1
|
Khan J, Gul P, Li Q, Liu K. Drying kinetics and thermodynamic analysis; enhancing quinoa (Chenopodium quinoa Willd.) quality profile via pre-treatments assisted germination and processing. ULTRASONICS SONOCHEMISTRY 2025; 117:107337. [PMID: 40245638 PMCID: PMC12020910 DOI: 10.1016/j.ultsonch.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
Pre-treatments assisted germination is an efficient technique to enhance the nutritional profile of Quinoa (Chenopodium quinoa Willd.). The present study investigated the impact of pre-treatments assisted germination of quinoa nutritional, anti-nutritional, and structural properties. Quinoa grains JQ-778 were subjected to various pre-treatments including soaking, ultrasound at 28 kHz &40 kHz (US 28 kHz, US 40 kHz) for 30 min followed by germination over 96-hour at 25 °C in a Biochemical-Incubator, 12/12 h dark and light dried at temperatures 50 °C, 60 °C, 70 °C, and combined temperatures (70 °C, 60 °C, 50 °C). Among evaluated models, page and logarithmic showed the best fit, presenting the highest, R2 ≥ 0.9991, X2 ≤ 0.0013, RMSE ≤ 0.0022, and RSS ≤ 0.0201. Moisture diffusion varied from 3.74 × 10-9 to 8.36 × 10-9, with R2 0.9272 to 0.9837, and energy activation from 18.25 to 28.41 kJ/mol with R2 0.9533-0.9896. US 40 kHz significantly lowered drying time without affecting germinated quinoa grains bioactive components or other qualitative factors. Ultrasonic pre-treatment at 40 kHz and drying at 60 °C yielded the highest antioxidant potency composite index of 98.78 %. The contentof phytic acid and tannin dropped by 66.66 to 82.99 % and 31.48 to 41.60 %, respectively (p < 0.05). Each treatment significantly altered quinoa's quality attributes. Principal Component Analysis revealed significant correlations between analyses, explaining 80.37 % variability. The intensity of functional groups decreased in the infrared spectra, although the transmission of signals was greater in pretreated samples than in control. Scanning electron microscopy analysis showed extensive fragmentation and surface erosion of quinoa grains after ultrasound treatment. Our data suggests that ultrasound-treated quinoa grains may enhance their nutritional value, making them a suggested source of high-protein grains, bioactive components, with distinct structural properties.
Collapse
Affiliation(s)
- Jabir Khan
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Palwasha Gul
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Qingyun Li
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Henan University of Technology, College of Food Science and Engineering, Zhengzhou 450001, PR China; Henan University of Technology, College of Food and Strategic Reserves, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Govindaraju I, Das AR, Chakraborty I, Mal SS, Sarmah B, Baruah VJ, Mazumder N. Investigation of the physicochemical factors affecting the in vitro digestion and glycemic indices of indigenous indica rice cultivars. Sci Rep 2025; 15:2336. [PMID: 39824900 PMCID: PMC11742700 DOI: 10.1038/s41598-025-85660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices. Cooking properties of rice cultivars were estimated. Further, biochemical investgations such as amylose content, resistant starch content were estimated using iodine-blue complex method and megazyme kit respectively. The in vitro glycemic index was estimated using GOPOD method. The rice cultivars considered in our study were classified into low-, intermediate-, and high-amylose rice varieties. The rice cultivars were subjected to physicochemical characterization by using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) techniques. FTIR spectral analysis revealed prominent bands at 3550-3200, 2927-2935, 1628-1650, 1420-1330, and 1300-1000 cm-1, which correspond to -OH groups, C=O, C=C, and C-OH stretches, and H-O-H and -CH bending vibrations, confirming the presence of starch, proteins, and lipids. Additionally, the FTIR ratio R(1047/1022) confirmed the ordered structure of the amylopectin. DSC analysis revealed variations in the gelatinization parameters, which signifies variations in the fine amylopectin structures and the degree of branching inside the starch granules. The percentage of resistant starch (RS) ranged from 0.50-2.6%. The swelling power (SP) of the rice flour ranged between 4.1 and 24.85 g/g. Furthermore, most of the rice cultivars are classified as having a high glycemic index (GI) based on the estimated in vitro GI (eGI), which varies from 73.74-90.88. The cooking properties of these materials were also investigated. Because the amylose content is one of the key factors for determining the cooking, eating, and digestibility properties of rice, we investigated the relationships between the amylose content and other biochemical characteristics of rice cultivars. The SP and GI were negatively correlated with the amylose content, whereas the RS had a positive relationship. The findings of our study can be beneficial in illustrating the nutritional profile and factors affecting the digestibility of traditional rice cultivars which will promote their consumption, cultivation, and contributes to future food security.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha R Das
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, 575025, India
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785001, India
| | - Vishwa Jyoti Baruah
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Assam, 786004, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Madhumathi R, Prashanth KVH, Inamdar AA. Effect of nutrient-rich quinoa fraction composite wheat flour on product development. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:134-143. [PMID: 39867608 PMCID: PMC11754543 DOI: 10.1007/s13197-024-06016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 01/28/2025]
Abstract
To study the characteristics of bread by incorporating nutrient-rich quinoa flour as a new source for product development. Wheat flour was replaced by fractionated quinoa flour in different variations from 0%QF to 20%QF: 0%, 5%, 10%, 15%, and 20% WQF blends, respectively. Physicochemical studies resulted in higher protein and fiber content for the higher blend. Functional properties also reported higher WAC and swelling power for the quinoa addition to WF. Farinograph data revealed higher Water absorption (72.96 ± 0.02) and dough development time (4.92 ± 0.05) for higher blends than WF. Amylograph results in lower peak viscosity and HPV. DSC onset temperature is higher for blends (20%WQF-55.54 ± 0.13) than WF (49.17 ± 0.03). DSC data reported that adding quinoa flour showed higher gelatinization temperature and enthalpy. Incorporation of 5-20% quinoa flour with wheat flour gradually decreased the loaf volume of Bread compared to the WF bread, but up to 10% substitution bread becomes acceptable in taste and eating quality, but after 15-20% bread becomes challenging and not acceptable. A blend of nutrient-rich fractions of quinoa flour and WF bread resulted in progress in nutrition and better sensory attributes.
Collapse
Affiliation(s)
- R. Madhumathi
- Department of Flour Milling Baking and Confectionery Technology, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - K. V. Harish Prashanth
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aashitosh Ashok Inamdar
- Department of Flour Milling Baking and Confectionery Technology, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
4
|
Pietrysiak E, Zak A, Ikuse M, Nalbandian E, Kloepfer I, Hoang L, Vincent M, Jeganathan B, Ganjyal GM. Impact of genotypic variation and cultivation conditions on the techno-functional characteristics and chemical composition of 25 new Canadian quinoa cultivars. Food Res Int 2024; 195:114903. [PMID: 39277215 DOI: 10.1016/j.foodres.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
The utilization of quinoa in food production requires comprehensive information on its processing characteristics. Twenty-five new quinoa cultivars developed by the Northern Quinoa Breeding Program, grown in three Canadian locations over two seasons, were characterized for their proximate composition, pasting properties, thermal properties, water absorption index, water solubility index, foaming capacity, foaming stability, oil holding capacity, and emulsion activity crucial for potential food applications. Results showed significant variations in the proximate composition among the cultivars, which was also influenced by the growing location and harvest year. Significant differences (p < 0.05) were also observed in the pasting properties, thermal stability, hydration properties, foaming properties, oil holding capacity, and emulsion activity. The hierarchical cluster and principal component analyses were associated with five distinct clusters of quinoa cultivars, each with unique techno-functional attributes, suggesting their potential for different food applications. These findings emphasize the need for further research to explore the performance of quinoa flours in specific food products and their impact on end-product quality.
Collapse
Affiliation(s)
| | - Angelika Zak
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marina Ikuse
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | | | - Ivy Kloepfer
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Luuvan Hoang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Marc Vincent
- Northern Quinoa Production Corporation, Saskatoon, SK S7P 0E6, Canada
| | - Brasathe Jeganathan
- School of Food Science, Washington State University, Pullman, WA 99164, USA; Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
5
|
Li Z, Li X, Zhang X, Li X, Wen W, Wang X. Effect of Starch on the Solubility of Quinoa Protein Isolates during Heat Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20285-20294. [PMID: 37971378 DOI: 10.1021/acs.jafc.3c06116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
There is increasing interest in developing quinoa products due to their unique nutritional value. Starch and protein are the primary components in quinoa, and the interaction between them affects the quality of quinoa products. This study extracted the starch and protein from quinoa and simulated the thermal processing of quinoa to investigate the effects of starch on the solubility and structure of quinoa protein isolates during heat treatment. The structure of quinoa protein isolates was characterized by fluorescence spectroscopy, Fourier transform infrared spectroscopy, laser particle size analysis, and scanning electron microscopy. The results showed that starch decreased protein solubility, and the maximum solubility was obtained after heating for 5 min. After starch addition during heat treatment, the surface charge distribution of protein changed, the degree of protein aggregation increased, the particle size of proteins increased, the thermal stability increased, and the β-sheet ratio of the proteins increased, suggesting that the protein structure is more ordered, which is the structural foundation of protein solubility decreasing. The research about the interaction between starch and protein and the effects on the solubility of protein could provide a reference for quinoa products processing.
Collapse
Affiliation(s)
- Zhanrong Li
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
| | - Xinpeng Li
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
| | - Xinyue Zhang
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
| | - Xuejiao Li
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
| | - Wenjun Wen
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
- Houji Laboratory in Shanxi Province, No. 81 Longcheng Street, Xiaodian District, Taiyuan, Shanxi 030031, P. R. China
| | - Xiaowen Wang
- Food Science and Engineering College, Shanxi Agriculture University, 1 Mingxian South Road, Taigu District, Jinzhong, Shanxi 030801, P. R. China
- Houji Laboratory in Shanxi Province, No. 81 Longcheng Street, Xiaodian District, Taiyuan, Shanxi 030031, P. R. China
| |
Collapse
|
6
|
Tian Y, Ding L, Liu Y, Shi L, Wang T, Wang X, Dang B, Li L, Gou G, Wu G, Wang F, Wang L. The Effect of Different Milling Methods on the Physicochemical and In Vitro Digestibility of Rice Flour. Foods 2023; 12:3099. [PMID: 37628098 PMCID: PMC10453719 DOI: 10.3390/foods12163099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preparation methods have been found to affect the physical and chemical properties of rice. This study prepared Guichao rice flour with wet, dry, semi-dry, and jet milling techniques. Differences in the particle size distribution of rice flour were investigated in order to assess their impact on pasting, thermal, gel, starch digestibility, and crystalline structure using an X-ray diffractometer (XRD) and a Rapid Visco Analyzer (RVA) across in vitro digestibility experiments. The results showed that semi-dry-milled rice flour (SRF) and wet-milled rice flour (WRF) were similar in damaged starch content, crystalline structure, and gelatinization temperature. However, compared with dry-milled rice flour (DRF) and jet-milled rice flour (JRF), SRF had less damaged starch, a higher absorption enthalpy value, and a higher gelatinization temperature. For starch digestibility, the extended glycemic index (eGI) values of WRF (85.30) and SRF (89.97) were significantly lower than those of DRF (94.47) and JRF (99.27). In general, the physicochemical properties and starch digestibility of WRF and SRF were better than those of DRF and JRF. SRF retained the advantages of WRF while avoiding the high energy consumption, high water consumption, and microbial contamination disadvantages of WRF and was able to produce better rice flour-associated products.
Collapse
Affiliation(s)
- Yaning Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Lan Ding
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Yonghui Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Li Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Tong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Xueqing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Bin Dang
- Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Linglei Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Guoyuan Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Guiyun Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.T.)
| |
Collapse
|
7
|
Chen C, Li G, Hemar Y, Corke H, Zhu F. Physicochemical properties and molecular structure of lotus seed starch. Carbohydr Polym 2023; 305:120515. [PMID: 36737183 DOI: 10.1016/j.carbpol.2022.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Current understanding of physicochemical properties of lotus seed starch (LS) is scarce partly due to its largely unknown molecular structure. This study compared the physicochemical and molecular characteristics of LSs of a wide collection to those of conventional starches (potato (PS) and maize starches (MS)). Variations were found in the chemical composition, physicochemical properties, and molecular structure of LSs. Amylose content and weight-based ratio of short to long chains of amylopectin (APS:APL) were principal factors affecting the physicochemical properties of LSs from different origins. Compared with PS and MS, LSs had higher gelatinization temperatures, lower amylose leaching, and faster retrogradation. These unique properties of LSs were related to their molecular structure and chemical composition. LSs had higher amylose contents than PS and MS as evaluated by various methods. A majority of amylose chains in LS were longer than those in MS but were shorter than those in PS. The APS:APL of LSs were higher than that of MS but lower than that of PS. The results provided a structural basis for understanding the properties of LS and suggested that this unconventional starch may be complementary to conventional starches for industrial applications.
Collapse
Affiliation(s)
- Chuanjie Chen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guantian Li
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Kopru S, Cadir M, Soylak M. Investigation of Trace Elements in Vegan Foods by ICP-MS After Microwave Digestion. Biol Trace Elem Res 2022; 200:5298-5306. [PMID: 35006553 DOI: 10.1007/s12011-022-03106-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Veganism is gaining popularity around the world day by day. Vegan nutrition is a diet in which not all animal foods are used. A vegan diet does not contain meat, fish, milk and dairy products, and eggs and consists of vegetables, fruits, grains, legumes, and nuts. Vegan diets maintain energy balances in a wide variety of plant foods. So, health problems can be seen due to nutrient and mineral deficiencies in the long-term continuation of the vegan diet. Due to insufficient intake of vitamins and minerals such as vitamin D, vitamin B12, calcium, iron, and zinc, energy and protein balance in the body may not be achieved by vegan individuals. The contents of aluminum, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, mercury, cadmium, and lead have been analyzed by inductively coupled plasma mass spectrometer (ICP-MS) in 10 different vegan foods purchased from Turkey. Certified reference material (1547 peach leaves) was used for validating the digestion procedure. Dry, wet, and microwave processes were compared, and it was found that the microwave digestion method was the best. Element levels in the analyzed samples were found below the legal limits. The purpose of this work is to investigate the trace element content of various foods used in vegan nutrition.
Collapse
Affiliation(s)
- Semiha Kopru
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mehmet Cadir
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey.
- Technology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
9
|
Nalbandian E, Pietrysiak E, Murphy KM, Ganjyal GM. Different breeding lines of quinoa significantly influence the quality of baked cookies and cooked grains. J Food Sci 2022; 87:5225-5239. [DOI: 10.1111/1750-3841.16354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ewa Pietrysiak
- School of Food Science Washington State University Pullman Washington USA
| | - Kevin M. Murphy
- Department of Crop and Soil Sciences Washington State University Pullman Washington USA
| | - Girish M. Ganjyal
- School of Food Science Washington State University Pullman Washington USA
| |
Collapse
|
10
|
Kheto A, Das R, Deb S, Bist Y, Kumar Y, Tarafdar A, Saxena DC. Advances in isolation, characterization, modification, and application of Chenopodium starch: A comprehensive review. Int J Biol Macromol 2022; 222:636-651. [PMID: 36174856 DOI: 10.1016/j.ijbiomac.2022.09.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 μm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.
Collapse
Affiliation(s)
- Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, India; Department of Food Technology, Vignan Foundation for Science Technology and Research, AP, India
| | - Rahul Das
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Saptashish Deb
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India.
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
11
|
Zhang W, Huang Q, Yang R. Gluten‐free quinoa noodles: effects of intermediate moisture extrusion and soy protein isolates supplement on cooking quality and
in vitro
digestibility. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenbin Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Qicheng Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
12
|
Alkobeisi F, Varidi MJ, Varidi M, Nooshkam M. Quinoa flour as a skim milk powder replacer in concentrated yogurts: Effect on their physicochemical, technological, and sensory properties. Food Sci Nutr 2022; 10:1113-1125. [PMID: 35432978 PMCID: PMC9007298 DOI: 10.1002/fsn3.2771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
Milk standardization with solids (i.e., nonfat milk solids, MSNF) for yogurt manufacture is traditionally achieved by the addition of skim milk powder (SMP). However, the addition of SMP to milk‐based yogurt increases lactose content and decreases both protein content and gel firmness. Thus, in this work, quinoa flour (QF; 0%, 25%, 50%, 75%, and 100% w/w) was used to replace SMP in concentrated yogurt. The physicochemical, textural, and sensory properties and microstructure of the yogurt were evaluated during cold storage. Generally, protein content, water‐holding capacity, and L* value decreased, while syneresis, textural attributes, and viscosity increased with increasing QF content. The substitution of high levels of QF (>25%, w/w) for SMP led to significantly shorter fermentation times, as compared to the control sample. The scanning electron microscopy observations showed significant changes in the yogurt microstructure as a consequence of QF replacement. Samples with 25% (w/w) substitution of QF and control had the highest scores in overall acceptance. According to the results, QF could be applied as an interesting raw material for concentrating the milk‐based yogurt at substitution level of 25% (w/w).
Collapse
Affiliation(s)
- Fatemeh Alkobeisi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Mehdi Varidi
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| | - Majid Nooshkam
- Department of Food Science and Technology Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
13
|
Peng M, Yin L, Dong J, Shen R, Zhu Y. Physicochemical characteristics and in vitro digestibility of starches from colored quinoa (Chenopodium quinoa) varieties. J Food Sci 2022; 87:2147-2158. [PMID: 35365864 DOI: 10.1111/1750-3841.16126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
The quinoa flour processing is mostly subject to the properties of starch. Starches from four colored quinoa varieties, including white quinoa (QS-W), yellow quinoa (QS-Y), red (QS-R), and black (QS-B), were compared with respect to their physicochemical properties and in vitro digestibility. Results indicated that QS-B exhibited the highest content of amylose (8.14%) (p < 0.05). All starch samples exhibited as irregular sphere with a particle size less than 3 µm. Results of the FT-IR and X-ray showed that the short-range order of the four quinoa starches exhibited no significant difference; all starches showed a typical A-type diffractrometric pattern and was not affected by seed color, and QS-Y had the highest relative crystallinity (34.3%) (p < 0.05). In addition, QS-W reflected the highest solubility (6.32%) and QS-Y showed the highest swelling power (19.45 g/g) (p < 0.05). QS-Y also presented a higher ΔH value (11.46 J/g) (p < 0.05), while QS-R peak temperature and peak G' were the lowest. Besides, QS-B had the highest slow-digestible starch (SDS) and resistant starch (RS) content, while the lowest estimated glycemic index (eGI) value (p < 0.05). Also, there was a negative correlation between hydrolysis rates and amylose content of quinoa starch. PRACTICAL APPLICATION: Due to the low gelatinization temperature of quinoa starch, it can be used to both produce and improve instant and fast food products. Quinoa starch particles are small, and Pickering emulsions and additives have potential application values. Red quinoa contains easily digestible starch, which can be a good food choice for infants and the elderly, while white quinoa starch has less swelling power and can be used in noodle products. The results of this study can help to underpin the study of quinoa nonstarch components versus starch component.
Collapse
Affiliation(s)
- Mingjun Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Lisha Yin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Jilin Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, China.,Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Van de Vondel J, Lambrecht MA, Delcour JA. Heat-induced denaturation and aggregation of protein in quinoa (Chenopodium quinoa Willd.) seeds and whole meal. Food Chem 2022; 372:131330. [PMID: 34655824 DOI: 10.1016/j.foodchem.2021.131330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022]
Abstract
Physical barriers hinder about 20-25% of the protein from being extracted from whole meal. Heat-induced denaturation and aggregation of protein in quinoa seeds and in whole meal was investigated. Maximally 37% of the protein in seeds covalently aggregate when boiling for 15 min. Although embryonic cell walls surrounding protein bodies remain intact during boiling of seeds, protein aggregation is not hindered. 11S Globulin monomers first dissociate into their acidic and basic subunits which further assemble into large (> 500 kDa) mainly disulfide-linked aggregates. 2S Albumins are not involved in covalent aggregation but partially leach during seed boiling. The presence of disrupted food matrix constituents in whole meal delays denaturation and causes less aggregation of protein in whole meal than in seeds. Globulins still dissociate into their subunits but less and mainly small covalent aggregates (ca. 100-500 kDa) are formed. These novel insights allow developing new quinoa-based food products.
Collapse
Affiliation(s)
- Julie Van de Vondel
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Marlies A Lambrecht
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
Almeida RLJ, Santos NC, Santos Pereira T, Monteiro SS, Silva LRI, Silva Eduardo R, Alves IL, Santos ES. Extraction and modification of Achachairu's seed (
Garcinia humilis
) starch using high‐intensity low‐frequency ultrasound. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Tamires Santos Pereira
- Department of Process Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Shênia Santos Monteiro
- Department of Agricultural Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | | | - Raphael Silva Eduardo
- Department of Chemical Engineering Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Israel Luna Alves
- Department of Food Technology Federal University of Rio Grande do Sul Porto Alegre Rio Grande do Sul Brazil
| | - Everaldo Silvino Santos
- Department of Chemical Engineering Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| |
Collapse
|
16
|
De Bock P, Cnops G, Muylle H, Quataert P, Eeckhout M, Van Bockstaele F. Physicochemical Characterization of Thirteen Quinoa ( Chenopodium quinoa Willd.) Varieties Grown in North-West Europe-Part II. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030265. [PMID: 35161247 PMCID: PMC8838886 DOI: 10.3390/plants11030265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 05/08/2023]
Abstract
Quinoa cultivation has gained increasing interest in Europe but more research on the characteristics of European varieties is required to help determine their end use applications. A comparative study was performed on 13 quinoa varieties cultivated under North-West European field conditions during three consecutive growing seasons (2017-2019). The seeds were milled to wholemeal flour (WMF) to evaluate the physicochemical properties. The WMFs of 2019 were characterized by the highest water absorption capacity (1.46-2.06 g/g), while the water absorption index (WAI) between 55 °C (2.04-3.80 g/g) and 85 °C (4.04-7.82 g/g) increased over the years. The WMFs of 2018 had the highest WAI at 95 °C (6.48-9.48 g/g). The pasting profiles were characterized by a high viscosity peak (1696-2560 mPa.s) and strong breakdown (-78-643 mPa.s) in 2017. The peak viscosity decreased in 2018 and 2019 (823-2492 mPa.s), while breakdown (-364-555 mPa.s) and setback (19-1037 mPa.s) increased. Jessie, Summer Red, Rouge Marie, Vikinga, and Zwarte WMFs were characterized by low WAIs and high shear resistance. Bastille WMF developed high viscosities and, along with Faro WMF, showed a high breakdown. The wide variation in physicochemical properties suggests that the potential food applications of WMFs depend on the variety and growing conditions.
Collapse
Affiliation(s)
- Phara De Bock
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Gerda Cnops
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (G.C.); (H.M.); (P.Q.)
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (G.C.); (H.M.); (P.Q.)
| | - Paul Quataert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (G.C.); (H.M.); (P.Q.)
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Filip Van Bockstaele
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
17
|
Manyelo TG, Sebola NA, Hassan ZM, Ng’ambi JW, Weeks WJ, Mabelebele M. Chemical Composition and Metabolomic Analysis of Amaranthus cruentus Grains Harvested at Different Stages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030623. [PMID: 35163888 PMCID: PMC8839114 DOI: 10.3390/molecules27030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
This study aimed at investigating the impact of early versus normal grain harvesting on the chemical composition and secondary metabolites of Amaranthus cruentus species grown in South Africa. Mature harvested grain had higher (p < 0.05) DM, CF, NDF and ADF content compared to prematurely harvested grain. There were no significant (p > 0.05) differences between CP, ADL and GE of premature and mature harvested grains. Mature harvesting resulted in higher grain Ca, P, Mg and K content. Essential amino acids spectrum and content remained similar regardless of maturity at harvest. The grains displayed an ample amount of unsaturated fatty acids; the highest percentage was linoleic acid: 38.75% and 39.74% in premature and mature grains, respectively. β-Tocotrienol was detected at 5.92 and 9.67 mg/kg in premature and mature grains, respectively. The lowest was δ-tocotrienol which was 0.01 and 0.54 mg/kg in premature and mature grains, respectively. Mature harvested grain had a higher secondary metabolite content compared to premature harvested grains. The results suggest that mature harvested Amaranthus cruentus grain contain more minerals and phytochemicals that have health benefits for human and livestock immunity and gut function, which ultimately improves performance. This study concludes that A. cruentus grown in South Africa is a potential alternative cereal to major conventional cereals.
Collapse
Affiliation(s)
- Tlou Grace Manyelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa;
| | - Nthabiseng Amenda Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
| | - Zahra Mohammed Hassan
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
| | - Jones Wilfred Ng’ambi
- Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa;
| | - William James Weeks
- Agricultural Research Services, Department of Agriculture and Rural Development, Potchefstroom 2520, South Africa;
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; (T.G.M.); (N.A.S.); (Z.M.H.)
- Correspondence: ; Tel.: +27-11-471-3983
| |
Collapse
|
18
|
Tagle-Freire D, Mennah-Govela Y, Bornhorst GM. Starch and protein hydrolysis in cooked quinoa ( Chenopodium quinoa Willd.) during static and dynamic in vitro oral and gastric digestion. Food Funct 2022; 13:920-932. [PMID: 35005748 DOI: 10.1039/d1fo02685b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinoa is a pseudocereal that has a favorable nutrient profile and may be a beneficial addition to the diet. To evaluate potential health-promoting properties of foods, it is important to understand the rate of macronutrient hydrolysis, which is commonly quantified through in vitro digestion studies. Additionally, limited information is available comparing starch and protein hydrolysis of solid foods using static and dynamic digestion models. The objective of this study was to examine starch and protein hydrolysis in cooked quinoa using a combination of a static (saliva only) or dynamic (saliva + mincing) oral digestion model with a static (gastric fluids only) or dynamic (Human Gastric Simulator) gastric digestion model. Disruption of the pericarp of the cooked quinoa seeds during dynamic oral digestion released additional surface area, which led to faster gastric emptying during dynamic gastric digestion. Starch and protein hydrolysis were impacted by type of gastric model due to differences in pH and variations in structural breakdown. Starch hydrolysis was 29.04 ± 1.83% after 180 min dynamic gastric digestion compared to 2.85 ± 1.88% during static gastric digestion (averaged across both oral digestion models). The degree of protein hydrolysis was 4.85 ± 0.01% after 180 min in the static gastric model compared to 3.94 ± 0.18% in the dynamic gastric model (averaged across both oral digestion models). This information provides evidence on the role of food structure and breakdown (through use of static vs. dynamic oral and gastric digestion models) on quinoa starch and protein hydrolysis.
Collapse
Affiliation(s)
- Danny Tagle-Freire
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Yamile Mennah-Govela
- Dept. of Biological and Agricultural Engineering, 1308 Bainer Hall, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | - Gail M Bornhorst
- Dept. of Biological and Agricultural Engineering, 1308 Bainer Hall, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA. .,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
BOZDOGAN N, ORMANLI E, KUMCUOGLU S, TAVMAN S. Pear pomace powder added quinoa-based gluten-free cake formulations: effect on pasting properties, rheology, and product quality. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Ancient Wheat and Quinoa Flours as Ingredients for Pasta Dough-Evaluation of Thermal and Rheological Properties. Molecules 2021; 26:molecules26227033. [PMID: 34834126 PMCID: PMC8623549 DOI: 10.3390/molecules26227033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate thermal and rheological properties of selected ancient grain flours and to evaluate rheological properties of mixtures thereof represented by pasta dough and dry pasta. Flours from spelt, einkorn, and emmer ancient wheat varieties were combined with quinoa flour. All these flour sources are considered healthy grains of high bioactive component content. Research results were compared to durum wheat flour or spelt wheat flour systems. Differential scanning calorimeter (DSC) and a rapid visco analyzer (RVA) were used to investigate the phase transition behavior of the flours and pasting characteristics of the flours and dried pasta. Angular frequency sweep experiments and creep and recovery tests of the pasta dough were performed. The main components modifying the pasta dough structure were starch and water. Moreover, the proportion of the individual flours influenced the rheological properties of the dough. The durum wheat dough was characterized by the lowest values of the K' and K″ parameters of the power law models (24,861 Pa·sn' and 10,687 Pa·sn″, respectively) and the highest values of the instantaneous (J0) and retardation (J1) compliances (0.453 × 10-4 Pa and 0.644 × 10-4 Pa, respectively). Replacing the spelt wheat flour with the other ancient wheat flours and quinoa flour increased the proportion of elastic properties and decreased values of the J0 and J1 of the pasta dough. Presence of the quinoa flour increased pasting temperature (from 81.4 up to 83.3 °C) and significantly influenced pasting viscosities of the spelt wheat pasta samples. This study indicates a potential for using mixtures of spelt, einkorn, and emmer wheat flours with quinoa flour in the production of innovative pasta dough and pasta products.
Collapse
|
21
|
Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Bühler JM, Schlangen M, Möller AC, Bruins ME, van der Goot AJ. Starch in Plant‐Based Meat Replacers: A New Approach to Using Endogenous Starch from Cereals and Legumes. STARCH-STARKE 2021. [DOI: 10.1002/star.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jan M. Bühler
- Wageningen Food & Biobased Research Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
- Food Process Engineering Agrotechnology and Food Sciences Group Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| | - Miek Schlangen
- Food Process Engineering Agrotechnology and Food Sciences Group Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| | - Anna C. Möller
- Food Process Engineering Agrotechnology and Food Sciences Group Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| | - Marieke E. Bruins
- Wageningen Food & Biobased Research Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| | - Atze Jan van der Goot
- Food Process Engineering Agrotechnology and Food Sciences Group Wageningen University & Research Bornse Weilanden 9 Wageningen 6708 WG The Netherlands
| |
Collapse
|
23
|
Liu Z, Fu Y, Zhang J, Shen Q. Comparison on physicochemical properties of mung bean flour and isolated starch under different level of high static pressure. Cereal Chem 2021. [DOI: 10.1002/cche.10472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenyu Liu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Jing Zhang
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Qun Shen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| |
Collapse
|
24
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Lu Y, Hao W, Zhang X, Zhao Y, Xu Y, Luo J, Liu Q, Liu Q, Wang L, Zhang C. Comparative Study of Physicochemical Properties and Starch Granule Structure in Seven Ginkgo Kernel Flours. Foods 2021; 10:1721. [PMID: 34441499 PMCID: PMC8392216 DOI: 10.3390/foods10081721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Ginkgo biloba L. is an important economic tree species in China, and its kernels have been used as a popular food in Asian countries. Herein, the morphology, basic chemical components, starch granule structures, and physicochemical properties of kernel flours from seven ginkgo cultivars were investigated, and their relationships were analyzed. The kernels were oval or spherical in shape, with variable sizes. The starch granules exhibited both regular and irregular Maltese cross patterns. Amylose was mainly distributed in amorphous growth rings. A spatial variation in the 865/942 cm-1 ratio was observed within individual starch granules. Variations in total starch content, apparent amylose content (AAC), crude protein content (CPC), total amino acid content (TAAC), starch fine structure, and thermal and pasting properties were observed among the seven kernel flours. Pearson correlation coefficients and principle component analyses showed that the thermal properties were affected by kernel CPC, TAAC, AAC, and starch fine structure, while the pasting properties were affected by AAC and starch fine structure. Furthermore, experiments showed that the seed protein structure and α-amylase activity affected the pasting properties of ginkgo kernel flours.
Collapse
Affiliation(s)
- Yan Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Weizhuo Hao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Xiaomin Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (X.Z.); (L.W.)
| | - Yue Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia; (J.L.); (Q.L.)
| | - Qing Liu
- CSIRO Agriculture and Food, GPO Box 1600, Canberra, ACT 2601, Australia; (J.L.); (Q.L.)
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (X.Z.); (L.W.)
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; (Y.L.); (W.H.); (Y.Z.); (Y.X.); (Q.L.)
| |
Collapse
|
26
|
Guan H, Diao X, Han J, Kong B, Liu D. Influence of Soy Protein Isolate Hydrolysates Obtained under High Hydrostatic Pressure on Pasting and Short-Term Retrogradation Behavior of Maize Starch. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Almeida RLJ, Dos Santos Pereira T, Almeida RD, Santiago ÂM, de Lima Marsiglia WIM, Nabeshima EH, de Sousa Conrado L, de Gusmão RP. Rheological and technological characterization of red rice modified starch and jaboticaba peel powder mixtures. Sci Rep 2021; 11:9284. [PMID: 33927263 PMCID: PMC8085182 DOI: 10.1038/s41598-021-88627-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Properties of modified starch and its interaction with functional raw materials are of great interest to the food industry. Thus, this study aimed to evaluate the rheological and technological characterization of starches modified by the action of the enzymes α-amylase and amyloglucosidase and their mixtures with jaboticaba peel powder. The parameters of firmness, gumminess, and final viscosity of starches paste increased, and the tendency to setback was reduced with the addition of jaboticaba peel powder. Starches and mixtures presented shear-thinning behavior. The addition of jaboticaba peel powder to starches increased water, oil, and milk absorption capacity, while syneresis remained stable over the storage period. The addition of jaboticaba peel powder had a positive effect on native and modified starches' rheological and technological properties, qualifying it as an alternative for developing new functional food products.
Collapse
Affiliation(s)
| | | | - Renata Duarte Almeida
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, Brazil
| | | | | | | | - Líbia de Sousa Conrado
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, Brazil
| | | |
Collapse
|
28
|
Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth ( Amaranthus sp.), Quinoa ( Chenopodium quinoa) and Buckwheat ( Fagopyrum sp.) Seeds. Foods 2021; 10:foods10030651. [PMID: 33808595 PMCID: PMC8003493 DOI: 10.3390/foods10030651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
A sound fundamental knowledge of the seed and flour characteristics of pseudocereals is crucial to be able to promote their industrial use. As a first step towards a more efficient and successful application, this study focuses on the seed characteristics, chemical composition and technological properties of commercially available pseudocereals (amaranth, quinoa, buckwheat). The levels of starch, fat, dietary fiber and minerals were comparable for amaranth and quinoa seeds but the protein content is higher in amaranth. Due to the high amount of starch, buckwheat seeds are characterised by the lowest amounts of fat, dietary fibre and minerals. Its protein content ranged between that of amaranth and quinoa. Buckwheat seeds were larger but easily reduced in size. The lipid fraction of the pseudocereals mostly contained unsaturated fatty acids, with the highest prevalence of linoleic and oleic acid. Palmitic acid is the most abundant unsaturated fatty acid. Moreover, high levels of P, K and Mg were found in these pseudocereals. The highest phenolic content was found in buckwheat. Amaranth WMF (wholemeal flour) had a high swelling power but low shear stability. The pasting profile strongly varied among the different quinoa WMFs. Buckwheat WMFs showed high shear stability and rate of retrogradation.
Collapse
|
30
|
Emami N, Ferdousi R. AptaNet as a deep learning approach for aptamer-protein interaction prediction. Sci Rep 2021; 11:6074. [PMID: 33727685 PMCID: PMC7971039 DOI: 10.1038/s41598-021-85629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present AptaNet-a new deep neural network-to predict the aptamer-protein interaction pairs by integrating features derived from both aptamers and the target proteins. Aptamers were encoded by using two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target information using 24 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was constructed based on a deep neural network, and optimal features were selected using the random forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel aptamer-protein interacting pairs and build more-efficient insights into the relationship between aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: https://github.com/nedaemami/AptaNet .
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Lu Z, Donner E, Liu Q. Development and characterisation of gluten‐free potato bread. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhan‐Hui Lu
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada 93 Stone Road West Guelph OntarioN1G 5C9Canada
| | - Elizabeth Donner
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada 93 Stone Road West Guelph OntarioN1G 5C9Canada
| | - Qiang Liu
- Guelph Research and Development CentreAgriculture and Agri‐Food Canada 93 Stone Road West Guelph OntarioN1G 5C9Canada
| |
Collapse
|
32
|
Aprodu I, Banu I. Effect of starch and dairy proteins on the gluten free bread formulation based on quinoa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00826-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Marta H, Cahyana Y, Djali M. Pectin interaction with thermally modified starch affects physicochemical properties and digestibility of starch as revealed by logarithm of slop plot. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1858969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Herlina Marta
- Laboratory of Food Processing Technology, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Yana Cahyana
- Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Mohamad Djali
- Laboratory of Food Processing Technology, Department of Food Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
34
|
Tiga BH, Kumcuoglu S, Vatansever M, Tavman S. Thermal and pasting properties of Quinoa—Wheat flour blends and their effects on production of extruded instant noodles. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Park GY, Liu Q, Hong JS, Chung HJ. Anti-staling and quality characteristics of Korean rice cake affected by mulberry (Morus alba L.) leaf powder fortification. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Miranda-Ramos KC, Haros CM. Combined Effect of Chia, Quinoa and Amaranth Incorporation on the Physico-Chemical, Nutritional and Functional Quality of Fresh Bread. Foods 2020; 9:foods9121859. [PMID: 33322832 PMCID: PMC7764627 DOI: 10.3390/foods9121859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
With regard to constant technological innovations in the bakery sector in order to increase bread nutritional value without affecting its technological and sensory characteristics, we applied pseudocereals/oilseeds to obtain an optimal formulation. A factorial design 33 was used and the independent factors were chia flour (levels: 0, 10, 20% flour basis), quinoa flour (levels: 0, 20, 40% flour basis), and amaranth flour (levels: 0, 20, 40% flour basis). Their effects and interactions were studied through the response surface methodology to optimise the bread formulation from a holistic viewpoint, which included the nutritional, technological and sensory characteristics. The optimum formulation with the highest quality was the blend made with 10, 4, and 20% of chia, quinoa, and amaranth, respectively. The results showed a significant increase in protein amount, ash, lipids, and crumb firmness compared to wheat bread. The calorie value of the control sample and the optimised formula were significantly similar, bearing in mind the high lipid amounts present in raw materials. Loaf-specific volume slightly decreased in comparison to control bread, as expected in formulations with gluten-free raw materials and a large amount of fibre. The optimised formula presented nutritionally/functionally higher indexes and similar overall acceptability to the control bread (p < 0.05).
Collapse
Affiliation(s)
- Karla Carmen Miranda-Ramos
- Faculty of Chemical Engineering, University of Guayaquil, Cdla. Universitaria Av. Delta y Av. Kennedy, Guayaquil 090514, Ecuador;
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| | - Claudia Monika Haros
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
- Correspondence: ; Tel.: +34-963-900-022; Fax: +34-963-636-301
| |
Collapse
|
37
|
Su C, Saleh AS, Zhang B, Feng D, Zhao J, Guo Y, Zhao J, Li W, Yan W. Effects of germination followed by hot air and infrared drying on properties of naked barley flour and starch. Int J Biol Macromol 2020; 165:2060-2070. [DOI: 10.1016/j.ijbiomac.2020.10.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
|
38
|
Quinoa Sourdough Fermented with Lactobacillus plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactobacillus plantarum ATCC 8014 was used to ferment quinoa flour, in order to evaluate its influence on the nutritional and rheological characteristics of both the sourdough and muffins. The quantification of carbohydrates and organic acids was carried out on a HPLC-RID system (high-performance liquid chromatography coupled with with refractive index detector), meanwhile HPLC-UV-VIS (high-performance liquid chromatography coupled with UV-VIS detector), AAS (Atomic absorption spectrophotometry), aluminum chloride colorimetric assay, Folin–Ciocalteu, and 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH) methods were used to determine folic acid, minerals, flavonoids, total phenols, and radical scavenging activity, respectively. Two types of sourdough were used in this study: quinoa sourdough fermented with L. plantarum ATCC 8014 and quinoa sourdough spontaneous fermented. The first one influenced the chemical composition of muffins in terms of decreased content of carbohydrates, higher amounts of both organic acids and folic acid. Furthermore, higher amounts of flavonoids, total phenols and increased radical scavenging activity were recorded due to the use of Lactobacillus plantarum ATCC 8014 strain. These results indicate the positive effect of quinoa flour fermentation with the above strain and supports the use of controlled fermentation with lactic acid bacteria for the manufacturing of gluten free baked products.
Collapse
|
39
|
Cui R, Zhu F. Effect of ultrasound on structural and physicochemical properties of sweetpotato and wheat flours. ULTRASONICS SONOCHEMISTRY 2020; 66:105118. [PMID: 32272332 DOI: 10.1016/j.ultsonch.2020.105118] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Ultrasound technologies are increasingly used for modification of physicochemical properties of food systems. Effects of ultrasound (20 kHz, 750 W) up to 20 h on physicochemical properties of two varieties of sweetpotato flour were studied and compared with those of commercial wheat flour. Ultrasound induced structural modifications on starch granules mainly in the morphological changes of granules and reduction of the crystallinity. Longer treatment significantly decreased enthalpy change of gelatinization, pasting viscosities, gelling capacity, while increasing in vitro starch digestibility of raw flour. Besides, prolonged treatment reduced total phenolic contents and in vitro antioxidant activities of sweetpotato flours, mainly due to pyrolysis and release of hydroxyl radicals caused by cavitation. The extents of these changes were seen to depend on the treatment time and indicated degradation and modifications of the chemical components (e.g., starch and polyphenol) of flours. This study suggests that ultrasound processing as a non-thermal and energy-saving technique has potential to modify flour functionalities.
Collapse
Affiliation(s)
- Rongbin Cui
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
40
|
Solaesa ÁG, Villanueva M, Vela AJ, Ronda F. Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Franco W, Pérez-Díaz IM, Connelly L, Diaz JT. Isolation of Exopolysaccharide-Producing Yeast and Lactic Acid Bacteria from Quinoa ( Chenopodium Quinoa) Sourdough Fermentation. Foods 2020; 9:foods9030337. [PMID: 32183117 PMCID: PMC7142942 DOI: 10.3390/foods9030337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Quinoa, a nutritional grain, can be used as an ingredient in gluten-free sourdoughs. This study characterizes quinoa flour spontaneous fermentation with emphasis in the isolation of exopolysaccharide (EPS) producer bacteria. Real, red and black grains were studied. Dough yield, microbiota composition and fermentation biochemistry were determined for a total of 36 quinoa flour fermentations. The fermentation biochemistry was monitored by high-performance liquid chromatography (HPLC) analysis, pH measurement and titratable acidity. Changes in the microbiota were monitored by plating on deMann Rogosa and Sharp 5 agar (MRS5) and yeast and mold agar (YMA) plates and with metagenetic analysis. The ability to produce exopolysaccharides was screened in selected lactic acid bacteria (LAB) isolates. Production of organic acids in the spontaneous fermentation dropped the pH to 4.0 ± 0.3. The community of presumptive LAB reached 8.37 ± 0.01 log colony forming units (CFU)/mL by day 8 of back-slopped fermentations. The microbiota was composed of Lactobacillus, Enterococcus, Leuconostoc, Lactococcus, Pediococcus and Weissella. P. pentosaceous,L. citreum and W. cibaria were able to produce EPS in a starch-rich medium. P. pentosaceous showed higher exopolysaccharide yield, rapid acidifying kinetics and was able to drop the dough broth pH to values below 4.0 and a positive fermentation quotient after 24 h of incubation. Therefore, the bacterium might be a potential candidate for quinoa sourdough production.
Collapse
Affiliation(s)
- Wendy Franco
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile
- Departamento Ciencias de la Salud, Carrera de Nutrición y Dietética. Facultad de Medicina, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-966745883
| | - Ilenys M. Pérez-Díaz
- U.S. Department of Agriculture, Agricultural Research Service, SAA Food Science Research Unit, 322 Schaub Hall, Box 7624, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lauren Connelly
- Department of Food, Bioprocessing and Nutrition Sciences, 400 Dan Allen Drive, North Carolina State University, Raleigh, NC 27696, USA; (L.C.); (J.T.D.)
| | - Joscelin T. Diaz
- Department of Food, Bioprocessing and Nutrition Sciences, 400 Dan Allen Drive, North Carolina State University, Raleigh, NC 27696, USA; (L.C.); (J.T.D.)
| |
Collapse
|
42
|
Naiker TS, Baijnath H, Amonsou EO, Mellem JJ. The effect of soaking, steaming, and dehydration on the microstructure, physicochemical properties and in vitro starch digestibility of flour produced from
Lablab purpureus
(L.) Sweet (hyacinth bean). J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tremayne S. Naiker
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences Durban University of Technology Durban South Africa
| | - Himansu Baijnath
- School of Life Sciences, College of Agriculture, Engineering and Science University of Kwa‐Zulu Natal Durban South Africa
| | - Eric O. Amonsou
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences Durban University of Technology Durban South Africa
| | - John J. Mellem
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences Durban University of Technology Durban South Africa
| |
Collapse
|
43
|
Jiang J, Zeng J, Gao H, Zhang L, Wang F, Su T, Xiang F, Li G. Effect of low temperature on the aging characteristics of a potato starch gel. Int J Biol Macromol 2020; 150:519-527. [PMID: 32057878 DOI: 10.1016/j.ijbiomac.2020.02.077] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
In this work, the freezing curve of a potato starch gel with different concentrations was determined. The water migration, texture, microstructure and gelatinization of a potato starch gel with 8% starch concentration were studied during aging. The results showed that the freezing characteristics of the potato starch gel with different starch concentrations were quite different. NMR results showed that the relaxation time and proportion of water with different existing states (T21, T22 and T23) in the potato starch gel varied significantly under different aging temperatures. Under different aging temperatures, the texture characteristics and the gel strength of the starch gel were significantly different. The water retention of the gel was better under aging temperatures of 3 °C and -3 °C than for other gel samples. SEM and C-cell results showed that under aging temperatures of 3 °C and 0 °C, the formation of a gel network structure was accelerated, and the gel was relatively firm, with small and uniform pores and a larger pore area and number. The rapid viscosity analysis results showed that the peak viscosity, breakdown and setback of the vacuum freeze-dried gel powder changed differently under the aging temperatures.
Collapse
Affiliation(s)
- Jikai Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Lin Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Fang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tongchao Su
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Fengjuan Xiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Guanglei Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
44
|
Wang Y, Gong X, Zhang Y, Geng D, Cao L, Ruan C, Yu L, Zhang D, Tong L. Effect of peeling treatment on the physicochemical properties of quinoa flour. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ying Wang
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Xue Gong
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Yu Zhang
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Dong‐Hui Geng
- Institute of Agro‐Products Processing Science and TechnologyChinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture Beijing China
| | - Longkui Cao
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Changqing Ruan
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Lihe Yu
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Dongjie Zhang
- College of Food ScienceHeilongjiang Bayi Agricultural University/Key Laboratory of Agro‐Products Processing and Quality Safety of Heilongjiang Province, Daqing/National Coarse Cereals Engineering Research Center Daqing China
| | - Li‐Tao Tong
- Institute of Agro‐Products Processing Science and TechnologyChinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture Beijing China
| |
Collapse
|
45
|
Indriani S, Bin Ab Karim MS, Nalinanon S, Karnjanapratum S. Quality characteristics of protein-enriched brown rice flour and cake affected by Bombay locust (Patanga succincta L.) powder fortification. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Valdez-Arana JDC, Steffolani ME, Repo-Carrasco-Valencia R, Pérez GT, Condezo-Hoyos L. Physicochemical and functional properties of isolated starch and their correlation with flour from the Andean Peruvian quinoa varieties. Int J Biol Macromol 2019; 147:997-1007. [PMID: 31743707 DOI: 10.1016/j.ijbiomac.2019.10.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Quinoa has been recognized as a complete food due to its balanced nutritional composition. Quinoa flour is used as an ingredient to improve the nutritional and functional characteristics of cereal-based foods. The physicochemical and functional (thermal and pasting) properties of flours and isolated starches of three Andean Peruvian quinoa varieties (Blanca de Hualhuas, BH; Rosada de Huancayo, RHY and Pasankalla, PK) were studied and the correlation among them properties were evaluated in order to explore their possible uses as a food ingredient. Proximal chemical composition of flour and isolated starches from quinoa varieties showed differences. Isolated starches from quinoa varieties showed a XRD Type A crystallinity patterns with polygonal shapes, small size, higher crystallinity degree and lower amylose content (<15%). The thermal (gelatinization temperatures and enthalpies) and pasting (temperature and time of gelatinization and viscosities) properties of flours and isolated starches showed differences and the principal component analysis demonstrated that those properties are significantly correlated to the starch and fat content. Based on the differences found among physicochemical and functional properties, isolated starch and flour of BH, RHY and PK quinoa varieties have potential as food ingredient for several cereal-based products.
Collapse
Affiliation(s)
| | - Maria Eugenia Steffolani
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICyTAC) (CONICET-UNC), Córdoba, Argentina
| | | | - Gabriela Teresa Pérez
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICyTAC) (CONICET-UNC), Córdoba, Argentina
| | - Luis Condezo-Hoyos
- Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina (UNALM), Lima, Peru
| |
Collapse
|
47
|
Cui R, Zhu F. Physicochemical properties and bioactive compounds of different varieties of sweetpotato flour treated with high hydrostatic pressure. Food Chem 2019; 299:125129. [DOI: 10.1016/j.foodchem.2019.125129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
|
48
|
|
49
|
Gostin A. Effects of substituting refined wheat flour with wholemeal and quinoa flour on the technological and sensory characteristics of salt-reduced breads. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Marta H, Cahyana Y, Djali M, Arcot J, Tensiska T. A comparative study on the physicochemical and pasting properties of starch and flour from different banana (Musa spp.) cultivars grown in Indonesia. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1657447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Herlina Marta
- Agricultural Sciences, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Laboratory of Food Processing Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Jayashree Arcot
- Food and Health Cluster, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Tensiska Tensiska
- Department of Food Technology, Laboratory of Food Chemistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|