate the detrimental effects of salinity and high planting density on Moringa oleifera. The different adaptive strategies M. oleifera undergoes to mitigate both stressors are explored. The review found that AMF inoculation enhances plant tolerance to these stressors by improving nutrient acquisition, water relations, and activating stress response mechanisms. By facilitating improved nutrient and water absorption, AMF enhance root architecture, modulate ROS scavenging mechanisms, and promote optimal biomass allocation, ensuring better survival in high-density plantings. Furthermore, AMF-mediated stress alleviation is linked to enhanced physiological efficiency, including increased chlorophyll content, root-shoot biomass balance, and ion homeostasis. This review is important because it could provide insights into a sustainable, natural solution for improving the resilience of Moringa oleifera under adverse environmental conditions, with potential applications in global agriculture and food security. Future research should prioritize identifying and characterizing moringa-specific AMF species and evaluate the long-term efficacy, feasibility, and economic viability of AMF application in real-world moringa cultivation systems to fully harness the potential of AMF in moringa cultivation.
Collapse
Affiliation(s)
- Tshepiso Khoza
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Absalom Masenya
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| | - Nokuthula Khanyile
- School of Chemical and Physical Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa;
| | - Standford Thosago
- School of Agriculture, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa; (T.K.)
| |
Collapse
|
3
|
Koriyama T, Kurosu Y, Hosoya T. Enhancing Bread Quality with Steam-Treated Moringa ( Moringa oleifera) Powder. Foods 2025; 14:927. [PMID: 40231919 PMCID: PMC11941579 DOI: 10.3390/foods14060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Moringa leaf powder (MLP) is a nutrient-dense ingredient. However, its addition to bread often suppresses bread expansion, affecting its sensory properties. To address these challenges, this research explored how steam-treated MLP (SMLP) influences the expansion and sensory qualities of bread. MLP was steamed for 10 min in an electric oven, sieved, and incorporated at a 5% substitution level for wheat flour in bread formulations. SMLP improved the specific loaf volume, increasing it from 2.2 to 4.6 cm3/g compared to MLP. It also mitigated the inhibition of Saccharomyces cerevisiae (brewer's yeast) viability induced by MLP, increasing its viability from 48% to 72%. Despite minor reductions, the antioxidant activity and quercetin-3-glucoside content remained high after treatment with SMLP. Moreover, SMLP delayed bread staling by reducing starch retrogradation enthalpy by 30-40%. Sensory evaluations revealed significant improvements in the aroma, appearance, and overall acceptability of bread prepared with SMLP compared to that prepared with MLP. This study demonstrated that steam treatment can enhance the potential and applicability of MLP as a functional food ingredient.
Collapse
Affiliation(s)
- Takako Koriyama
- Faculty of Food and Nutritional Science, Toyo University, 48-1 Oka, Asaka-shi 351-8510, Saitama, Japan;
| | | | - Takahiro Hosoya
- Faculty of Food and Nutritional Science, Toyo University, 48-1 Oka, Asaka-shi 351-8510, Saitama, Japan;
| |
Collapse
|
4
|
Singh B, Singh L, Bhatt ID, Kandpal ND. Tailored NADES solvents for the extraction optimization of benzylisoquinoline alkaloids from Thalictrum foliolosum DC.- A potential phyto-nutraceutical source. Food Chem 2025; 463:141016. [PMID: 39241417 DOI: 10.1016/j.foodchem.2024.141016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
From a perspective focused on phyto-nutraceuticals, alkaloids are considered to be the most significant metabolites, as they exhibit a broad range of pharmacological applications. Therefore, it is essential, to conduct a thorough investigation of the extraction techniques employed and to optimize the overall process. Considering this, we delved into tailor-made natural deep eutectic solvents coupled with ultrasonic-assisted extraction and macroporous resins aided recovery of therapeutics alkaloids from Thalictrum foliolosum DC. The extraction parameters including duty cycle (X1), extraction time (X2), water content (X3), and liquid-to-solid ratio (X4) were optimized through response surface methodology. Under the optimal extraction conditions [duty cycle- 61 %, ultrasonication extraction time- 10.35 min, water content- 30.51 %, and liquid-to-solid ratio- 30 mL/g], the yield of berberine (11.91 ± 0.12 mg/g DW), berbamine (11.85 ± 0.16 mg/g DW), magnoflorine (6.06 ± 0.05 mg/g DW), and palmatine (2.53 ± 0.015 mg/g DW) were found to be near the model prediction. Further, adsorption/desorption characteristics were investigated, and the results highlight AB-8 resin as most effective for the recovery of berberine and palmatine, while, XAD-7HP resin is best suited for berbamine and magnoflorine. FT-IR analysis shows similar spectra among the purified extracts with significantly (p < 0.05) higher antioxidant and anti-glycemic activities. In conclusion, the developed method complies with the criteria of green extraction which can be harnessed as a natural antioxidant in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Basant Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Laxman Singh
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- Center for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Narain D Kandpal
- Department of Chemistry, S. S. J. Campus, Soban Singh Jeena University Almora, India
| |
Collapse
|
5
|
Chen J, Jiang C, Liu Z, Wang P, Ma Q, Zhou N. Study on optimization of extraction and purification processes for total flavonoids from Lycopi herba roots and their anti-proliferative effects on fibrous synoviocytes in human rheumatoid arthritis. ULTRASONICS SONOCHEMISTRY 2025; 112:107164. [PMID: 39579583 PMCID: PMC11625243 DOI: 10.1016/j.ultsonch.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Lycopi herba, a traditional Chinese medicinal plant, has long been valued for its aerial parts. however, its roots, which are often discarded as non-medicinal waste, actually contain flavonoid compounds that possess potential medicinal values such as anti-inflammatory, antioxidant, and anti-tumor activities. Despite this, studies on the extraction, purification, and biological activity assessment of total flavonoids from L. herba roots (TFLHR) remain inadequate. Our study aimed to optimize the extraction and purification processes for TFLHR and evaluate their anti-proliferative effects on human fibroblast-like synoviocytes (HFLS-RA), which are key pathological cells in rheumatoid arthritis. By utilizing ultrasound-assisted extraction combined with response surface methodology (RSM), we optimized the extraction conditions, achieving a total flavonoid content of 90.484 ± 0.974 mg/g under the optimal settings: a liquid-solid ratio of 48:1 mL/g, 13 min of ultrasound treatment, 70 % ethanol, and an extraction temperature of 43°C. Subsequently, macroporous resin chromatography was employed for flavonoid purification, with AB-8 resin exhibiting the highest performance, achieving adsorption and desorption rates of 79.64 ± 1.51 % and 88.61 ± 1.02 %, respectively. By further refining the purification conditions through RSM, the purity of flavonoids was increased to 63.9 ± 1.86 %. Through ultra performance liquid chromatography tandem-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) analysis, 74 flavonoid compounds across 15 categories were identified. Further activity studies demonstrated that purified TFLHR exhibited significant concentration-dependent anti-proliferative effects on HFLS-RA cells. This study not only provides a scientific basis for the comprehensive utilization of L. herba root resources but also highlights the potential medicinal value of TFLHR in the treatment of rheumatoid arthritis, laying a foundation for future research into its specific mechanisms and clinical applications.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Chunyang Jiang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyu Liu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Panpan Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Qiang Ma
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
| |
Collapse
|
6
|
Lim SB, Lee J, Yang YH, Son H, Yoo HY, Han JA. Development of a novel functional jelly with dieckol-rich extract from Eisenia bicyclis: Physicochemical, antioxidant, and sensory characterization. Food Chem X 2024; 24:102044. [PMID: 39687634 PMCID: PMC11647469 DOI: 10.1016/j.fochx.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to develop a novel functional jelly by incorporating dieckol-rich extracts from Eisenia bicyclis (EB). In the extraction process, a high dieckol yield (16.5 mg/g biomass) was achieved by response surface optimization (optimum conditions: 55.3 % prethanol A, 70.9 °C, and 87.3 min). Dieckol jellies (DJs) were produced by adding various amounts of the extract with 25, 50, 75, and 100 % of 9.954 mg (recommended daily intake). The antioxidant activity of DJ increased from 0.02 to 0.4 mg ascorbic acid equivalent/mL with increasing dieckol content, and the texture analysis showed increased hardness, adhesiveness, and chewiness in DJs with over 75 % dieckol. The sensory testing indicated that DJ 25 had a superior overall preference, comparable to DJ 0 and higher than DJ 50 - 100. This study confirmed that EB is a high-potential source of dieckol, and the developed DJ is expected to have high potential as a novel functional food.
Collapse
Affiliation(s)
- Su-Bin Lim
- Department of Foodservice Management and Nutrition, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Yoon-Hee Yang
- Department of Foodservice Management and Nutrition, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Hyerim Son
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Jung-Ah Han
- Department of Food and Nutrition, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| |
Collapse
|
7
|
Hamada FA, Sabah SS, Mahdy EMB, El-Raouf HSA, El-Taher AM, El-Leel OFA, Althobaiti AT, Ghareeb MA, Randhir R, Randhir TO. Genetic, phytochemical and morphological identification and genetic diversity of selected Moringa species. Sci Rep 2024; 14:30476. [PMID: 39681573 DOI: 10.1038/s41598-024-79148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Moringa is the sole genus in the family Moringaceae used for medicinal and nutrient purposes. Morphological features, phytochemical attributes, and molecular characterization were used for the genetic association and classification among Moringa oleifera, M. peregrina, and M. stenopetala. Moringa peregrina recorded a similarity of 84% lonely and placed M. stenopetala with M. oleifera into a cluster score with a similarity of 95.3%. M. peregrina is characterized by phenolic content (243 mg/100 g), flavonoids (7 mg/100 g), and antioxidant activity (1226.85 mg/100 g). GC-MS analysis revealed that M. oleifera contained twenty compounds with 2-decenal (E) (39.14%), 2-undecenal (15.51%), nonanal (3.60%), and 2-octenal, (E) (2.48%), while M. peregrina identified eighteen compounds with 2-decenal (Z) (25.42%), 2-docecen-1-al (9.35%), and 13-Docosenoic acid, methyl ester, (Z) (4.16%). M. stenopetala identified fifteen compounds containing 2-decenal (E) (26.67%), 2-undecenal (24.10%), and nonanal (4.40%). A broad sense of similarity has been scored between M. oleifera and M. stenopetala by the phytochemical compositions, especially the similarity in the main compounds such as 2-decenal (E), 2-undecenal, and nonanal. It can be concluded that efforts need to be expanded to pay attention to study Moringa taxa, due to the rarity of Moringa peregrina, and the focus should be on sustainable utilization and conservation. The potential of these taxa would greatly benefit indigenous species in terms of their maintenance, and there is a need for more comprehensive bio-prospecting studies. Therefore, this study evaluates the variability among Moringa and highlights the significance of leaf and seed ultrastructure to provide more information and evaluate potential approaches.
Collapse
Affiliation(s)
- Fatma A Hamada
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt.
| | - Saleh S Sabah
- Desertification Department, College of Agriculture, Al-Muthanna University, Samawah, Iraq
| | - Ehab M B Mahdy
- National Gene Bank (NGB), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Hany S Abd El-Raouf
- Department of Agricultural Botany, Agriculture Faculty, Al-Azhar University, Cairo, 11651, Egypt
| | - Ahmed M El-Taher
- Department of Agricultural Botany, Agriculture Faculty, Al-Azhar University, Cairo, 11651, Egypt
| | - Omneya F A El-Leel
- Medicinal and Aromatic Plants Dept, Horticultural Research Institute (HRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Ashwaq T Althobaiti
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mosad A Ghareeb
- Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Kornaish El Nile, Imbaba, 12411, Giza, Egypt
| | - Reena Randhir
- Department of Biology, Springfield Technical Community College, Springfield, MA, 01105, USA
| | - Timothy O Randhir
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
8
|
Amangeldinova M, Ersatır M, Necip A, Yilmaz MA, Cimentepe M, Kudrina N, Terletskaya NV, Ozturk Cimentepe O, Yildirim M. Simultaneous quantitative screening of 53 phytochemicals from Rheum tataricum L. roots: a comparative study of supercritical CO 2, subcritical ethanol, and ultrasound-assisted extraction for enhanced antioxidant, antibacterial activities, and molecular docking study. FRONTIERS IN PLANT SCIENCE 2024; 15:1513875. [PMID: 39711600 PMCID: PMC11662978 DOI: 10.3389/fpls.2024.1513875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
In this study, Rheum tataricum L. extracts were obtained using various green extraction techniques, including supercritical CO2, subcritical ethanol, and ultrasound-assisted extraction, each performed under optimized parameters. The phytochemical content of the extracts was analyzed using the LC-MS/MS technique, quantifying 53 phytochemicals. Additionally, the in vitro antioxidant properties and antibacterial activities of the extracts were evaluated against Staphylococcus aureus and Enterococcus faecalis as gram-positive bacteria, and Escherichia coli and Pseudomonas aeruginosa as gram-negative bacteria. According to the results, the extracts were rich in catechin, epicatechin, cyranoside, and chlorogenic acid. Extracts obtained via ultrasonic extraction demonstrated stronger antioxidant properties. The IC50 values for the DPPH radical scavenging activity of obtained extracts ranged between 0.0173 mg/mL and 0.0400 mg/mL. The highest total phenolic content was found in the UAE-M-4h extract (213.44 mg GAE/mL). The extracts prepared with UAE-MeOH-2h-4h, UAE-EtOH-2h-4h, Sbc-EtOH-E-140-60-80, Sc-90 atm, and Sc-400 atm showed antibacterial activity against both Gram-positive and Gram-negative bacteria at varying rates (MIC range: 31.25 to 250 μg/mL). Based on the all results, the ultrasound assisted extraction proved superior to the other techniques. This study, utilizing three different extraction methods with varying variables such as temperature, pressure, and extraction time, has provided significant insights into which extraction method should be employed for isolating specific phytochemicals or for therapeutic purposes, based on the differing antibacterial results observed. The findings highlight the importance of selecting the appropriate extraction method depending on the target phytochemical or desired antibacterial effect in treatment applications.
Collapse
Affiliation(s)
- Madina Amangeldinova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Mehmet Ersatır
- Department of Chemistry, Faculty of Art and Science, Cukurova University, Adana, Türkiye
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Sanliurfa, Türkiye
| | - Mustafa Abdullah Yilmaz
- Dicle University Science and Technology Research and Application Center, Diyarbakir, Türkiye
- Department of Analytical Chemistry, Dicle University, Faculty of Pharmacy, Diyarbakir, Türkiye
| | - Mehmet Cimentepe
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye
| | - Nataliya Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Ozge Ozturk Cimentepe
- Department of Pharmacology, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Türkiye
| |
Collapse
|
9
|
Chu S, Shi Z, Xiao J, Wu Y. Bioactive constituents of amphibious Rotala rotundifolia at different growth stages and response surface optimization for flavonoid extraction. Sci Rep 2024; 14:29055. [PMID: 39580527 PMCID: PMC11585568 DOI: 10.1038/s41598-024-80300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Rotala rotundifolia is an amphibious aquatic plant that can live in submerged and emergent forms. It is superior in nitrogen and phosphorus removal and has been used as a traditional medicine in China for over a hundred years. In this study, the bioactive constituents from different tissues of submerged and emergent R. rotundifolia at different growth periods were investigated. The response surface method was used to optimize the flavonoids extraction condition. The amount of flavonoids and triterpenoids from different tissues of R. rotundifolia were much higher than tannins and alkaloids. The highest total flavonoids amount from the leaves of submerged R. rotundifolia was 270.92 ± 13.34 mg/g at day 30 (phyllomorphosis finished), 1.8 times that of the emergent form (150.45 ± 15.11 mg/g). The highest triterpenoids content from the submerged and emergent forms was 242.20 ± 11.51 and 163.09 ± 14.87 mg/g at days 90 and 150 (flowering stage), respectively. The optimal flavonoid extraction conditions were: extraction time 50 min, ultrasonic power 333 W, ethanol concentration 79.3%, and a solid-liquid ratio of 1:60. The LC-MS/MS analysis showed that the extracts from submerged and emergent R. rotundifolia contained 26 and 22 flavonoids, respectively. This study provides phytochemical evidence for the further utilization of R. rotundifolia.
Collapse
Affiliation(s)
- Shuyi Chu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Shi
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Jibo Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Yuxin Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
10
|
Buranasudja V, Sanookpan K, Vimolmangkang S, Binalee A, Mika K, Krobthong S, Kerdsomboon K, Kumkate S, Poolpak T, Kidhakarn S, Yang KM, Limcharoensuk T, Auesukaree C. Pretreatment with aqueous Moringa oleifera Lam. leaf extract prevents cadmium-induced hepatotoxicity by improving cellular antioxidant machinery and reducing cadmium accumulation. Heliyon 2024; 10:e37424. [PMID: 39309955 PMCID: PMC11416483 DOI: 10.1016/j.heliyon.2024.e37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Cadmium (Cd) is a highly harmful pollutant that poses a serious threat to human health. The liver is the primary organ for Cd accumulation, and Cd-induced hepatotoxicity has been shown to be strongly correlated with an oxidative imbalance in hepatocytes. Our previous studies in the eukaryotic model organism Saccharomyces cerevisiae revealed that not only co-treatment but also pretreatment with aqueous Moringa oleifera Lam. leaf extract (AMOLE) effectively mitigated Cd toxicity by reducing intracellular Cd accumulation and Cd-mediated oxidative stress. In this study, we therefore investigated the preventive effect of AMOLE against Cd toxicity in human HepG2 hepatocytes. The results showed that, similar to the case of the yeast model, pretreatment with AMOLE prior to Cd exposure also significantly inhibited Cd-induced oxidative stress in HepG2 cells. Untargeted LC-MS/MS-based metabolomic analysis of AMOLE revealed that its major phytochemical constituents were organic acids, particularly phenolic acids and carboxylic acids. Additionally, DPPH-HPTLC fingerprints suggested that quercetin and other flavonoids possibly contribute to the antioxidant activities of AMOLE. Based on our findings, it appears that pretreatment with AMOLE prevented Cd-induced hepatotoxicity via three possible mechanisms: i) direct elimination of free radicals by AMOLE antioxidant compounds; ii) upregulation of antioxidant defensive machinery (GPx1, and HO-1) via Nrf2 signaling cascade to improve cellular antioxidant capacity; and iii) reduction of intracellular Cd accumulation, probably by suppressing Cd uptake. These data strongly suggest the high potential of AMOLE for clinical utility in the prevention of Cd toxicity.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Nabsolute Co., Ltd., Bangkok, 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asma Binalee
- HPTLC Center, Chula PharTech Co., Ltd., Bangkok, 10330, Thailand
| | - Kamil Mika
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, Krakow, PL, 30-688, Poland
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Siraprapa Kidhakarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
11
|
Cergel E, Tuzuner BA, Turkyilmaz IB, Oktay S, Magaji UF, Sacan O, Yanardag R, Yarat A. Reversal of Valproate-Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chem Biodivers 2024; 21:e202301959. [PMID: 38469951 DOI: 10.1002/cbdv.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.
Collapse
Affiliation(s)
- Eda Cergel
- Biochemistry Master of Science Student, Health Sciences Institute, Marmara University, Maltepe, Istanbul, Turkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, Eyupsultan, Istanbul, Turkiye
| | - Burcin Alev Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Sehkar Oktay
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| |
Collapse
|
12
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Zhang S, Cao Y, Huang Y, Zhang S, Wang G, Fang X, Bao W. Aqueous M. oleifera leaf extract alleviates DSS-induced colitis in mice through suppression of inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116929. [PMID: 37480965 DOI: 10.1016/j.jep.2023.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (M. oleifera) is a perennial deciduous tree with considerable agricultural and pharmacological value. Nearly all parts of the tree are edible, and nearly all parts are used in traditional medicine. Leaves of M. oleifera have the functions of hypoglycemic (antidiabetic), anti-cancer and anti-oxidant stress, but less research pay attention to the anti-inflammatory effect of M. oleifera leaves. AIM OF THE STUDY Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal medication. Here, we investigated the anti-inflammatory effects of aqueous extract of M. oleifera leaves. MATERIALS AND METHODS Intestinal organoids and mice as in vitro and in vivo models to investigate the effects of aqueous extract of M. oleifera leaves on inflammation induced by TNF-α and dextran sulfate sodium (DSS) respectively. The expression of inflammatory cytokines and proliferation-related genes were evaluated by RT-qPCR, respectively. The compounds in the leaf extract were determined by LC/MS, and network pharmacology approach was employed to predict 54 anti-IBD potential targets of quercetin-3-galactoside (QG) and isoquercitrin (IS). RESULTS We found that the extract protected against damage to intestinal organoids caused by tumor necrosis factor (TNF-α), and significantly down-regulated the expression of inflammatory cytokines. The extract also suppressed the TNF-α-induced expression of Pcna, c-Myc, and c-Jun. Additionally, oral administration of the extract also ameliorated DSS-induced colon damage (colonic shortening, loss of goblet cells and overall abnormal cellularity), and inhibited the expression of inflammatory cytokines and proliferation-related genes in colitis. By LC/MS we identified nearly 2000 of the compounds in the leaf extract, of the flavonoids identified, QG and IS made up the largest percentage; both have been shown to have anti-inflammatory properties. Moreover, network pharmacology approach was employed to predict 54 anti-IBD potential targets of QG and IS. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the overlapping targets participated in response to oxidative stress and PI3K-Akt signaling pathway respectively. CONCLUSIONS The present study demonstrated the anti-inflammatory capability, in vitro and in vivo, of the aqueous extract of M. oleifera leaves and suggests its potential phytotherapeutic treatment for IBD.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaomin Fang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture & Agri-product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Koriyama T, Saikawa M, Kurosu Y, Kumagai M, Hosoya T. Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread. Foods 2023; 12:3760. [PMID: 37893654 PMCID: PMC10605988 DOI: 10.3390/foods12203760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Although a decrease in bread volume on adding nutrient-rich Moringa oleifera leaf powder (MLP) is known, to our knowledge, improving the swelling of MLP-added bread has not been attempted. This study aimed to investigate the effects of MLP and roasted MLP (RMLP) on bread quality. Bread was supplemented with MLP and RMLP treated at varying temperatures and times; the baked bread was then biochemically evaluated relative to the control. The specific volume of MLP-supplemented bread was 2.4 cm3/g, which increased to >4.0 cm3/g on using MLP roasted at 130 °C for ≥20 min, demonstrating remarkable swelling. The specific volume of bread supplemented with MLP roasted at 170 °C for 20 min was 4.6 cm3/g, similar to that of the control. Additionally, MLP interfered with carbon dioxide production in bread, thus decreasing the abundance of yeast cells; however, RMLP had no such effect and allowed normal fermentation. Scanning electron microscopy revealed gluten formation independent of MLP roasting. Thus, MLP-containing breads generally exhibit suppressed fermentation and expansion due to the bactericidal properties of raw MLP, but these effects are alleviated by heat treatment. These findings highlight the importance of heat treatment in mitigating the effects of MLP on bread fermentation and swelling.
Collapse
Affiliation(s)
- Takako Koriyama
- Faculty of Food and Nutritional Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; (M.S.); (Y.K.); (T.H.)
| | - Mika Saikawa
- Faculty of Food and Nutritional Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; (M.S.); (Y.K.); (T.H.)
| | - Yuria Kurosu
- Faculty of Food and Nutritional Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; (M.S.); (Y.K.); (T.H.)
| | - Michiyo Kumagai
- Tokyo Seiei College, 1-4-6 Nishishinkoiwa, Katsushika-ku, Tokyo 124-8530, Japan;
| | - Takahiro Hosoya
- Faculty of Food and Nutritional Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan; (M.S.); (Y.K.); (T.H.)
| |
Collapse
|
15
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Polo-Castellano C, Mateos RM, Visiedo F, Palma M, Barbero GF, Ferreiro-González M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa ( Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants (Basel) 2023; 12:antiox12020369. [PMID: 36829929 PMCID: PMC9952375 DOI: 10.3390/antiox12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera Lam. is known to have significant antioxidant properties. Because of this, the development of an optimal extraction method is crucial to obtain pharmacological products based on the bioactive compounds produced by this tree. Through a Plackett-Burman and a Box-Behnken design, enzymatic extraction conditions (temperature, agitation, solvent pH and composition, sample-to-solvent ratio, enzyme-to-sample ratio and extraction time) have been optimized using normalized areas (UA/g) as response variable and relative mass (mg/g) as quantification variable. Extractions were performed in an incubator, where all the extraction conditions could be digitally controlled. Thus, 58.9 °C, 50 rpm, 4.0 pH, 32.5% EtOH, 0.2 g sample in 15 mL solvent and 106 U/g were established as the optimal extraction conditions for the extraction with a mix of pectinases coming from Aspergillus niger. Under these optimal conditions, two-minute extractions were performed and evaluated through a single factor design. The enzymatic extraction method demonstrated its suitability to produce extracts with good antioxidant power (antioxidant activity 4.664 ± 0.059 mg trolox equivalent/g sample and total phenolic compounds 6.245 ± 0.101 mg gallic acid equivalent/g sample). The method was also confirmed to have good repeatability (1.39%) and intermediate precision (2.37%) levels.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Rosa María Mateos
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, 11519 Cadiz, Spain
| | - Francisco Visiedo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| |
Collapse
|
17
|
Wang Z, Yang S, Gao Y, Huang J. Extraction and purification of antioxidative flavonoids from Chionanthus retusa leaf. Front Bioeng Biotechnol 2022; 10:1085562. [PMID: 36568308 PMCID: PMC9780382 DOI: 10.3389/fbioe.2022.1085562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, flavonoids from the leaves of Chionanthus retusa were extracted using alcohol, and the extraction yield was optimized by single-factor and orthogonal experiments. Then, the extracted solution with flavonoids was purified via macroporous resin by elution with different concentrations of ethanol. The antioxidative activity of total flavonoid in purified extracted solution was evaluated by detecting its ability to scavenge DPPH free radicals. The results demonstrated that ethanol with a concentration of 60%, ultrasonic power of 140 W, liquid-solid ratio of 25:1 ml g-1, and water-bath temperature of 80°C were the optimal conditions for the extraction of total flavonoids from C. retusa leaf, achieving a yield of 121.28 mg g-1. After purification by macroporous resin using different concentrations of ethanol, the highest content of total flavonoids (88.51%) in the extracted solution can be obtained with the 50% ethanol eluant. The results of scavenging DPPH free radicals suggest that the purified flavonoids in the 50% ethanol eluant had the best antioxidant capacity over the flavonoids in other ethanol eluants. In addition, it is confirmed the antioxidant capacity of the extractives was associated with the content of total flavonoids and kinds of flavonoids. These results may provide a feasible pathway to make full use of total flavonoids from C. retusa leaf.
Collapse
Affiliation(s)
- Zhen Wang
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, China,*Correspondence: Shilong Yang,
| | - Yajun Gao
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| | - Jianting Huang
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| |
Collapse
|
18
|
Jia X, Sun S, Zhang Q, Wang N, Yang M, Jin Y, Du Y. Screening and Capability Assessment of Tyrosinase Inhibitors in Isodon excisoides by Ultrafiltration Coupled with UHPLC-Q-TOF-MS and Molecular Docking Technology. Chem Biodivers 2022; 19:e202200748. [PMID: 36369642 DOI: 10.1002/cbdv.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Tyrosinase inhibitors can alleviate the harm to the liver caused by tyrosinase. How to effectively screen out natural tyrosinase inhibitors becomes a focus. In this study, Isodon excisoides was first extracted with the ultrasound optimized by response surface methodology. Then, a method combined ultrafiltration with ultra-liquid chromatography mass spectrometry (UHPLC/MS) was built to screen and identify tyrosinase inhibitors. The binding energies of active ingredients to tyrosinase were calculated by molecular docking. The reliability of the results was validated by the IC50 of enzyme inhibition assay. As a result, the binding energies of 7 components including excisanin B, lasiokaurin, rabdophyllin G, rabdoserrin B, rabdosin D, rabdosinate and weisiensin were lower than that of resveratrol. It was indicated that these components had high tyrosinase inhibitory activity. The IC50 values of lasiokaurin and excisanin B were 177 and 142 μmol/mL, which were less than that of resveratrol (183 μmol/mL). It showed that this way was simple, rapid, reliable and effective, which provided a new strategy to screen natural bioactive compounds from plants.
Collapse
Affiliation(s)
- Xinming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| | - Shilin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| | - Qian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| | - Nan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| | - Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, P. R. China
| |
Collapse
|
19
|
Lin Z, Gan T, Huang Y, Bao L, Liu S, Cui X, Wang H, Jiao F, Zhang M, Su C, Qian Y. Anti-Inflammatory Activity of Mulberry Leaf Flavonoids In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23147694. [PMID: 35887036 PMCID: PMC9318041 DOI: 10.3390/ijms23147694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022] Open
Abstract
Mulberry (Morus alba L.) is a flowering tree traditionally used in Chinese herbal medicine. Mulberry leaf flavonoids (MLFs) have been reported to exert important anti-inflammatory and antioxidant properties. The purpose of this study was to select the MLF with the best anti-inflammatory and antioxidative activities from MLFs eluted by different ethanol concentrations (30%, 50%, and 75%) and explore its pharmacological properties. Three types of MLFs inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines in lipopolysaccharide (LPS)-induced RAW 264.7 cells. All MLFs boosted the antioxidative capacity by decreasing the reactive oxygen species (ROS) production and the scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and improving the metal ion chelating activity and reducing power. The results revealed that the MLFs eluted by 30% ethanol exhibited the best anti-inflammatory and antioxidative activities. A nontargeted metabolomic analysis was used to analyze 24 types of differential flavonoids between the MLFs. Quercetin, kaempferol, and their derivatives in 30%MLF were more abundant than the other two MLFs. Furthermore, we evaluated the pharmacological activities of 30%MLF in dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice. The 30%MLF could alleviate the clinical symptoms, reduce the secretion of inflammatory cytokines, and inhibit the activation of the inflammatory pathway in DSS-induced colitis mice. This study will provide valuable information for the development of MLFs eluted by 30% ethanol as a functional food.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Su
- Correspondence: (C.S.); (Y.Q.)
| | | |
Collapse
|
20
|
Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem X 2022; 14:100287. [PMID: 35313650 PMCID: PMC8933822 DOI: 10.1016/j.fochx.2022.100287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Five methods of extracting flavonoids from jujube were compared in different aspects. The extraction methods can significantly influence the flavonoid compositions. DES-UAE method had outstanding ability to maintain the stability of flavonoids. DES-UAE is an efficient and green method for extracting flavonoids from jujube.
The present study investigated the effects of different extraction methods including water-water bath (W-WB), ethanol-water bath (E-WB), deep eutectic solvent (DES) combined with ultrasound-assisted extraction (DES-UAE), microwave-assisted extraction (DES-MAE), and enzyme-assisted extraction (DES-EAE) on flavonoids (total flavonoid content, flavonoid composition, and stability) in jujube. The highest total flavonoid content of 8.03 mg/g was obtained by the DES-MAE extraction. Fifteen types of flavonoids were identified from jujube. The amount of rutin produced by the E-WB and DES-UAE methods was 66.88 ± 1.58 μg/g and 45.23 ± 3.22 μg/g, respectively. The retention of flavonoids in DES-UAE extracts were 98.15 ± 0.51%, 64.25 ± 2.21% after 2 h of high temperature treatment at 90 °C and 21 days of dark storage, respectively. The flavonoids extracted by different methods were suitable for dark storage under different light contrasts, where the retention of flavonoids extracted by DES-UAE method was 86.44 ± 2.45%. In conclusion, DES-UAE would be an efficient method for flavonoid extraction from jujube.
Collapse
|
21
|
Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Moringa oleifera Lam. (Moringaceae) is one of the most essential medicinal plants primarily found in the rainforest area and forest ecosystem, but is now well-adapted in an organized cultivation system. Moringa oleifera (M. oleifera) is well-known as Drumstick tree, Moringa kai, color, Marengo, Moringe, mulangay, Sahjan, and Sajna, which are its native names commonly used. It has nourishing, beneficial, and preventive effects when taken as food and has an extensive scope of high restorative properties with huge dietary benefits. Different parts of the M. oleifera plants, such as leaves, flowers, fruits, seeds, and roots, contain a significant amount of protein, ß-carotene, amino acids, important minerals, and various phenolic compounds. Because of its multifarious health benefits for its therapeutic value, it is considered an essential plant. The plant is found to be blessed with several medicinal characteristics such as antitumor, anti-inflammatory, antiulcer, antipyretic, antiepileptic, antispasmodic, diuretic, antihypertensive, antidiabetic, cholesterol-level down, cell reinforcement, and hepatoprotective. Moreover, it is used traditionally in the local curative system against cardiac problems, and the antifungal properties are efficiently utilized for the treatment of a wide range of ailments. The present review article was designed to explore the nutritional and economic benefits, medicinal and therapeutic applications, and the future biomedical prospects of Moringa with a view towards human wellbeing.
Collapse
|
22
|
Zheng B, Zheng Y, Zhang N, Zhang Y, Zheng B. Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep 2022; 12:5654. [PMID: 35383226 PMCID: PMC8983741 DOI: 10.1038/s41598-022-09581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate the anti-pancreatic cancer effects of flavonoids in Plumula Nelumbinis. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry showed that apiin, rhoifolin, and vitexin were three principal components in total flavonoids derived from Plumula Nelumbinis, with vitexin being the most abundant component. Cell viability assay revealed that apiin, rhoifolin, and vitexin could inhibit proliferation of PANC-1 and ASPC-1, with rhoifolin showing the maximum inhibitory effect. Rhoifolin inhibited cell proliferation and promoted apoptosis of pancreatic cancer cells, which was associated with up-regulated JNK and p-JNK as well as down-regulated p-AKT. Rhoifolin also inhibited cell migration and invasion, and increased the antioxidant capacity in PANC-1 and ASPC-1. Besides, AKT activator (SC79) or JNK inhibitor (SP600125) effectively reversed the anticancer effects of rhoifolin in pancreatic cancer. Quantitative proteomics analysis showed that rhoifolin altered proteomic profiles in pancreatic cancer cells. Western blot analysis showed that rhoifolin down-regulated transforming growth factor beta 2 (TGF-β2), the regulator of proteoglycan synthesis, with the concomitant down-regulation of phosphorylated SMAD family member 2 (SMAD2), the downstream effector of TGF-β2. In conclusion, rhoifolin regulates the AKT/JNK/caspase-3 and TGF-β2/SMAD2 signaling pathways, which may contribute to its anti-pancreatic cancer effects.
Collapse
Affiliation(s)
- Bingxin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yixin Zheng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ningning Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, Fujian, People's Republic of China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
23
|
A one-step sample pretreatment and loading method for complex sample separation with supercritical fluid chromatography. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Zhang C, Ren H, Yao X, Wang K, Chang J. Comparative Transcriptome Analysis Reveals Differential Regulation of Flavonoids Biosynthesis Between Kernels of Two Pecan Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:804968. [PMID: 35283902 PMCID: PMC8914201 DOI: 10.3389/fpls.2022.804968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids influence the flavor and nutritional value of pecan nuts. However, limited information is available regarding the molecular mechanisms underlying pecan flavonoid biosynthesis. Here, we used a high ("YLC28") and a low ("Oconee") flavonoid content cultivar as the research objects. The changes in flavonoid content and the gene transcription patterns during kernel development were identified. Different accumulation patterns of total flavonoids (TF) and condensed tannins (CT) were observed between the two cultivars. The contents of TF and CT in "YLC28" were 1.76- and 2.67-fold higher levels than that of "Oconee" on 150 days after full bloom of female flowers, respectively. In total, 30 RNA-Seq libraries were constructed and sequenced. The upregulated genes in "YLC28" were highly enriched in flavonoid-related pathways. Thirty-three structural genes were identified, and the expression of two phenylalanine ammonia lyases, one chalcone synthase, one flavonoid 3',5'-hydroxylase, and one flavonol synthase exhibited high correlation (r ≥ 0.7, p < 0.01) with the condensed tannin content in "YLC28." A putative MYB transcription factor, CIL1093S0100, might act as a flavonoid biosynthesis repressor during kernel development. Altogether, these results will be useful for uncovering the molecular mechanisms of flavonoid biosynthesis and subsequently accelerating quality pecan breeding.
Collapse
|
25
|
Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RPF, Correia PMR, Mehra R, Kumar H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants (Basel) 2022; 11:antiox11020402. [PMID: 35204283 PMCID: PMC8869219 DOI: 10.3390/antiox11020402] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 01/05/2023] Open
Abstract
Based on the availability of many nutrients, Moringa oleifera tree leaves have been widely employed as nutrients and nutraceuticals in recent years. The leaves contain a small amount of anti-nutritional factors and are abundant in innumerable bioactive compounds. Recently, in several in vivo and in vitro investigations, moringa leaves’ bioactive components and functionality are highlighted. Moringa leaves provide several health advantages, including anti-diabetic, antibacterial, anti-cancer, and anti-inflammatory properties. The high content of phytochemicals, carotenoids, and glucosinolates is responsible for the majority of these activities as reported in the literature. Furthermore, there is growing interest in using moringa as a value-added ingredient in the development of functional foods. Despite substantial study into identifying and measuring these beneficial components from moringa leaves, bioaccessibility and bioavailability studies are lacking. This review emphasizes recent scientific evidence on the dietary and bioactive profiles of moringa leaves, bioavailability, health benefits, and applications in various food products. This study highlights new scientific data on the moringa leaves containing nutrient and bioactive profiles, bioavailability, health benefits, and uses in various food items. Moringa has been extensively used as a health-promoting food additive because of its potent protection against various diseases and the widespread presence of environmental toxins. More research is needed for utilization as well as to study medicinal effects and bioaccesibility of these leaves for development of various drugs and functional foods.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144401, India
| | - Shiv Kumar
- Food Science & Technology (Hotel Management), Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Charanjit Singh Riar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | - Navdeep Jindal
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | | | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Paula M. R. Correia
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| |
Collapse
|
26
|
Ji YW, Rao GW, Xie GF. Ultrasound-assisted aqueous two-phase extraction of total flavonoids from Tremella fuciformis and antioxidant activity of extracted flavonoids. Prep Biochem Biotechnol 2022; 52:1060-1068. [DOI: 10.1080/10826068.2022.2028636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- You-wei Ji
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Gui-wei Rao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Guang-fa Xie
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
27
|
Tong Y, Lv Y, Yu S, Lyu Y, Zhang L, Zhou J. Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids. Enzyme Microb Technol 2022; 156:109991. [DOI: 10.1016/j.enzmictec.2022.109991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
|
28
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Dong JN, Wu GD, Dong ZQ, Yang D, Bo YK, An M, Zhao LS. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Adv 2021; 11:37649-37660. [PMID: 35496443 PMCID: PMC9043790 DOI: 10.1039/d1ra06338c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
An efficient and environmentally friendly ultrasound-assisted (UAE) natural deep eutectic solvent (NADES) extraction method was applied for the extraction of five bioactive compounds (liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin) from compound liquorice tablets (CPLTs), and the antioxidant activities of these compounds were evaluated. In this study, eighteen different NADES systems based on either two or three components were tested and a 1,4-butanediol–levulinic acid system (1 : 3 molar ratio) was selected as a topgallant solvent for maximizing analyte extraction yields. Various extraction parameters, such as water content, liquid/solid ratio, extraction time and temperature, were systematically optimized by single-factor and response surface methodology (RSM) experiments. The results indicated that the optimum extraction conditions for the analytes featured a water content of 17%, a liquid/solid ratio of 42 mL g−1 and an extraction time of 30 min. The extracted amounts of liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin reached 5.60, 3.17, 1.27, 74.62 and 1.34 mg g−1, respectively, under optimized conditions, which were much higher than those extracted using conventional organic solvents. In addition, antioxidant tests revealed that the NADES extracts showed higher DPPH and hydroxyl radical-scavenging capacity than the conventional solvent extracts used for comparison. This study provides a suitable approach for efficiently extracting the bioactive compounds of CPLTs. Meanwhile, NADESs can be extended to other natural products as green extraction media. A 1,4-butanediol–levulinic acid system was selected as a topgallant solvent and extraction parameters were optimized. NADES extracts exhibited higher extraction efficiency and in vitro antioxidant activities than conventional solvent extracts.![]()
Collapse
Affiliation(s)
- Jia-Ni Dong
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Guo-Dong Wu
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Zhi-Qiang Dong
- The First Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia 014010 China
| | - Dan Yang
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Yu-Kun Bo
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Ming An
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Long-Shan Zhao
- Shenyang Pharmaceutical University Shenyang Liaoning Province 110016 China +86 24 43520571
| |
Collapse
|
30
|
Liu R, Liu J, Huang Q, Liu S, Jiang Y. Moringa oleifera: a systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. J Pharm Pharmacol 2021; 74:296-320. [PMID: 34718669 DOI: 10.1093/jpp/rgab131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Moringa oleifera (M. oleifera) Lam (Moringaceae) is a perennial plant broadly used in South Asia and Africa as a traditional folk medicine to treat many ailments such as paralysis, helminthiasis, sores and skin infections. The review provides a critical and comprehensive evaluation of the botany, traditional uses, phytochemistry, pharmacology, toxicity, agricultural economy and dietary benefit of M. oleifera and its future perspectives. KEY FINDINGS In this review, the entire plant of M. oleifera, containing diverse phytochemicals, is summarized. The 163 chemical components, included flavonoids, carbamates, glucosinolates, phenols, and so on with various bioactivities, such as anti-tumour, antioxidant, anti-inflammatory, and so on. Additionally, M. oleifera is toxic at certain doses; and overuse can cause genotoxicity. SUMMARY Although M. oleifera has been widely used in traditional medicine, the pharmacological studies that have been conducted so far are not sufficient for its use in the setting of evidence-based medicine. Little relevant data from clinical trials of M. oleifera have been reported. The majority of studies of its constituents, such as carbamates and glucosinolates, have been conducted only in vitro. Owing to a lack of available data, the pharmacology, toxicity, agricultural economy and dietary benefit of its constituents and extracts require further evaluation.
Collapse
Affiliation(s)
- Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
32
|
Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: antimicrobial activity and their phytoconstituents profile using HPLC. Sci Rep 2021; 11:19027. [PMID: 34561493 PMCID: PMC8463546 DOI: 10.1038/s41598-021-98415-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
In the present study, and for the waste valorization, Moringa oleifera seeds-removed ripened pods (SRRP) were used for papersheet production and for the extraction of bioactive compounds. Fibers were characterized by SEM–EDX patterns, while the phytoconstituents in ethanol extract was analyzed by HPLC. The inhibition percentage of fungal mycelial growth (IFMG) of the treated Melia azedarach wood with M. oleifera SRRP extract at the concentrations of 10,000, 20,000, and 30,000 µg/mL against the growth of Rhizoctonia solani and Fusarium culmorum was calculated and compared with fluconazole (25 µg). The produced papersheet was treated with the ethanol extract (4000, 2000, and 1000 µg/mL) and assayed for its antibacterial activity against Agrobacterium tumefaciens, Erwinia amylovora, and Pectobacterium atrosepticum by measuring the inhibition zones and minimum inhibitory concentrations (MICs). According to chemical analysis of M. oleifera SRRP, benzene:alcohol extractives, holocellulose, lignin, and ash contents were 7.56, 64.94, 25.66 and 1.53%, respectively, while for the produced unbleached pulp, the screen pulp yield and the Kappa number were 39% and 25, respectively. The produced papersheet showed tensile index, tear index, burst index, and double fold number values of 58.8 N m/g, 3.38 mN m2/g, 3.86 kPa m2/g, and 10.66, respectively. SEM examination showed that the average fiber diameter was 16.39 µm, and the mass average of for elemental composition of C and O by EDX were, 44.21%, and 55.79%, respectively. The main phytoconstituents in the extract (mg/100 g extract) by HPLC were vanillic acid (5053.49), benzoic acid (262.98), naringenin (133.02), chlorogenic acid (66.16), and myricetin (56.27). After 14 days of incubation, M. oleifera SRRP extract-wood treated showed good IFMG against R. solani (36.88%) and F. culmorum (51.66%) compared to fluconazole, where it observed 42.96% and 53.70%, respectively. Moderate to significant antibacterial activity was found, where the minimum inhibitory concentration (MIC) values were 500, 650, and 250 µg/mL against the growth of A. tumefaciens, E. amylovora, and P. atrosepticum respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). In conclusion, M. oleifera SRRP showed promising properties as a raw material for pulp and paper production as well as for the extraction of bioactive compounds.
Collapse
|
33
|
Xu Y, Chen G, Guo M. Correlations between phytochemical fingerprints of Moringa oleifera leaf extracts and their antioxidant activities revealed by chemometric analysis. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:698-709. [PMID: 33319431 DOI: 10.1002/pca.3016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Moringa oleifera Lam. is widely cultivated and applied in tropical and subtropical areas. Numerous studies have been focused on the antioxidant capacity of M. oleifera leaves, but its correlated bioactive phytochemicals remain elusive. OBJECTIVE In order to search for the corresponding chemical compounds from M. oleifera leaves responsible for their antioxidant activity, the correlations between phytochemical fingerprints of 15 batches of M. oleifera leaves and their antioxidant activities were investigated by using chemometric analysis. MATERIAL AND METHODS Fifteen batches of M. oleifera leaves were extracted with 90% ethanol solution, and their phytochemical fingerprints and antioxidant activities were estimated by using high-performance liquid chromatography-ultraviolet-electrospray ionisation tandem mass spectrometry (HPLC-UV/ESI-MS/MS), and three detected methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay and ferric-reducing antioxidant power (FRAP) assay, respectively. Chemometric analysis was then applied to reveal the correlations between their phytochemical fingerprints and corresponding antioxidant capacity. RESULTS Fifteen M. oleifera leaf extracts exhibited strong antioxidant activities, in which 24 common compounds were identified by LC-MS. Furthermore, the partial least squares (PLS) analysis indicated that compounds 14, 16, 18 and 23 were the main potential effective components in at least two antioxidant tests. They were identified as kaempferol 3-O-rutinoside, quercetin 3-O-(6″-malonyl-glucoside), kaempferol 3-O-glucoside, and quercetin derivative, respectively. CONCLUSION The correlations between phytochemical fingerprints of M. oleifera leaf extracts and their corresponding antioxidant capacities were revealed by chemometric analysis, which provides an alternative method for screening for potential bioactive compounds with antioxidant capacity from M. oleifera leaves.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Chen J, Li X, Kong B, Ma J, Liu M, Liu C, Liu Q. How to Efficiently Remove
tert
‐butylhydroquinone from Commercial Soybean Oils to Obtain Stripped Oils: Eliminating
tert
‐butylhydroquinone's Influence on Oxidative Stabilities of Model Oil‐in‐Water Emulsions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jiaxin Chen
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Xin Li
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baohua Kong
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Jinglin Ma
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Meiyue Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Chengguo Liu
- Sharable Platform of Large‐Scale Instruments & Equipments Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qian Liu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Green Food Science & Research Institute Harbin Heilongjiang 150028 China
| |
Collapse
|
35
|
Luna E, Freitas T, Campina F, Costa M, Rocha J, Cruz R, Sena Júnior D, Silveira Z, Macedo N, Pinheiro J, Pereira-Júnior F, Lisboa M, Cruz G, Calixto Júnior J, Teixeira A, Coutinho H. Evaluation of phytochemical composition, toxicity in Drosophila melanogaster and effects on antibiotics modulation of Plathymenia reticulata Benth extract. Toxicol Rep 2021; 8:732-739. [PMID: 33868957 PMCID: PMC8042435 DOI: 10.1016/j.toxrep.2021.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial resistance is interfering with the action of antibiotics for clinical use in treating pathologies. The search for new substances capable of combating this resistance is necessary. An alternative to the search for these substances is in the extract of medicinal plants. Plathymenia reticulata, plant of the Fabaceae family, is a common tree species from the Brazilian cerrado, and is commonly used in areas of environmental degradation. This species is rich in phenolic compounds, such as flavonoids and tannins, compounds that are associated with various biological effects. A hydroethanolic extract from the bark of Plathymenia reticulata (HEPrB) was produced and then tests were carried out to verify the direct antibacterial activity, the modulatory effect of antibiotics for clinical use and their toxicity in Drosophila melanogaster flies. Through the analysis with UPLC, a wide variety of flavonoids contained in the HEPrB was observed. Direct antibacterial activity was observed for the standard strain of Staphylococcus aureus, however, the extract showed antagonistic activity or no significance in relation to the antibiotics tested in this study. As for toxicity, the HEPrB did not show significant damage in the proposed model. The results emphasize care when associating the consumption of teas with treatments with antibiotics for clinical use.
Collapse
Affiliation(s)
- E.M. Luna
- Departamento de Química Biológica, Laboratório de Simulações e Espectroscopia Molecular - LASEMOL, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - T.S. Freitas
- Departamento de Química Biológica, Laboratório de Simulações e Espectroscopia Molecular - LASEMOL, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - F.F. Campina
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - M.S. Costa
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - J.E. Rocha
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - R.P. Cruz
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - D.L. Sena Júnior
- Departamento de Química Biológica, Laboratório de Bioprospecção do Semiárido e Métodos Alternativos – LABSEMA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Z.S. Silveira
- Departamento de Química Biológica, Laboratório de Bioprospecção do Semiárido e Métodos Alternativos – LABSEMA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - N.S. Macedo
- Departamento de Química Biológica, Laboratório de Bioprospecção do Semiárido e Métodos Alternativos – LABSEMA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - J.C.A. Pinheiro
- Laboratório de Bioensaios - LABIO, Universidade Federal do Cariri - UFCA, Instituto de Formação de Educadores, Campus Brejo Santo, CE, Brazil
| | - F.N. Pereira-Júnior
- Centro de Ciências Agrárias e da Biodiversidade – CCAB, Federal University of Cariri, Juazeiro do Norte, CE, Brazil
| | - M.A.N. Lisboa
- Laboratório de Estudos da Flora Regional do Cariri - LEFLORE/URCA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - G.V. Cruz
- Laboratório de Estudos da Flora Regional do Cariri - LEFLORE/URCA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - J.T. Calixto Júnior
- Laboratório de Estudos da Flora Regional do Cariri - LEFLORE/URCA, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - A.M.R. Teixeira
- Departamento de Química Biológica, Laboratório de Simulações e Espectroscopia Molecular - LASEMOL, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - H.D.M. Coutinho
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| |
Collapse
|
36
|
Tilaoui M, Achibat H, Lébri M, Lagou S, Ait Mouse H, Zazouli S, Hafid A, Zyad A, Khouili M. Phytochemical screening, antioxidant and in vitro anticancer activities of Bombax buonopozense stem bark extracts. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mounir Tilaoui
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hanane Achibat
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Marius Lébri
- Laboratory of Pharmacodynamics and Biochemistry, Department of Biology, Biosciences Research Center, Félix Houphouët-Boigny University, Abidjan, Ivory Coast
| | - Stéphanie Lagou
- Laboratory of Biotechnology, Department of Biology, Nature Biosciences Research Center, Nangui Abrogoua University, Abidjan, Ivory Coast
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Sofia Zazouli
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abderrafia Hafid
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Abdelmajid Zyad
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mostafa Khouili
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| |
Collapse
|
37
|
Yun YR, Oh SJ, Lee MJ, Choi YJ, Park SJ, Lee MA, Min SG, Seo HY, Park SH. Antioxidant activity and calcium bioaccessibility of Moringa oleifera leaf hydrolysate, as a potential calcium supplement in food. Food Sci Biotechnol 2020; 29:1563-1571. [PMID: 33088605 DOI: 10.1007/s10068-020-00820-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Abstract
Moringa oleifera leaf (ML) is rich in vitamins and minerals, specially abundant calcium, therefore it is widely used as a calcium supplement for food. This study aimed to investigate the antioxidant activity and calcium bioaccessibility of M. oleifera leaf hydrolysate (MLH) as a calcium supplement for kimchi. MLH was prepared under three different proteases, two different protease contents, and three different incubation times. Total phenol content (TPC), total flavonoid content (TFC), and antioxidant activities were investigated. Cellular activity and calcium bioaccessibility were also investigated. The highest calcium level of MLH was observed in 3% Protamex treatment for 4 h. TPC, TFC, and antioxidant activities of MLH in Protamex and Alcalase treatments were higher than those in Flavourzyme treatment (p < 0.05). Moreover, high cell viability and alkaline phosphatase activity were also observed in C2C12 cells. Kimchi containing MLH showed high calcium accessibility compared to kimchi alone. Taken together, the application of MLH could have potential as a calcium supplement for kimchi production.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Su-Jin Oh
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Min-Jung Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Yun-Jung Choi
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung Jin Park
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Mi-Ai Lee
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Gi Min
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Hye-Young Seo
- Hygienic Safety and Analysis Center, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| | - Sung-Hee Park
- Industrial Technology Research Group, Research and Development Division, World Institute of Kimchi, Nam-Gu, Gwangju, 61755 Republic of Korea
| |
Collapse
|
38
|
Voinea A, Stroe SG, Codină GG. The Effect of Sea Salt, Dry Sourdough and Fermented Sugar as Sodium Chloride Replacers on Rheological Behavior of Wheat Flour Dough. Foods 2020; 9:E1465. [PMID: 33066698 PMCID: PMC7602458 DOI: 10.3390/foods9101465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effects of formulation factors, sea salt (SS), dry sourdough (SD) and fermented sugar (FS) as sodium chloride replacers in wheat flour on dough mixing, extension, pasting and fermentation rheological properties, evaluated by Farinograph, Extensograph, Amylograph and Rheofermentometer devices. With regard to mixing and extension properties, SS and FS presented a strengthening effect, whereas SD presented a weakening one. SS and FS presented a positive effect on dough stability, energy and resistance, whereas SD presented a negative one. On the Amylograph, peak viscosity increased by SS and FS addition and decreased when SD was incorporated in the dough recipe. During fermentation, dough development and gas production in the dough system increased after SS and SD addition, whereas they decreased after FS addition. Response surface methodology (RSM) was used to investigate the effect of independent variables on the rheological properties of the dough. Mathematical models between the independent variables, SS, SD and FS, and the dependent variables, represented by the rheological values of the dough, were obtained. The best formulation obtained was of 0.30 g/100 g SS, 0.50 g/100 g SD and 1.02 mL/100 g FS addition with a 0.618 desirability value, following Derringer's desirability function approach. For this formulation, bread quality characteristics were better appreciated than for those obtained for the control sample, in which 1.5% NaCl was incorporated in wheat flour.
Collapse
Affiliation(s)
| | - Silviu-Gabriel Stroe
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (A.V.); (G.G.C.)
| | | |
Collapse
|
39
|
Balanescu F, Mihaila MDI, Cârâc G, Furdui B, Vînătoru C, Avramescu SM, Lisa EL, Cudalbeanu M, Dinica RM. Flavonoid Profiles of Two New Approved Romanian Ocimum Hybrids. Molecules 2020; 25:molecules25194573. [PMID: 33036369 PMCID: PMC7582240 DOI: 10.3390/molecules25194573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
Basil (Ocimum spp.) is a traditional herbal medicine abundant in antioxidants such as phenolic compounds. As part of a diet, this herb is proved to have some roles in decreasing the risk of cancer, and in the treatment of inflammation and neurodegenerative diseases. This study aims to explore the total phenolic and flavonoid content of two new basil hybrids growing in Romania, namely "Aromat de Buzau" (AB) and "Macedon" (MB). The antioxidant capacity of those two species was also analyzed by DPPH and cyclic voltammetry. Six different flavonoids, such as catechin (+), rutin, hyperoside, naringin, naringenin, and genistein, were separated, identified, and quantified by HPLC-DAD chromatography, for the first time, from romanian basil hybrids. The main flavonoid of the extracts was found to be naringin which is present in the highest amount (26.18 mg/kg) in "Aromat de Buzau" (O. basilicum) methanolic extract. These results suggest that dietary intake of these new hybrids can be a source of antioxidant compounds.
Collapse
Affiliation(s)
- Fanica Balanescu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania;
| | - Maria Daniela Ionica Mihaila
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
| | - Geta Cârâc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
| | - Bianca Furdui
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
- Correspondence: or (B.F.); (M.C.); or (R.M.D.)
| | - Costel Vînătoru
- Vegetable Research and Development Station Buzău, 23 Mesteacănului Street, 120024 Buzau, Romania;
| | - Sorin Marius Avramescu
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 90–92 Soseaua Panduri, 050663 Bucharest, Romania;
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 011464 Bucharest, Romania
| | - Elena Lacramioara Lisa
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania;
| | - Mihaela Cudalbeanu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
- National Institute for Research and Development in Environmental Protection–INCDPM, 294 Splaiul Independentei, 060031 Bucharest, Romania
- Correspondence: or (B.F.); (M.C.); or (R.M.D.)
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (F.B.); (M.D.I.M.); (G.C.)
- Correspondence: or (B.F.); (M.C.); or (R.M.D.)
| |
Collapse
|
40
|
Wang F, Long S, Zhang J, Yu J, Xiong Y, Zhou W, Qiu J, Jiang H. Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. FOOD BIOSCI 2020; 37:100691. [DOI: 10.1016/j.fbio.2020.100691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Chaves JO, de Souza MC, da Silva LC, Lachos-Perez D, Torres-Mayanga PC, Machado APDF, Forster-Carneiro T, Vázquez-Espinosa M, González-de-Peredo AV, Barbero GF, Rostagno MA. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front Chem 2020; 8:507887. [PMID: 33102442 PMCID: PMC7546908 DOI: 10.3389/fchem.2020.507887] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are one of the main groups of polyphenols found in natural products. Traditional flavonoid extraction techniques are being replaced by advanced techniques to reduce energy and solvent consumption, increase efficiency and selectivity, to meet increased market demand and environmental regulations. Advanced technologies, such as microwaves, ultrasound, pressurized liquids, supercritical fluids, and electric fields, are alternatives currently being used. These modern techniques are generally faster, more environmentally friendly, and with higher automation levels compared to conventional extraction techniques. This review will discuss the different methods available for flavonoid extraction from natural sources and the main parameters involved (temperature, solvent, sample quantity, extraction time, among others). Recent trends and their industrial importance are also discussed in detail, providing insight into their potential. Thus, this paper seeks to review the innovations of compound extraction techniques, presenting in each of them their advantages and disadvantages, trying to offer a broader scope in the understanding of flavonoid extraction from different plant matrices.
Collapse
Affiliation(s)
- Jaísa Oliveira Chaves
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana Corrêa de Souza
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Laise Capelasso da Silva
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel Lachos-Perez
- Laboratory of Optimization, Design and Advanced Control - Bioenergy Research Program, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Paulo César Torres-Mayanga
- School of Food Engineering, University of Campinas, Campinas, Brazil
- Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Peru
| | | | | | | | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory in Food and Health, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
42
|
Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. ScientificWorldJournal 2020; 2020:6792069. [PMID: 32908461 PMCID: PMC7474796 DOI: 10.1155/2020/6792069] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/20/2020] [Accepted: 07/27/2020] [Indexed: 01/27/2023] Open
Abstract
The flavonoids are compounds synthesized by plants, and they have properties such as antioxidant, anticancer, anti-inflammatory, and antibacterial, among others. One of the most important bioactive properties of flavonoids is their antioxidant effect. Synthetic antioxidants have side toxic effects whilst natural antioxidants, such as flavonoids from natural sources, have relatively low toxicity. Therefore, it is important to incorporate flavonoids derived from natural sources in several products such as foods, cosmetics, and drugs. For this reason, there is currently a need to extract flavonoids from plant resources. In this review are described the most important parameters involved in the extraction of flavonoids by unconventional methods such as ultrasound, pressurized liquid extraction, mechanochemical, high hydrostatic pressure, supercritical fluid, negative pressure cavitation, intensification of vaporization by decompression to the vacuum, microwave, infrared, pulsed electric field, high-voltage electrical discharges, and enzyme-assisted extraction. There are no unified operation conditions to achieve high yields and purity. Notwithstanding, progress has been achieved in the development of more advanced and environmentally friendly methods of extraction. Although in literature are found important advances, a complete understanding of the extraction process in each of the unconventional techniques is needed to determine the thermodynamic and kinetic mechanisms that govern each of the techniques.
Collapse
|
43
|
Dhawi F, El-Beltagi HS, Aly E, Hamed AM. Antioxidant, Antibacterial Activities and Mineral Content of Buffalo Yoghurt Fortified with Fenugreek and Moringa oleifera Seed Flours. Foods 2020; 9:E1157. [PMID: 32825777 PMCID: PMC7555166 DOI: 10.3390/foods9091157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/20/2023] Open
Abstract
Recently, there is an increasing demand for functional yoghurts by consumer, especially those produced through the incorporation of food of plant origin or its bioactive components. The current research was devoted to formulating functional buffalo yoghurt through the addition of 0.1 and 0.2% of fenugreek (Trigonella foenum-graecum) seed flour (F1 and F2) and Moringa oleifera seed flour (M1 and M2). The effects of fortification were evaluated on physicochemical, total phenolic content (TPC), antioxidant activity (AOA), the viability of yoghurt starter, and sensory acceptability of yoghurts during cold storage. Moringa oleifera seed flour had higher contents of TPC (140.12 mg GAE/g) and AOA (31.30%) as compared to fenugreek seed flour (47.4 mg GAE/g and 19.1%, respectively). Values of TPC and AOA significantly increased in fortified yoghurts, and M2 treatment had the highest values of TPC (31.61, 27.29, and 25.69 mg GAE/g) and AOA (89.32, 83.5, and 80.35%) at 1, 7, and 14 days of storage, respectively. M2 showed significantly higher antibacterial activity against E. coli, S. aureus, L. monocytogenes, and Salmonella spp. and the zones of inhibition were 12.65, 13.14, 17.23 and 14.49 mm, respectively. On the other hand, control yoghurt showed the lowest antibacterial activity and the zones of inhibition were (4.12, 5.21, 8.55, and 8.39 mm against E. coli, S. aureus, L. monocytogenes, and Salmonella spp., respectively). Incorporation of 0.1% and 0.2% of moringa seed flour (M1 and M2) led to a higher content of Ca, P, K, and Fe and lower content of Mg and Zn as compared to F1 and F2, respectively. Thus, it could be concluded that fenugreek and Moringa oleifera seed flour can be exploited in the preparation of functional novel yoghurt.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Esmat Aly
- Dairy Technology Research Department, Food Technology Research Institute, Agricultural Research Center, Giza 12613, Egypt;
| | - Ahmed M. Hamed
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
44
|
Yin XS, Zhong ZF, Bian GL, Cheng XJ, Li DQ. Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chem 2020; 319:126555. [DOI: 10.1016/j.foodchem.2020.126555] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
|
45
|
Use of Response Surface Methodology to Investigate the Effects of Sodium Chloride Substitution with Potassium Chloride on Dough’s Rheological Properties. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10114039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bakery products are one of the main sources of dietary sodium intake of the world’s population. During the last decade, sodium intake has increased worldwide and nowadays the World Health Organization recommends reducing sodium intake by up to 2 g Na/day. KCl is the leading substitute for reducing sodium in bakery products. Therefore, the main purpose of our study was to investigate the impact of sodium reduction on dough’s rheological properties by reformulating the dough recipe using two types of salts, namely NaCl and KCl, with different amounts added to wheat flour. In order to establish their combination for obtaining the optimum rheological properties of dough, the response surface methodology (RSM) by the Design Expert software was used. The effect of combined NaCl and KCl salts were made on mixing, viscometric and fermentation process by using Farinograph, Extensograph, Amylograph and Rheofermentometer devices. On dough’s rheological properties, KCl and NaCl presented a significant effect (p < 0.01) on water absorption, stability, energy, dough resistance to extension, falling number and all Rheofermentometer-analyzed values. Mathematical models were achieved between independent variables, the KCl and NaCl amounts, and the dependent ones, dough rheological values. The optimal values obtained through RSM for the KCl and NaCl salts were of 0.37 g KCl/100 g and 1.31 g NaCl/100 g wheat flour, which leads to a 22% replacement of NaCl in the dough recipe.
Collapse
|
46
|
Yang S, Liu B, Tang M, Yang J, Kuang Y, Zhang M, Zhang C, Wang C, Qin J, Guo L, Zhao L. Extraction of flavonoids from
Cyclocarya paliurus
(Juglandaceae) leaves using ethanol/salt aqueous two‐phase system coupled with ultrasonic. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sheng‐xiang Yang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency Utilization Zhejiang A & F University Lin'an China
| | - Bing Liu
- College of Plant Science Jilin University Changchun China
| | - Mei Tang
- College of Pharmacy Guangxi University of Chinese Medicine Nanning China
| | - Jian Yang
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Yi Kuang
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High‐Efficiency Utilization Zhejiang A & F University Lin'an China
| | - Ming‐zhe Zhang
- College of Plant Science Jilin University Changchun China
| | - Chun‐ying Zhang
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Chao‐yi Wang
- College of Plant Science Jilin University Changchun China
| | - Jian‐chun Qin
- College of Plant Science Jilin University Changchun China
| | - Lan‐ping Guo
- The State Key Laboratory Breeding Base of Dao‐di Herbs National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China
| | - Li‐chun Zhao
- College of Pharmacy Guangxi University of Chinese Medicine Nanning China
| |
Collapse
|
47
|
Simultaneous optimization of ultrasound-assisted extraction of antioxidants and tyrosinase inhibitory activities of Semen Oroxyli flavonoids using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Huo S, Li Y, Guo Y, Zhang S, Li P, Gao P. Improving effects of Epimedium flavonoids on the selected reproductive features in layer hens after forced molting. Poult Sci 2020; 99:2757-2765. [PMID: 32359613 PMCID: PMC7597462 DOI: 10.1016/j.psj.2019.12.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
In the present study, for the purpose of investigating the effects of the total flavonoids of Epimedium (TFE) in regard to preventing the development of atrophied oviducts and follicles induced by forced molting, 300-day-old Hy-Line Brown layer hens were divided into 3 study groups as follows: the control (CON) group was the normal group, without forced molting and TFE treatments; the TFE1 group was treated by adding a 1‰ TFE treatment after forced molting; and the TFE0 group was not treated by TFE after forced molting. During this study's experimental process, the egg production rates were recorded each day. In addition, the hens were randomly chosen to be weighed every 4 D and also randomly selected to be sacrificed every 7 D. Then, sample tissues of albumen-secreting part and uterus from the fallopian tube of the layer hens were collected for PCR and hematoxylin-eosin staining tests. The results showed that the body weights, number of follicles, and weights and sizes of the fallopian tube for the TFE1 and TFE0 groups were significantly reduced when compared with those of the control group on the 15th D of the experiment. Furthermore, at the end of study, it was found that the egg production rates, weights of the fallopian tube, and ovarian follicles of TFE1 had recovered to normal levels. At the same time, the serum estrogen and the expressions of the progesterone receptor and estrogen receptor mRNA in fallopian tube were higher than those observed for the TFE0 group. The results of this study provided valuable evidence that TFE could improve the development of atrophied oviducts and increase the egg laying rates, thereby making it a potential multicomponent natural drug for egg production in the future.
Collapse
Affiliation(s)
- Shuying Huo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| | - Yurong Li
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yu Guo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuang Zhang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Peishan Li
- Animal Science and Technology College, The Beijing University of Agriculture, Beijing 102206, China
| | - Peipei Gao
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| |
Collapse
|
49
|
Impact of Ultrasound Extraction Parameters on the Antioxidant Properties of Moringa Oleifera Leaves. Antioxidants (Basel) 2020; 9:antiox9040277. [PMID: 32224892 PMCID: PMC7222185 DOI: 10.3390/antiox9040277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, much interest has been focused on Moringa oleifera L., a highly versatile and sustainable plant. In addition to its nutritional properties, numerous bioactive compounds have been identified in M. oleifera leaves, for which healthy properties have been reported. In the present research, the impact of ultrasound-assisted extraction (UAE) on the recovery of the bioactive compounds from leaves was investigated. Firstly, an experimental design approach has been used to highlight the influence of some extraction parameters (solvent, solvent/dry leaves ratio, temperature, time) on phenol compound recovery and antioxidant activity. Solvent composition was the most influential factor; in fact, the presence of water in the solvent (50:50, v/v) corresponded to an increase in the extraction performance. The liquid/solid ratio (L/S) also influenced the extraction process; in fact, the total phenol content reached 13.4 mg gallic acid equivalent (GAE)/g dry matter (DM) in the following UAE conditions: 50% water, 60:1 L/S ratio, 60 °C, 60 min. In order to quantify flavonols, hydroalcoholic extracts were analysed by HPLC-DAD (high performance liquid chromatography-diode array detector). In the flavonol class, the glycosidic forms of quercetin and kaempferol were mainly detected. Their content ranged from 216.4 µg/g DM of quercetin 3-O-rhamnoside to 293.9 µg/g DM of quercetin 3-O-(6″-O-malonyl)-β-D-glucoside. In summary, the leaves of M. oleifera are a potential natural source of bioactive compounds, proving to be very promising for the development of health-promoting food supplements.
Collapse
|
50
|
Carrera-Chávez JM, Jiménez-Aguilar EE, Acosta-Pérez TP, Núñez-Gastélum JA, Quezada-Casasola A, Escárcega-Ávila AM, Itza-Ortiz MF, Orozco-Lucero E. Effect of Moringa oleifera seed extract on antioxidant activity and sperm characteristics in cryopreserved ram semen. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1741374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- José Maria Carrera-Chávez
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Edson Eduardo Jiménez-Aguilar
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Theisy Patricia Acosta-Pérez
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - José Alberto Núñez-Gastélum
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Andrés Quezada-Casasola
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Angélica María Escárcega-Ávila
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Mateo Fabián Itza-Ortiz
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| | - Ernesto Orozco-Lucero
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, México
| |
Collapse
|