1
|
Cheng M, Xu Y, Xu X, Yan B, Zhang X, Borijihan G, Wang Y, Li Y. Quick separation and enrichment of chlorogenic acid and its analogues by a high-efficient molecularly imprinted nanoparticles and evaluation of antioxidant and hypoglycemic activities. Food Chem 2025; 480:143902. [PMID: 40120308 DOI: 10.1016/j.foodchem.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Multiple interaction strategy to target was tried to use in the design of surface imprinting polymer. To validate this, active chlorogenic acid, a representative phenolic acid compound existing in many natural products, was selected as the template molecule and a magnetic molecularly imprinted nanoparticles (CGA-MMIPs) was synthesized. The characterizations indicated CGA-MMIPs was 20-50 nm, stable below 229.56 °C and had a saturation magnetic intensity of 17.90 emu/g. The prepared CGA-MMIPs exhibited high adsorption capacity (441.81 mg/g) and fast adsorption equilibrium for chlorogenic acid. It also was easy separation, high selectivity and good reusability, which was successfully used in quick separation of chlorogenic acid from Orthosiphon aristatus and Taraxacum mongolicum and Salvia miltiorrhiza. Moreover, the isolated substances possessed great antioxidant and hypoglycemic activities. These verified the strategy was useful and had huge prospects in the quick separation of chlorogenic acid or other phenolic acid compounds from natural products.
Collapse
Affiliation(s)
- Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Hebei Institute for Drug and Medical Device Control, Hebei 050033, China
| | - Xinyu Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bangqi Yan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guirong Borijihan
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China..
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Neurocritical Care Medicine Innovation Center, Ministry of Education, Tianjin University, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, China.
| |
Collapse
|
2
|
Chen Y, Zhou Y, You J, Zhang Z, Sun A, Liu H, Shi X. Fluorescent Molecular Imprinted Sensor Based on Carbon Quantum Dot for Nitrofen Detection in Water Sample. Polymers (Basel) 2025; 17:816. [PMID: 40292707 PMCID: PMC11944888 DOI: 10.3390/polym17060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
The structure of nitrofen is stable and resistant to natural degradation, persisting in environments for extended periods. It can accumulate through the food chain, posing risks to human health. Here, we report a sensor based on carbon quantum dots (CQDs) and molecular imprinting technology (CQDs@MIPs). It not only possesses the specificity and stability of MIPs but also incorporates the environmental friendliness and signal amplification capabilities of CQDs, making it an ideal material for the specific detection of nitrofen residues in the environment. The interaction between CQDs@MIPs and nitrofen, as well as the successful removal of nitrofen, were confirmed through transmission electron microscopy (TEM) and Zeta potential analysis, which evaluated the morphology and particle size of the prepared CQDs@MIPs. After binding with nitrofen, the CQDs@MIP sensor exhibited a low detection limit (2.5 × 10-3 mg·L-1), a wide detection range (0.01-40 mg·L-1), a good linear relationship (R2 = 0.9951), and a short detection time (5 min). The CQDs@MIP sensor also demonstrated excellent stability, with the fluorescence intensity of CQDs@MIPs remaining above 90% of the initial preparation after 20 days. At the same time, Red, Green, Blue (RGB) color model extraction technology is used to fit the color of the sample under different concentrations, and the smart phone application is integrated to realize the visual detection of nitrofen. Furthermore, acceptable accuracy was achieved in real water samples (recovery rates ranging from 84.1% to 115.7%), indicating that our CQDs@MIP sensor has high analytical potential for real samples.
Collapse
Affiliation(s)
- Yuge Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yongheng Zhou
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinjie You
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zeming Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Aili Sun
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xizhi Shi
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Souza IN, Rodrigues LCV, Soares CMF, Buarque FS, Souza RL, Lima ÁS. Deep Eutectic Solvent-Based Aqueous Two-Phase Systems and Their Application in Partitioning of Phenol Compounds. Molecules 2024; 29:4383. [PMID: 39339378 PMCID: PMC11434047 DOI: 10.3390/molecules29184383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This work studies the partition of phenolic compounds, namely caffeic acid, syringic acid, vanillic acid, ferulic acid, and vanillin, in aqueous two-phase systems (ATPSs) formed by acetonitrile and deep eutectic solvents (DESs) based on choline chloride ([Ch]Cl) and carbohydrates (sucrose, d-glucose, d-mannose, arabinose, and d-xylose). The binodal curves built at 25 °C and 0.1 MPa using DES were compared with ATPS composed of [Ch]Cl and the same carbohydrates. The ability to form ATPS depends on the number and kind of hydroxyl groups in DES's hydrogen-bond donor compound (carbohydrates). ATPS based on DES showed biphasic regions larger than the systems based on [Ch]Cl and carbohydrates alone due to the larger hydrophilicity of DES. The ATPS were used to study the partition of the phenolic compounds. For all the systems, the biomolecules preferentially partitioned to the acetonitrile-rich phase (K > 1), and the best recovery in the top phase ranged between 53.36% (caffeic acid) and 90.09% (vanillin). According to the remarkable results, DES-based ATPS can selectively separate ferulic acid and vanillin for the top phase and syringic, caffeic, and vanillic acids for the bottom phase, achieving a selectivity higher than two.
Collapse
Affiliation(s)
- Isabela N Souza
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju 49032-490, SE, Brazil
| | - Lucas C V Rodrigues
- Post-Graduate Program on Chemical Engineering, Federal University of Bahia, Salvador 40210-910, BA, Brazil
| | - Cleide M F Soares
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju 49032-490, SE, Brazil
- Instituto de Tecnologia e Pesquisa, Aracaju 49032-490, SE, Brazil
| | - Filipe S Buarque
- Biochemical Engineering Department, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ranyere L Souza
- Post-Graduated Program on Process Engineering, Tiradentes University, Aracaju 49032-490, SE, Brazil
- Instituto de Tecnologia e Pesquisa, Aracaju 49032-490, SE, Brazil
| | - Álvaro S Lima
- Post-Graduate Program on Chemical Engineering, Federal University of Bahia, Salvador 40210-910, BA, Brazil
| |
Collapse
|
4
|
Cao J, Liu Y, Wang W, Du P, Liu G, Ma Y, Wang Y. Facile fabricate sandwich-structured molecularly imprinted dopamine polymer for simultaneously specific capture of Low-density lipoprotein and eliminate "bad cholesterol". J Chromatogr A 2024; 1724:464910. [PMID: 38657316 DOI: 10.1016/j.chroma.2024.464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 μg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.
Collapse
Affiliation(s)
- Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Gang Liu
- Shandong Provincial Animal Husbandry General Station, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Gălbău CȘ, Badea M, Gaman LE. Do Young Consumers Care about Antioxidant Benefits and Resveratrol and Caffeic Acid Consumption? Nutrients 2024; 16:1439. [PMID: 38794677 PMCID: PMC11123920 DOI: 10.3390/nu16101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Resveratrol and caffeic acid are some of the most consumed antioxidants during the day, so their importance as sources and their benefits need to be evaluated and updated. This survey aimed not only to analyze whether young Romanian consumers are informed about the benefits of antioxidants in general, and resveratrol and caffeic acid in particular, but also to observe the degree of nutritional education of these participants. Young consumers know the concept of antioxidants relatively well; they managed to give examples of antioxidants and indicate their effects. The majority of those chosen drink wine and coffee, but many are unaware of their health advantages and antioxidant properties. Students are less familiar with the antioxidant chemicals resveratrol and caffeic acid. It is advised to have a thorough understanding of these significant antioxidants and their nutritional content as they are present in our regular diets, and further studies on different kinds of antioxidants are required to increase the awareness of people concerning their importance in daily life.
Collapse
Affiliation(s)
- Cristina Ștefania Gălbău
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania;
- Research Center for Fundamental Research and Prevention Strategies in Medicine, Research and Development Institute of Transilvania University of Brasov, 500484 Brașov, Romania
| | - Laura Elena Gaman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
6
|
Izcara S, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. Application of a hybrid large pore mesoporous silica functionalized with β-cyclodextrin as sorbent in dispersive solid-phase extraction. Toward sustainable sample preparation protocols to determine polyphenolic compounds in Arbutus unedo L. fruits by UHPLC-IT-MS/MS. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Zhang L, Yu H, Chen H, Huang Y, Bakunina I, de Sousa DP, Sun M, Zhang J. Application of molecular imprinting polymers in separation of active compounds from plants. Fitoterapia 2023; 164:105383. [PMID: 36481366 DOI: 10.1016/j.fitote.2022.105383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Molecular imprinting technique is becoming an appealing and prominent strategy to synthesize materials for target recognition and rapid separation. In recent years, it has been applied in separation of active compounds from various plants and has achieved satisfying results. This review aims to make a brief introduction of molecular imprinting polymers and their efficient application in the separation of various active components from plants, including flavonoids, organic acids, alkaloids, phenylpropanoids, anthraquinones, phenolics, terpenes, steroids, and diketones, which will provide some clues to help stimulating research into this fascinating and useful area.
Collapse
Affiliation(s)
- Luxuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Pharmacy 2019, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinghong Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Irina Bakunina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, 58051-970, João Pessoa, Paraíba, Brazil.
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
8
|
Lie KR, Samuel AO, Hasanah AN. Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Recent progress on hollow porous molecular imprinted polymers as sorbents of environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
11
|
Progress in Application of Dual/Multi-Template Molecularly Imprinted Polymers. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ultrasonication-assisted synthesis of gold nanoparticles decorated ultrathin graphitic carbon nitride nanosheets as a highly efficient electrocatalyst for sensitive analysis of caffeic acid in food samples. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01895-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Mahani M, Mahmoudi F, Fassihi J, Hasani Z, Divsar F. Carbon dots-embedded N-acetylneuraminic acid and glucuronic acid-imprinted polymers for targeting and imaging of cancer cells. Mikrochim Acta 2021; 188:224. [PMID: 34101046 DOI: 10.1007/s00604-021-04876-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Diagnosis, treatment, and prediction of cancer progression require new targeting agents to specifically target cell surface receptors. Herein, we demonstrated fluorescent carbon quantum dots-molecularly imprinted polymer (CQD-MIP) for selective targeting and imaging of cancer cells. Carbon quantum dots (CQDs) were synthesized and characterized. The synthesized CQDs had average size of 1.5 nm and show intense fluorescence emission at wavelength of 450 nm with excitation at 370 nm. CQD-MIP nanoparticles imprinted with N-acetylneuraminic acid and glucuronic acid were prepared and characterized. CQD-MIPs were successfully applied for selective targeting and imaging of MCF-7, HepG-2, and NIH-3T3 cell lines. Non-imprinted polymer (NIP) showed no binding properties toward a target molecule. Non-imprinted polymer (NIP) and non-cancerous human cell lines were used for controlling the imprinting and targeting effects, respectively. Acceptable results were obtained with imprinted polymers on cancer cells.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Firouze Mahmoudi
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Zahra Hasani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
14
|
Jin Q, You W, Tan X, Liu G, Zhang X, Liu X, Wan F, Wei C. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3013-3020. [PMID: 33205409 DOI: 10.1002/jsfa.10935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Plant secondary metabolites, including tannins, saponins and phenolic acids, possess potential methane (CH4 ) inhibition bioactivity. Caffeic acid (CA), as one of the typical phenolic acids, serves as a promising rumen CH4 inhibitor, but the underlying mechanisms and investigations with typical formulated rations are still not well documented. Therefore, a batch culture study was conducted to investigate the effects of CA on methanogenesis, rumen fermentation and growth of ruminal microorganisms when high-forage or high-concentrate substrates are fermented. RESULTS After 48 h incubations, adding CA up to 40 g kg-1 dry matter linearly reduced (P < 0.05) the disappearance of dry matter, neutral detergent fiber (NDFD), total gas, methanogenesis, total volatile fatty acid and 16S rDNA copy numbers of Ruminococcus albus and Butyrivibrio fibrisolvens, and increased 16S rDNA copy numbers of methanogens for the high-forage treatment. For the high-concentrate treatment, CA exerted opposite effects (P < 0.05) on the above variables, except that CA did not affect (P > 0.05)16S rDNA copy numbers of methanogens or R. albus. CONCLUSION Caffeic acid inhibited in vitro methanogenesis and rumen fermentation with high-forage substrate incubation. Contrarily, CA benefited in vitro fermentation and enhanced methanogenesis with high-concentrate substrate incubation. It suggests that CA modulates methanogenesis and rumen fermentation mainly by affecting the growth of cellulolytic bacteria in vitro. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Jin
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wei You
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiuwen Tan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guifen Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianglun Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaomu Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fachun Wan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chen Wei
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
15
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Amino acids- based hydrophobic natural deep eutectic solvents as a green acceptor phase in two-phase hollow fiber-liquid microextraction for the determination of caffeic acid in coffee, green tea, and tomato samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Song H, Zhang H, He Y, Gao R, Wang Y, Wang W, Pfefferle LD, Tang X, Tang Y. Novel bayberry-and-honeycomb-like magnetic surface molecularly imprinted polymers for the selective enrichment of rutin from Sophora japonica. Food Chem 2021; 356:129722. [PMID: 33836357 DOI: 10.1016/j.foodchem.2021.129722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Rutin (RT), a widely distributed natural flavonoid compound, has been generally utilized as an important active ingredient owing to its considerable biomedical and economic value. Inspired by the structure features of densely-packed bayberry and well-orientated honeycomb, a novel type of magnetic molecularly imprinted polymers (HB-TI-MMIPs) with abundant high-affinity and uniformly-distributed binding sites was rationally constructed for the selective enrichment of RT from Sophora japonica. The polymerization conditions, physicochemical properties, and adsorption performance of the imprinted nanomaterials were systematically investigated. The optimized HB-TI-MMIPs display a high adsorption capacity, fast adsorption rate, and satisfactory selectivity towards RT. Meanwhile, the proposed analytical methodology using HPLC, with HB-TI-MMIPs as adsorbents, successfully applied to enrich and detect RT from Sophora japonica with high recoveries (87.2-94.6%) and good RSDs (lower than 4.3%). Therefore, the fabricated HB-TI-MMIPs with a fast magnetic responsivity and desirable adsorption performance would be attractive in plant active ingredients extraction fields.
Collapse
Affiliation(s)
- Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haipin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yulian He
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenting Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Xiaoshuang Tang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
18
|
The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10030382. [PMID: 33806514 PMCID: PMC8001462 DOI: 10.3390/antiox10030382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry with molecular imprinting to valorize different compounds, the growing prominence of antioxidants in the food, medical, and paramedical sectors deserves to combine the three areas, which may lead to innovative industrial applications with satisfactory results for both manufacturers and consumers.
Collapse
|
19
|
Hu B, Chen L, Yu Z, Xu Y, Dai J, Yan Y, Ma Z. Hollow molecularly imprinted fluorescent sensor using europium complex as functional monomer for the detection of trace 2,4,6-trichlorophenol in real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119051. [PMID: 33080514 DOI: 10.1016/j.saa.2020.119051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
As an important environmental indicator, 2,4,6-trichlorophenol (2,4,6-TCP) was proved extremely harmful to human body. In this article, hollow molecularly imprinted fluorescent polymers (@MIPs) for the selective detection of 2,4,6-TCP were devised and fabricated by sacrificial skeleton method based on SiO2 nanoparticles. As the most innovation, highly luminescent europium complex Eu(MAA)3phen played the role of both fluorophores and functional monomers of the MIPs. The obtained @MIPs showed monodispersity and the average particle size was around 130 nm. It had a linear fluorescent response within the concentration range 10-100 nmol L-1 with the correlation coefficient calculated as 0.99625, and the limit of detection was identified as 2.41 nmol L-1. The results show that Eu(MAA)3phen as a fluorophore has high luminescent properties, and as a functional monomer, it can improve the selectivity and anti-interference performance of MIPs. Furthermore, the hollow structure made it possible that the imprinted specific recognition sites distributed on both inner and outer surfaces of @MIPs. The experimental results showed that these @MIPs could be employed to the selective detection of chlorophenols under low concentration. And this work will provide a reference for further optimization of fluorescent imprinted sensors.
Collapse
Affiliation(s)
- Bo Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhixin Yu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Zhen Jiang Chang Jiang Electromechanical Equipment Co. Ltd., Zhenjiang 212013, China
| | - Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Zhen Jiang Chang Jiang Electromechanical Equipment Co. Ltd., Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhongfei Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
21
|
Casado N, Morante-Zarcero S, Pérez-Quintanilla D, Câmara JS, Sierra I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2018.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Li X, Liu H, Deng Z, Chen W, Li T, Zhang Y, Zhang Z, He Y, Tan Z, Zhong S. PEGylated Thermo-Sensitive Bionic Magnetic Core-Shell Structure Molecularly Imprinted Polymers Based on Halloysite Nanotubes for Specific Adsorption and Separation of Bovine Serum Albumin. Polymers (Basel) 2020; 12:polym12030536. [PMID: 32131435 PMCID: PMC7182869 DOI: 10.3390/polym12030536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 12/02/2022] Open
Abstract
Novel PEGylated thermo-sensitive bionic magnetic core-shell structure molecularly imprinted polymers (PMMIPs) for the specific adsorption and separation of bovine serum albumin (BSA) were obtained via a surface-imprinting technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), and specific surface area (BET), were adopted to demonstrate that novel PMMIPs were successfully synthesized. Subsequently, the prepared PMMIPs were used as the extractor for BSA and were combined with magnetic solid-phase extraction. The concentrations of BSA were detected by UV-vis spectrophotometry at 278 nm. The maximum adsorption capacity of the PMMIPs was 258 mg g−1, which is much higher than that of non-imprinted polymer (PMNIPs). PMMIPs showed favorable selectivity for BSA against reference proteins, i.e., bovine hemoglobin, ovalbumin and lysozyme. PMMIPs were further used to recognize BSA in protein mixtures, milk, urine and sewage, these results revealed that approximately 96% of the ideal-state adsorption capacity of PMMIPs for BSA was achieved under complicated conditions. Regeneration and reusability studies demonstrated that adsorption capacity loss of the PMMIPs was not obvious after recycling for four times. Facile synthesis, excellent adsorption property and efficient selectivity for BSA trapping are features that highlight PMMIPs as an attractive candidate for biomacromolecular purification.
Collapse
Affiliation(s)
- Xiufang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wenqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunshan Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhuomin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
- Correspondence: (Z.T.); (S.Z.)
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence: (Z.T.); (S.Z.)
| |
Collapse
|
23
|
Zhang YZ, Qin B, Zhang B, Ma JG, Hu YQ, Han L, He MF, Liu CY. Specific enrichment of caffeic acid from Taraxacum mon-golicum Hand.-Mazz. by pH and magnetic dual-responsive molecularly imprinted polymers. Anal Chim Acta 2020; 1096:193-202. [DOI: 10.1016/j.aca.2019.10.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
|
24
|
Wang Z, Long R, Peng M, Li T, Shi S. Molecularly Imprinted Polymers-Coated CdTe Quantum Dots for Highly Sensitive and Selective Fluorescent Determination of Ferulic Acid. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1505878. [PMID: 31360577 PMCID: PMC6644248 DOI: 10.1155/2019/1505878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid (FA), an important phenolic acid, is widely distributed in higher plants and presents many pharmacological effects. Therefore, sensitive determination of FA in complex matrix is necessary. Molecularly imprinted polymers-coated CdTe quantum dots (CdTe-QDs@MIPs) exhibited incomparable advantages because of their combination of excellent selectivity of MIPs and high sensitivity of QDs. Here, a fluorescent probe based on CdTe-QDs@MIPs was successfully fabricated for selective and sensitive determination of FA. MIPs shell was obtained by the reverse microemulsion method using FA, 3-(aminopropyl) triethoxysilane (APTES), and tetraethyl orthosilicate (TEOS), as template, functional monomer, and crosslinker. In optimal conditions, the fluorescence CdTe-QDs@MIPs sensor exhibited fast response (within only 3 min), high sensitivity (limit of detection, LOD at 0.85 μg/l), excellent linear ranges (2-100 μg/l) with a correlation coefficient of 0.9996, and distinguished selectivity for FA. Satisfactory recoveries from 91.8% to 110.3% were achieved with precisions below 6.6% for FA analysis in real pineapple juice and apple juice by developed CdTe-QDs@MIPs. The fluorescence results coincided well with those obtained by high-performance liquid chromatography (HPLC). It could be concluded that the resultant CdTe-QDs@MIPs offered a new way for rapid and sensitive analysis of FA in the complex matrix.
Collapse
Affiliation(s)
- Zhihong Wang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| | - Mijun Peng
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Long R, Li T, Tong C, Wu L, Shi S. Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 2019; 196:579-584. [DOI: 10.1016/j.talanta.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
|
26
|
Fan H, Wang J, Meng Q, Jin Z. Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples. Food Chem 2019; 281:1-7. [DOI: 10.1016/j.foodchem.2018.12.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 11/24/2022]
|
27
|
Zhou T, Ding L, Che G, Jiang W, Sang L. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.028] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Amino-terminated supramolecular cucurbit [6] uril pseudorotaxane complexes immobilized on magnetite@silica nanoparticles: A highly efficient sorbent for salvianolic acids. Talanta 2019; 195:354-365. [DOI: 10.1016/j.talanta.2018.11.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
|
29
|
Shell thickness controlled hydrophilic magnetic molecularly imprinted resins for high-efficient extraction of benzoic acids in aqueous samples. Talanta 2019; 194:969-976. [DOI: 10.1016/j.talanta.2018.10.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
|
30
|
Zhang J, Chen Y, Wu W, Wang Z, Chu Y, Chen X. Hollow porous dummy molecularly imprinted polymer as a sorbent of solid-phase extraction combined with accelerated solvent extraction for determination of eight bisphenols in plastic products. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Wang J, Yang B, Gao F, Song P, Li L, Zhang Y, Lu C, Goh MC, Du Y. Ultra-stable Electrochemical Sensor for Detection of Caffeic Acid Based on Platinum and Nickel Jagged-Like Nanowires. NANOSCALE RESEARCH LETTERS 2019; 14:11. [PMID: 30623249 PMCID: PMC6325053 DOI: 10.1186/s11671-018-2839-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Electrochemical sensors have the high sensitivity, fast response, and simple operation for applications in biological, medical, and chemical detection, but limited by the poor stability and high cost of the electrode materials. In this work, we used PtNi lagged-like nanowire for caffeic acid (CA) electrochemical detection. The removal of outer layer Ni during reaction process contributed to the rehabilitation of active Pt sites at the surface, leading to the excellent electrocatalytic behavior of CA sensing. Carbon-supported PtNi-modified glassy carbon electrode (PtNi/C electrode) showed a broad CA detecting range (from 0.75 to 591.783 μM), a low detection limit (0.5 μM), and excellent stability. The electrode preserved high electrocatalytic performance with 86.98% of the initial oxidation peak current retained after 4000 potential cycles in 0.5 mM caffeic acid solution. It also demonstrates excellent anti-interference capability and is ready for use in the real sample analysis.
Collapse
Affiliation(s)
- Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Beibei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001 People’s Republic of China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| | - Cheng Lu
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H6 Canada
| | - M. Cynthia Goh
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H6 Canada
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 People’s Republic of China
| |
Collapse
|
32
|
Moradi Z, Alipanahpour Dil E, Asfaram A. Dispersive micro-solid phase extraction based on Fe3O4@SiO2@Ti-MOF as a magnetic nanocomposite sorbent for the trace analysis of caffeic acid in the medical extracts of plants and water samples prior to HPLC-UV analysis. Analyst 2019; 144:4351-4361. [DOI: 10.1039/c9an00120d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, Fe3O4@SiO2@Ti-MOF-NCs, as an efficient sorbent, have been synthesized in a laboratory and utilized for extracting CA in the medical extracts of plants and water samples before their analysis by HPLC.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Chemistry
- Yasouj University
- Yasouj 75918-74831
- Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| |
Collapse
|
33
|
Long R, Li T, Wu L, Shi S. Synthesis of CdTe Quantum Dots-based Imprinting Fluorescent Nanosensor for Highly Specific and Sensitive Determination of Caffeic Acid in Apple Juices. EFOOD 2019. [DOI: 10.2991/efood.k.190802.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
34
|
Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
36
|
Liu X, Wu F, Au C, Tao Q, Pi M, Zhang W. Synthesis of molecularly imprinted polymer by suspension polymerization for selective extraction of p
-hydroxybenzoic acid from water. J Appl Polym Sci 2018. [DOI: 10.1002/app.46984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaojuan Liu
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| | - Fengjing Wu
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| | - Chaktong Au
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| | - Qi Tao
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| | - Mingyu Pi
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| | - Wenhui Zhang
- School of Chemistry and Chemical Engineering; Hunan Institute of Engineering, NO. 88, Fuxing East Road; Xiangtan Hunan Province 411104 People's Republic of China
| |
Collapse
|
37
|
Li H, Zhao L, Xu Y, Zhou T, Liu H, Huang N, Ding J, Li Y, Ding L. Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 2018; 185:542-549. [DOI: 10.1016/j.talanta.2018.04.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
|
38
|
Carbone M, Micheli L, Limosani F, Possanza F, Abdallah Y, Tagliatesta P. Ruthenium and manganese metalloporphyrins modified screen-printed electrodes for bio-relevant electroactive targets. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ruthenium(II) 5-(4[Formula: see text]-sulfanylmethylphenyl)-10,15,20-triphenylporphyrin (Ru-TPP-SH) and manganese(III) 5-(4[Formula: see text]-sulfanylmethylphenyl)-10,15,20-triphenylporphyrin (Mn-TPP-SH) were synthesized, spectroscopically characterized and drop casted to modify screen-printed electrodes (SPEs). The modified SPEs were then tested against the redox target [Fe(CN)6][Formula: see text] in comparison with the bare SPE and SPE modified with the free porphyrin. The best performing one, [Formula: see text]. Mn-TPP-SH was used for the electrochemical detection of 1,4–benzoquinone, serotonin, caffeic and ascorbic acids, the latter also in association with uric acid, showing good electrocatalytic properties. The tunability of the metal-TPP-SH through the choice of the coordinating metal, the drop casting conditions and possible further functionalization make this type of porphyrin a good candidate for further developments of porphyrin-modified SPEs.
Collapse
Affiliation(s)
- Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Francesca Limosani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Possanza
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Yassmine Abdallah
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
- Department of Materials Sciences and Energy, Université Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
39
|
Peng M, Li H, Long R, Shi S, Zhou H, Yang S. Magnetic Porous Molecularly Imprinted Polymers Based on Surface Precipitation Polymerization and Mesoporous SiO₂ Layer as Sacrificial Support for Efficient and Selective Extraction and Determination of Chlorogenic Acid in Duzhong Brick Tea. Molecules 2018; 23:molecules23071554. [PMID: 29954112 PMCID: PMC6099399 DOI: 10.3390/molecules23071554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 01/26/2023] Open
Abstract
Magnetic porous molecularly imprinted polymers (MPMIPs) for rapid and efficient selective recognition of chlorogenic acid (CGA) were effectively prepared based on surface precipitation polymerization using CGA as template, 4-vinylpyridine (4-VP) as functional monomer, and mesoporous SiO2 (mSiO2) layer as sacrificial support. A computational simulation by evaluation of electronic binding energy is used to optimize the stoichiometric ratio between CGA and 4-VP (1:5), which reduced the duration of laboratory trials. The porous MIP shell and the rid of solid MIPs by magnet gave MPMIPs high binding capacity (42.22 mg/g) and fast kinetic binding (35 min). Adsorption behavior between CGA and MPMIPs followed Langmuir equation and pseudo-first-order reaction kinetics. Furthermore, the obtained MPMIPs as solid phase adsorbents coupled with high performance liquid chromatography (HPLC) were employed for selective extraction and determination of CGA (2.93 ± 0.11 mg/g) in Duzhong brick tea. The recoveries from 91.8% to 104.2%, and the limit of detection (LOD) at 0.8 μg/mL were obtained. The linear range (2.0–150.0 μg/mL) was wide with R2 > 0.999. Overall, this study provided an efficient approach for fabrication of well-constructed MPMIPs for fast and selective recognition and determination of CGA from complex samples.
Collapse
Affiliation(s)
- Mijun Peng
- Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China.
| | - Huan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shuyun Shi
- Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China.
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
- National & Local United Engineering laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Jishou 416000, China.
| | - Hanjun Zhou
- School of Mathematics and Statistics, Central South University, Changsha 410083, China.
| | - Shuping Yang
- School of Mathematics and Statistics, Central South University, Changsha 410083, China.
| |
Collapse
|
40
|
Chen L, Wang R, Cui L, Wang X, Wang L, Song F, Ji W. Preparation of five high-purity iridoid glycosides from Gardenia jasminoides
Eills by molecularly imprinted solid-phase extraction integrated with preparative liquid chromatography. J Sep Sci 2018; 41:2759-2766. [DOI: 10.1002/jssc.201800086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Lizong Chen
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Rongyu Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Li Cui
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Xiao Wang
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Leilei Wang
- Ecology Institute; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Fanyong Song
- Ecology Institute; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| | - Wenhua Ji
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center; Qilu University of Technology (Shandong Academy of Sciences); Jinan China
| |
Collapse
|
41
|
Ji S, Li T, Yang W, Shu C, Li D, Wang Y, Ding L. A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS. Mikrochim Acta 2018; 185:203. [DOI: 10.1007/s00604-018-2728-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
|
42
|
Rapid, low temperature synthesis of molecularly imprinted covalent organic frameworks for the highly selective extraction of cyano pyrethroids from plant samples. Anal Chim Acta 2018; 1001:179-188. [DOI: 10.1016/j.aca.2017.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
|
43
|
Jia M, Yang J, Sun YK, Bai X, Wu T, Liu ZS, Aisa HA. Improvement of imprinting effect of ionic liquid molecularly imprinted polymers by use of a molecular crowding agent. Anal Bioanal Chem 2017; 410:595-604. [DOI: 10.1007/s00216-017-0760-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/18/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
44
|
Ostovan A, Ghaedi M, Arabi M, Asfaram A. Hollow porous molecularly imprinted polymer for highly selective clean-up followed by influential preconcentration of ultra-trace glibenclamide from bio-fluid. J Chromatogr A 2017; 1520:65-74. [DOI: 10.1016/j.chroma.2017.09.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
|
45
|
Shi S, Fan D, Xiang H, Li H. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices. Food Chem 2017; 237:198-204. [PMID: 28763986 DOI: 10.1016/j.foodchem.2017.05.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
An effective strategy was proposed to prepare novel magnetic porous molecularly imprinted polymers (MPMIPs) for highly selective extraction of cinnamic acid (CMA) from complex matrices. Characterization and various parameters affecting adsorption and desorption behaviors were investigated. Results revealed adsorption behavior between CMA and MPMIPs followed Freundlich equation adsorption isotherm with a maximum adsorption capacity at 4.35mg/g and pseudo-second-order reaction kinetics with equilibrium time at 60min. Subsequently, MPMIPs were successfully used to selectively extract CMA from apple juice with a relatively satisfactory recovery (92.7-101.4%). Coupling with high-performance liquid chromatography and ultraviolet detection (HPLC-UV), the limit of detection (LOD) for CMA was 0.006µg/mL, and the linear range (0.02-10μg/mL) was wide with correlation coefficient at 0.9995. Finally, the contents of CMA in two kinds of apple juices were determined as 0.132 and 0.120μg/mL. Results indicated the superiority of MPMIPs in the selective extraction field.
Collapse
Affiliation(s)
- Shuyun Shi
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Dengxin Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haiyan Xiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Huan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
46
|
Xiang H, Fan D, Li H, Shi S. Hollow porous molecularly imprinted polymers for rapid and selective extraction of cinnamic acid from juices. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1049-1050:1-7. [DOI: 10.1016/j.jchromb.2017.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
|
47
|
Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples. J Chromatogr A 2017; 1484:7-13. [DOI: 10.1016/j.chroma.2017.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 12/15/2022]
|