1
|
Zhou B, Chen N, Wu Y, Peng X, Han K, Chen Z, Xu M, Liu X. Starch-lipid complexes and their application: A review. Int J Biol Macromol 2025; 310:142928. [PMID: 40210070 DOI: 10.1016/j.ijbiomac.2025.142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
The starch-lipid complexes have recently attracted extensive interest due to their excellent properties, such as the decrease of digestibility and the inhibition of starch gelatinization and retrogradation. The review discussed the formation, structure, functionalities and preparation methods of starch-lipid complexes, and most importantly, their application. The starch-lipid complex is classified as a new type of resistant starch-RS5, which can reduce postprandial blood glucose response and regulate human gut health. Over the past few years, starch-lipid complexes have been increasingly reported for applications in food additives, fat substitutes and carriers of nutrients and medicine, regulation of intestinal flora and production of food packaging films. A comprehensive review of applications of starch-lipid complexes is of great importance for understanding and expanding the application of complexes. But the regulatory mechanism of starch-lipid complexes on food quality, food packaging films and intestinal flora is still unclear, which deserves further study in the future. Targeted medicine delivery using starch-lipid complexes may be also a promising and challenging direction in the future.
Collapse
Affiliation(s)
- Binran Zhou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Ning Chen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Yuewei Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Xiangyuan Peng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Kaijie Han
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Zengren Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China
| | - Mengjie Xu
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China
| | - Xia Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, Shandong, China.
| |
Collapse
|
2
|
Hu Y, Sun C, Wang C, Mei L, He Z, Chen Y, Liu Y, Luo G, Guo L, Chen X, Du X. Structural characteristics of linear dextrin and in vitro digestion of lauric acid complexes generated via gradient alcohol precipitation. Int J Biol Macromol 2025; 299:140231. [PMID: 39855524 DOI: 10.1016/j.ijbiomac.2025.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Linear dextrin (LD), a low-molecular-weight carbohydrate, regarded as a type of short amylose, can form resistant starch when combined with fatty acids. This study investigated the structural properties and in vitro digestion of linear dextrins and their complexes with lauric acid (LA). Four groups of linear dextrins were prepared by pretreating gelatinized high-amylose maize starch (HAMS) with pullulanase followed by gradient ethanol precipitation at concentrations of 0 %, 50 %, 60 %, and 70 % (v/v). The GPC results showed that the weight average molecular weight (Mw) of these linear dextrins were 425.88 kDa, 189.68 kDa, 3.77 kDa and 2.01 kDa, respectively. After linear dextrins were complexed with lauric acid through co-precipitation treatment, the X-ray diffraction data revealed that, except for LD-70-LA, all other complexes formed a V-type structure. The complexing index of the complexes initially increased and then declined with increasing ethanol concentration, reaching a peak value of 41.54 % for LD-50-LA. The LD-0-LA, LD-60-LA and LD-70-LA complexes exhibited weaker anti-digestion properties compared to LD-50-LA, which demonstrated the highest resistant starch content at 52.43 %. This study offers a new approach and application potential for the efficient production of resistant starch.
Collapse
Affiliation(s)
- Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Li Guo
- School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Meng F, He M, Yang M, Liu J, Guo S, Liu S. Effect of high hydrostatic pressure on the multi-scale structure and digestive properties of Lonicera caerulea berry polyphenol-wheat starch complex. Int J Biol Macromol 2025; 308:142776. [PMID: 40180065 DOI: 10.1016/j.ijbiomac.2025.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Polyphenols increase resistant starch (RS) content and stabilize postprandial blood glucose levels. This study examined the effects of high hydrostatic pressure (HHP) technology on the multi-scale structure and digestibility of the Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex in vitro and in vivo. The results showed that 200, 400, and 600 MPa HHP treatments promoted starch gelatinization, destroyed the grain structure of wheat starch (WS), significantly increased the particle size (P < 0.05), significantly increased the RS content by 1.60, 2.33, and 2.60 times (P < 0.05), and decreased the crystallinity and molecular weight. Under HHP, Lonicera caerulea berry polyphenols (LCBP) and WS formed A + V complex and the two interacted with each other through hydrogen bonding, leading to a further reduction in the gelatinization enthalpy (ΔH). The amount of glucose released by internal digestion in mice decreased significantly from 10.28 mmol/L to 8.87 mmol/L at 180 min (P < 0.05). Complex digestives appeared dense, which reduced WS digestion. This study provides a theoretical basis for the research and development of functional starch with stable postprandial blood glucose levels, and its use as a functional food ingredient.
Collapse
Affiliation(s)
- Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingyu He
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingxi Yang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Jinjie Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
4
|
Ning J, Fu B, Tang X, Hao Y, Zhang Y, Wang X. Starch retrogradation in starch-based foods: Mechanisms, influencing factors, and mitigation strategies. Int J Biol Macromol 2025; 300:140354. [PMID: 39870278 DOI: 10.1016/j.ijbiomac.2025.140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Starch-based foods are the most common foods in the daily diets. However, starch-based foods are prone to starch retrogradation, resulting in texture hardening, taste deterioration and nutrient loss. This paper reviewed the mechanisms and the influencing factors of starch retrogradation in starch-based foods, and the strategies to mitigate it. The core mechanisms and influencing factors of starch retrogradation are analyzed in depth, and various methods to alleviate it are summarized. Starch retrogradation is mainly caused by recrystallization of amylose and amylopectin, accompanied by moisture migration and rearrangement of starch molecules. The amylose to amylopectin ratio, moisture content, protein and lipids are intrinsic factors. At the same time, processing methods and storage temperatures are extrinsic conditions that significantly affect the rate and extent of starch retrogradation. Effective measures to alleviate starch retrogradation include the addition of food ingredients and exogenous substances, the optimization of processing methods and storage conditions, as well as the application of edible coatings. This review aims to summarize the latest progress in delaying aging of starch-based foods, enhance the understanding of starch retrogradation mechanisms, and promote the development of starch-based foods with longer shelf lives, thereby providing scientific basis and technical support for the food industry.
Collapse
Affiliation(s)
- Jiyang Ning
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqing Fu
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Tang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yuan Hao
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Yanjun Zhang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China.
| | - Xu Wang
- Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572019, China.
| |
Collapse
|
5
|
Yan Y, Fang J, Zhang X, Ji X, Shi M, Niu B. Insight into formation and structure of wheat starch-lauric acid complexes by extrusion: Effect of plasma-activated water. Food Chem 2025; 469:142640. [PMID: 39733567 DOI: 10.1016/j.foodchem.2024.142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The objective of this study is to examine how plasma-activated water (PAW) affects the formation of complexes between wheat starch (WS) and lauric acid (LA) during extrusion. The findings from various analysis, including complexing index, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and differential scanning calorimetry, revealed that PAW promoted the formation of WS-LA complexes during extrusion, resulting in a better long-range and short-range ordered structure, as well as higher gelatinization enthalpy. Consequently, PAW led to lower solubility, swelling power, gel property, and rapidly digestible starch content but higher resistant starch content. Notably, the promotional impact of PAW60 (distilled water underwent plasma treatment for 60 s) was greater than PAW120 (distilled water underwent plasma treatment for 120 s) and PAW180 (distilled water underwent plasma treatment for 180 s). This study provides an efficacious technique to enhance the formation of starch complexes, being of great value in starch-based functional foods.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou, 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
6
|
Wang C, Jiang X, Huang X, Lu X, Zheng B. Microwave-mediated formation of lotus-seed starch-palmitic acid complexes and their multi-scale structural changes. Int J Biol Macromol 2025; 308:142370. [PMID: 40120883 DOI: 10.1016/j.ijbiomac.2025.142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Recent studies have revealed that starch-lipid complexation can significantly impact gut health via the formation of V-type resistant starch. This study used varying microwave (MW) power levels (600, 700, 800, 900, 1000 W) to prepare V-type lotus-seed starch (LS)-palmitic acid (PA) complexes and investigates their multi-scale structural and thermal properties. The results indicate that MWs promote hydrophobic LS-PA complexation to form a B + V6II-type crystalline structure, with the V-type complexation rate found to positively correlate with MW power. Specifically, a higher MW power is more conducive to guiding the evolution of the disordered structure in the complex system back to the ordered arrangement and enhancing the crystallinity and stability of the system. The evolution of this V-type crystallization process peaks at an MW power of 1000 W MW to afford a complexing index of 55.409 %. Further thermal-property analyses reveal that the V-type complexed starch is mainly arranged as highly thermally stable accumulated single-helix structures that dissociate at 100-105 °C. These findings provide valuable data for regulating V-type complex formation through MW treatment and establish a theoretical foundation for precisely designing healthy starch-based foods.
Collapse
Affiliation(s)
- Chenxin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xining Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Niu Y, Wang L, Gong H, Jia S, Guan Q, Li L, Cheng H. Nutrition and Gut Health: Preparation and Efficacy of Resistant Starch. Foods 2025; 14:471. [PMID: 39942065 PMCID: PMC11817130 DOI: 10.3390/foods14030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Resistant starch (RS) refers to starch varieties that resist digestion by human digestive enzymes. Owing to its distinctive physicochemical attributes and functional capabilities, RS has gained a wide range of applications as a dietary fiber and prebiotic. In terms of structure and functions, RS can be categorized into five distinct types: RS1 through RS5. These types offer dietary benefits, contributing to improved colonic health, the modulation of microbial communities, the reduction in gallstone formation, the enhancement of mineral absorption, and alterations in fat oxidation potential. From a technical standpoint, RS can be manufactured through an array of physical, enzymatic, and chemical modifications. This paper presents a comprehensive review of the existing literature, summarizing the classification, structural features, raw material origins, preparation methodologies, and functionalities of RS. Furthermore, new production technologies and applications of RS, such as 3D printing, provide valuable insights.
Collapse
Affiliation(s)
- Yulong Niu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiyi Gong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuqing Jia
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qing Guan
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Linling Li
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (Y.N.); (L.W.); (H.G.); (S.J.); (Q.G.)
| |
Collapse
|
8
|
Yan Y, Liu S, Wang Z, Zhang X, Ji X, Shi M, Niu B. Improvement of maize starch-lauric acid complexes by plasma pretreatment: Formation, structure, properties and its related mechanisms. Int J Biol Macromol 2025; 291:139024. [PMID: 39708888 DOI: 10.1016/j.ijbiomac.2024.139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Starch-lipid complexes have attracted widespread attention owing to high anti-digestibility and thermal stability. However, methods to increase the content of starch-lipid complexes are limited. Therefore, this study aims to investigate the effect of atmospheric cold plasma (ACP) treatment for different times (0, 1, 3, 5, and 7 min) on the formation and structure of complexes between maize starch (MS) and lauric acid (LA). The results showed that the amylose content of MS increased from 18.44 % to 31.01 % after ACP treatment. Moreover, structural characterization of complexes revealed that short-term ACP treatment (1 min) favored the formation of MS-LA complexes, resulting in a better V-type crystalline structure (14.90 %) and short-range ordered structure (0.793) with higher thermal stability (4.47 J/g) and no obvious morphological differences. In addition, the resistant starch content of MS-LA complexes increased from 30 % to 33 % in MS treated with ACP for 1 min. This may be because the active substances in ACP depolymerized starch, destroyed α-1,6 glycosidic bonds, broke branch chains, and increased amylose content, which promoted the formation of complexes to a certain extent. This study proposes a method to promote the formation of starch-lipid complexes, broadening potential application of complexes in low-GI food, stabilizer, and microcapsule carrier.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods, Henan, Zhengzhou 450001, PR China.
| | - Shuyang Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Ziyu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
9
|
Jia X, Luo X, Jin W, Shen W, Wu Y, Liu X. Effect of Chlorella pyrenoidosa and Spirulina platensis powder on the physicochemical, structural, and rheological properties of rice starch: A comparative study. Food Chem 2025; 463:141113. [PMID: 39265404 DOI: 10.1016/j.foodchem.2024.141113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
The effect of Chlorella pyrenoidosa (CP) and Spirulina platensis (SP) at concentrations of 0 %-12 % on the properties of rice starch (RS) was investigated. Compared with pure RS, the addition of CP and SP powder decreased the viscosity, increased the gelatinization temperature, and promoted the retrogradation of RS gel. However, when CP was added at 12 % and SP at 8 %, retrogradation inhibition was reduced. At these concentrations, the relative crystallinity of the CP mixture increased by 57.37 %, whereas that of SP increased by 48.13 %. Scanning electron microscopy revealed that the addition of low amount of CP and SP reduced porosity. CP and SP powder facilitated the conversion of bound water to free water and contributed to the weakening of the viscoelasticity of the RS gel. CP powder likely had a more detrimental effect on the short-term storage properties of RS than SP powder. These results provide theoretical support for the development of RS-based products and the innovative utilization of microalgae.
Collapse
Affiliation(s)
- Xiwu Jia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Xiaohua Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Yongning Wu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xin Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China.
| |
Collapse
|
10
|
Ma S, Zuo J, Chen B, Fu Z, Lin X, Wu J, Zheng B, Lu X. Structural, properties and digestion in vitro changes of starch subjected to high pressure homogenization: An update review. Int J Biol Macromol 2024; 282:137118. [PMID: 39489250 DOI: 10.1016/j.ijbiomac.2024.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
High pressure homogenization (HPH) is considered as a promising method for improving the ideal metabolic reaction of starch-based foods in the body, but there is still no comprehensive understanding of the structure-property relationship of starch treated with HPH. This study reviews the advantages and limitations of HPH in starch-based foods processing in recent years. It also elaborates the bidirectional regulation of HPH on starch structure-property and its potential in improving nutritional quality, which includes the regular modification effects of HPH on the multi-scale structure, physicochemical properties, and digestion characteristics of starch. It was found that HPH could lead to the degradation of amylopectin, destruction of amorphous structure, and homogenization of fine particles, promoting gelatinization and ultimately endowing starch with good solubility and digestibility. Moreover, it could reorganize and reorder the internal starch chains, or cause the particles to disintegrate into an amorphous state, thereby enhancing the anti-digestibility of starch. The interaction of starch with different nutrients during the HPH process could be further investigated in future studies and explored with other techniques for structure-property modifications, which would help expand the development of personalized starch foods to meet growing consumer demands.
Collapse
Affiliation(s)
- Shuang Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, College of Health and Science, University of Lincoln, Holbeach, Spalding, UK
| | - Bingbing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoxia Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lin
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Wu
- College of Jinshan, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Zhang M, Hou Y, Chen X, Zhao P, Wang Z, Huang J, Hui C, Li C. Amylose molecular weight affects the complexing state and digestibility of the resulting starch-lipid complexes. Carbohydr Polym 2024; 342:122400. [PMID: 39048199 DOI: 10.1016/j.carbpol.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Previous RS5 (type 5 resistant starch) research has significantly broadened starch use and benefited society, yet the effects of the molecular weight of amylose on RS5 remain underexplored. In this study, amyloses with different molecular weights were complexed with caproic acid (C6), lauric acid (C12), and stearic acid (C18) to observe the effects of the molecular weight of amylose on the structure and in vitro digestive properties of RS5. Gel permeation chromatography revealed that the peak average molecular weight (Mp) values of high-amylose cornstarch NF-CGK (CGK), high-amylose cornstarch obtained via cornstarch via autoclave (high temperature and high pressure)-cooling combined pullulanase enzymatic hydrolysis (CTE), and high-amylose cornstarch NF-G370 (HCK) were 21,282, 171,537, and 188,084 before fatty acid complexation, respectively. Additionally, their weight average molecular weight (Mw) values of 32,429, 327,344, and 410,610 and hydrolysis rates of 58.12 %, 86.77 %, and 64.58 %, respectively. The hydrolysis rate of low-Mw amylose (GCK) complexes with fatty acids was lower than that of HCK and CTE starch-lipid complexes. However, HCK and CTE having similar molecular weights, there was no significant difference in the hydrolysis rate of starch-lipid complexes. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and complexing index analyses confirmed the formation of these complexes. This study proposed the mechanism of RS5 formation and provided guidance for its future development.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Xinyang Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Penghui Zhao
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement College of Agriculture, Henan University Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; State Key Laboratory of Crop Stress Adaptation and Improvement College of Agriculture, Henan University Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Chuanyin Hui
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Chenyu Li
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
12
|
Chen W, Jia R, Liu L, Lin W, Guo Z. Comparative study on dynamic in vitro digestion characteristics of lotus seed starch-EGCG complex prepared by different processing methods. Food Chem 2024; 455:139849. [PMID: 38823120 DOI: 10.1016/j.foodchem.2024.139849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To study the effect of starch-polyphenol interaction induced by different processing methods on digestion characteristics, a dynamic in vitro human gastrointestinal system was employed to investigate the digestive characteristics of lotus seed starch-epigallocatechin gallate (EGCG) complex (LS-EGCG) prepared by different processing methods. Digestion altered crystal structure, particle size, morphology, pH, starch hydrolysis, and EGCG content. Processing broke physical barriers, reducing particle size by enzyme erosion. Enzymatic hydrolysis gradually exposed EGCG, indicated by green fluorescence. Heat and high pressure treatments enhanced starch dissolution, increasing sugar accumulation and hydrolysis. However, ultrasonic-microwave and high pressure microfluidization treatments formed dense structures, decreasing hydrolysis rates. Overall, the complex formed by high pressure microfluidization showed better enzyme resistance. The results provide a scientific basis for the development of food with quality and functional properties.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Wanyi Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China.
| |
Collapse
|
13
|
Liu C, Zhan A, Liu P, Li R, Li K, Li J. Cross-linking affecting properties and in-vitro digestibility of starch-sucrose ester complexes. Int J Biol Macromol 2024; 276:133808. [PMID: 39004257 DOI: 10.1016/j.ijbiomac.2024.133808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
This study investigated the effects of cross-linking on the characteristics and in-vitro digestibility of starch-sucrose ester (SE) complexes. To achieve this, corn starch (CS) was cross-linked with various concentrations of sodium trimetaphosphate /sodium tripolyphosphate (5 %, 10 %, and 15 %). Subsequently, cross-linked starches (CLS) were complexed with SE through hydrothermal treatment. X-ray diffraction analysis revealed that V-type amylose-lipid complexes formed by the interaction between CS and SE. The resultant CS-SE complex significantly reduced CS digestibility, increasing its resistant starch (RS) content from 10.19 % to 22.71 %. The cross-linking modification did not alter the crystalline pattern of the CS-SE complex. Several CLS-SE complexes demonstrated higher enzymatic resistance compared to the CS-SE complex. The CLS10-SE complex exhibited the highest RS content of 39.37 % when the cross-linking agent concentration was 10 %. This phenomenon may be attributable to the cross-linking reaction having enhanced the interaction between starch molecular chains, reducing the solubility and swelling power, thereby hindering the accessibility of starch chains to digestive enzymes. These findings indicate that cross-linking modification is a practical approach to improving the anti-digestion performance of starch-lipid complexes.
Collapse
Affiliation(s)
- Cancan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ahui Zhan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peihua Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ruoxuan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Zhang X, Qin P, Wu D, Huang J, Zhang J, Gong Y, Zou L, Hu Y. Effects of Microwave Treatment on Physicochemical Attributes, Structural Analysis, and Digestive Characteristics of Pea Starch-Tea Polyphenol Complexes. Foods 2024; 13:2654. [PMID: 39272420 PMCID: PMC11394648 DOI: 10.3390/foods13172654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Addressing the challenge of blood glucose fluctuations triggered by the ingestion of pea starch, we have adopted an eco-friendly strategy utilizing microwave irradiation to synthesize the novel pea starch-tea polyphenol complexes. These complexes exhibit high swelling capacity and low solubility, and their thermal profile with low gelatinization temperature and enthalpy indicates adaptability to various processing conditions. In vitro digestion studies showed that these complexes have a small amount of rapidly digestible starch and a large amount of resistant starch, leading to a slower digestion rate. These features are particularly advantageous for diabetics, mitigating glycemic excursions. Structurally, the pea starch-tea polyphenol complexes exhibited a B + V-shaped dense network with low crystallinity, high orderliness, and a prominent double helix content, enhancing its stability and functionality in food applications. In summary, these innovative complexes served as a robust platform for developing low glycemic index foods, catering to the nutritional needs of diabetics. It offers an environmentally sustainable approach to food processing, fostering human well-being and propelling innovation in the food industry.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Peiyou Qin
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiayi Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuanyuan Gong
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu Agricultural College, Chengdu 611130, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Liu Q, Luo H, Liang D, Zheng Y, Shen H, Li W. Effect of electron beam irradiation pretreatment and different fatty acid types on the formation, structural characteristics and functional properties of starch-lipid complexes. Carbohydr Polym 2024; 337:122187. [PMID: 38710543 DOI: 10.1016/j.carbpol.2024.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.
Collapse
Affiliation(s)
- Qing Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No.136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Shaanxi 712100 Yangling, People's Republic of China.
| |
Collapse
|
16
|
Shang W, Li X, Du J, Guo Y, Fu D, He Y, Pan F, Zhang W, Zhou Z. Study on multiscale structures and digestibility of cassava starch and medium-chain fatty acids complexes using molecular simulation techniques. Food Res Int 2024; 187:114373. [PMID: 38763649 DOI: 10.1016/j.foodres.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Effect of complexation of three medium-chain fatty acids (octanoic, decylic and lauric acid, OA, DA and LA, respectively) on structural characteristics, physicochemical properties and digestion behaviors of cassava starch (CS) was investigated. Current study indicated that LA was more easily to combine with CS (complex index 88.9%), followed by DA (80.9%), which was also consistent with their corresponding complexed lipids content. Following the investigation of morphology, short-range ordered structure, helical structure, crystalline/amorphous region and fractal dimension of the various complexes, all cassava starch-fatty acids complexes (CS-FAs) were characterized with a flaked morphology rather than a round morphology in native starch (control CS). X-ray diffraction demonstrated that all CS-FAs had a V-type crystalline structure, and nuclear magnetic resonance spectroscopy confirmed that the complexes made from different fatty acids displayed similar V6 or V7 type polymorphs. Interestingly, small-angle X-ray scattering analysis revealed that α value became greater following increased carbon chain length of fatty acids, indicating the formation of a more ordered fractal structure in the aggregates. Changes in rheological parameters G' and G'' indicated that starch complexed with fatty acids was more likely to form a gel network, but difference among three CS-FAs complexes was significant, which might be contributed to their corresponding hydrophobicity and hydrophilicity raised from individual fatty acids. Importantly, digestion indicated that CS-LA complexes had the lowest hydrolysis degree, followed by the greatest RS content, indicating the importance of chain length of fatty acids for manipulating the fine structure and functionality of the complexes.
Collapse
Affiliation(s)
- Wenting Shang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Xin Li
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Jinyu Du
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Yuxin Guo
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Dekun Fu
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Yanfu He
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China
| | - Fei Pan
- Chinese Academy of Agricultural Sciences, Haidian, Beijing, 100080, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou, Hainan, 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, Hainan, 570228, China.
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
17
|
Nie M, Li J, Lin R, Gong X, Dang B, Zhang W, Yang X, Wang L, Wang F, Tong LT. The role of C18 fatty acids in improving the digestion and retrogradation properties of highland barley starch. Food Res Int 2024; 186:114355. [PMID: 38729701 DOI: 10.1016/j.foodres.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.
Collapse
Affiliation(s)
- Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Jiaxin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Xue Gong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Wengang Zhang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
18
|
Sahil, Madhumita M, Prabhakar PK. Effect of dynamic high-pressure treatments on the multi-level structure of starch macromolecule and their techno-functional properties: A review. Int J Biol Macromol 2024; 268:131830. [PMID: 38663698 DOI: 10.1016/j.ijbiomac.2024.131830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Over the past decades, dynamic high-pressure treatment (DHPT) executed by high-pressure homogenization (HPH) or microfluidization (DHPM) technology has received humongous research attention for starch macromolecule modification. However, the studies on starch multi-level structure alterations by DHPT have received inadequate attention. Furthermore, no review comprehensively covers all aspects of DHPT, explicitly addressing the combined effects of both technologies (HPH or DHPM) on starch's structural and functional characteristics. Hence, this review focused on recent advancements concerning the influences of DHPT on the starch multi-level structure and techno-functional properties. Intense mechanical actions induced by DHPT, such as high shear and impact forces, hydrodynamic cavitation, instantaneous pressure drops, and turbulence, altered the multi-level structure of starch for a short duration. The DHPT reduces the starch molecular weight and degree of branching, destroys short-range ordered and long-range crystalline structure, and degrades lamellar structure, resulting in partial gelatinization of starch granules. These structural changes influenced their techno-functional properties like swelling power and solubility, freeze-thaw stability, emulsifying properties, retrogradation rate, thermal properties, rheological and pasting, and digestibility. Processing conditions such as pressure level, the number of passes, inlet temperature, chamber geometry used, starch types, and their concentration may influence the above changes. Moreover, dynamic high-pressure treatment could form starch-fatty acids/polyphenol complexes. Finally, we discuss the food system applications of DHPT-treated starches and flours, and some limitations.
Collapse
Affiliation(s)
- Sahil
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India
| | - Mitali Madhumita
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, HR, India.
| |
Collapse
|
19
|
Lee SH, Huang WY, Hwang J, Yoon H, Heo W, Hong J, Kim MJ, Kang CS, Han BK, Kim YJ. Characteristics of amylose-lipid complex prepared from pullulanase-treated rice and wheat flour. Food Sci Biotechnol 2024; 33:1113-1122. [PMID: 38440677 PMCID: PMC10908976 DOI: 10.1007/s10068-023-01411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 03/06/2024] Open
Abstract
This study aimed to evaluate the properties of amylose-lipid complexes in rice and wheat flours utilizing pullulanase as a debranching enzyme. Rice and flour were both treated with pullulanase before being combined with free fatty acids to form compounds denoted as RPF (rice-pullulanase-fatty acid) and FPF (flour-pullulanase-fatty acid), respectively. Our results showed that RPF and FPF had higher complex index and lower hydrolysis values than enzyme-untreated amylose-lipid complexes. Furthermore, RPF and FPF demonstrated lower swelling power and higher water solubility values, indicating changes in the physical properties of the starches. In vivo studies showed that RPF and FPF caused a smaller increase in blood glucose levels than untreated rice and flour, highlighting their potential use as functional food ingredients. These findings provide valuable information for the development of novel rice-and wheat-based foods with improved nutritional and physiological properties. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01411-0.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Wen Yan Huang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Jinhee Hwang
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Hyeock Yoon
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Wan Heo
- Department of Food & Nutrition, Seowon University, Cheongju, 28674 Republic of Korea
| | - Jiyoun Hong
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Mi Jeong Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Chang-Soo Kang
- Department of Agriculture & Fisheries Processing, Korea National College of Agriculture and Fisheres, Jeonju, 54874 Republic of Korea
| | - Bok Kyung Han
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| | - Young Jun Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 Republic of Korea
- Department of Food and Regulatory Science, Korea University, Sejong, 30019 Republic of Korea
| |
Collapse
|
20
|
Liu Q, Guan H, Guo Y, Wang D, Yang Y, Ji H, Jiao A, Jin Z. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chem 2024; 437:137950. [PMID: 37952395 DOI: 10.1016/j.foodchem.2023.137950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS5), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS5. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion. The EECS-LA complexes were ordered form II complexes, with a significantly improved short-range molecular order. The melting temperature was in the range of 105-145℃. The enthalpy change increased with the increase of LA content and the value was 9.42 J/g for EECS-8 %LA complexes; these complexes could reform after dissociation. Scanning electron microscopy examination of the EECS-LA complexes revealed an irregular lamellar structure. The RS content of EECS-LA complexes increased significantly, achieving a value of 38.34 % for EECS-8 %LA complexes. This extrusion-debranching-complexing strategy is effective for preparing RS5 and could be useful in industry for the continuous production of RS5.
Collapse
Affiliation(s)
- Qing Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Guo J, Hang A, Qu Y, Li X, Zhang L, Wang M, Li S, He X, Zhang L, Hao L. Fabrication and release property of self-assembled garlic essential oil-amylose inclusion complex by pre-gelatinization coupling with high-speed shear. Int J Biol Macromol 2024; 254:127822. [PMID: 37926302 DOI: 10.1016/j.ijbiomac.2023.127822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Our aim was to investigate the preparation of self-assembled garlic essential oil-amylose inclusion complexes (SGAs) using garlic essential oil (GEO) and corn starch (CS), and evaluated their release properties. SGAs were fabricated by pre-gelatinization coupling with high-speed shear at different GEO-CS mass ratios. When the mass ratio of GEO to pre-gelatinized corn starch was set at 15 % (SGA-15 %), with a fixed shear rate of 9000 rpm and a shear time of 30 min, the allicin content was 0.573 ± 0.023 mg/g. X-ray diffraction (XRD) results revealed a starch V-type crystalline structure in SGAs with peaks at 13.0°, 18.0°, and 20.0° (2θ). Fourier Transform Infrared (FTIR) spectra of SGAs displayed a shift in the characteristic peak of diallyl trisulfide from 987.51 cm-1 to 991.45 cm-1. Scanning electron microscope (SEM) images revealed that SGAs exhibited lamellar structures covered with small granules. SGAs exhibited higher residual mass (approximately 12 %) than other samples. The resistant starch content of SGAs increased from 10.1 % to 18.4 % as GEO contents varied from 5 % to 15 %. In vitro digestion tests showed that about 53.21 % of allicin remained in SGA-15 % after 8 h. Therefore, this dual treatment can be a new method for fabricating controlled-release inclusion complexes of guest molecules.
Collapse
Affiliation(s)
- Jinbiao Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Anan Hang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yinghui Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinyu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhang
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China
| | - Mengjiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shumin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xihong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing 100010, PR China.
| |
Collapse
|
22
|
Li Y, Niu L, Sun C, Li D, Zeng Z, Xiao J. Effect of Medium Chain Triglycerides on the Digestion and Quality Characteristics of Tea Polyphenols-Fortified Cooked Rice. Foods 2023; 12:4366. [PMID: 38231872 DOI: 10.3390/foods12234366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Nowadays, medium chain triglycerides (MCT) with special health benefits have been increasingly applied for fortifying food products. Therefore, the present work aimed to investigate the effects of MCT on traditional tea polyphenols-fortified cooked rice (TP-FCR). It was visualized by DSC, CLSM, XRD, FT-IR, and Raman spectroscopy. The higher content of starch-MCT complexes with an increase in the relative crystallinity and the generation of short-range ordered structures contributed to a more ordered and compact molecular arrangement, which can hinder the action of digestive enzymes on starch. SEM demonstrated that MCT transformed the microstructure of TP-FCR into a denser and firmer character, making it an essential component hindering the accessibility of digestive enzymes to starch granules and slowing the release of tea polyphenols in TP-FCR to attenuate starch digestion. Consequently, the addition of MCT reduced the polyphenol-regulated starch digestibility from 74.28% in cooked white rice to 64.43% in TP-FCR, and further down to 50.82%. Besides, MCT also reduced the adhesiveness and improved the whiteness of TP-FCR. The findings suggested that MCT incorporation could be a potential strategy in cooked rice production to achieve high sensory quality and low glycemic cooked rice.
Collapse
Affiliation(s)
- Ying Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Dongming Li
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Zicong Zeng
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
23
|
Raza H, Xu H, Zhou Q, He J, Zhu B, Li S, Wang M. A review of green methods used in starch-polyphenol interactions: physicochemical and digestion aspects. Food Funct 2023; 14:8071-8100. [PMID: 37647014 DOI: 10.1039/d3fo01729j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The interactions of starch with lipids, proteins, and other major food components during food processing are inevitable. These interactions could result in the formation of V-type or non-V-type complexes of starch. The starch-lipid complexes have been intensively studied for over five decades, however, the complexes of starch and polyphenols are relatively less studied and are the subject of recent interest. The interactions of starch with polyphenols can affect the physicochemical properties and its digestibility. The literature has highlighted several green methods such as ultrasound, microwave, high pressure, extrusion, ball-milling, cold plasma etc., to assist interactions of starch with polyphenols. However, comprehensive information on green methods to induce starch-polyphenol interactions is still scarce. Therefore, in light of the importance and potential of starch-polyphenol complexes in developing functional foods with low digestion, this review has summarized the novel green methods employed in interactions of starch with flavonoids, phenolic acids and tannins. It has been speculated that flavonoids, phenolic acids, and tannins, among other types of polyphenols, may have anti-digestive activities and are also revealed for their interaction with starch to form either an inclusion or non-inclusion complex. Further information on the effects of these interactions on physicochemical parameters to understand the chemistry and structure of the complexes is also provided.
Collapse
Affiliation(s)
- Husnain Raza
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, DK, 1958, Denmark
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
25
|
Lu X, Zhan J, Ma R, Tian Y. Structure, thermal stability, and in vitro digestibility of rice starch-protein hydrolysate complexes prepared using different hydrothermal treatments. Int J Biol Macromol 2023; 230:123130. [PMID: 36610573 DOI: 10.1016/j.ijbiomac.2022.123130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, rice starch-protein hydrolysate (WPH-S) complexes with high resistant starch (RS) content were prepared by heat-moisture treatment (HMT) and annealing (ANN). The effects of different hydrothermal treatments on the structure and thermal stability of the WPH-S complexes and their relationship with starch digestibility were further discussed. The results showed that RS contents of ANN-WPH-S complexes (35.09-40.26 g/100 g) were higher than that of HMT-WPH-S complexes (24.15-38.74 g/100 g). Under hydrothermal treatments, WPH decreased the hydrolysis kinetic constant (k) of starch form 4.07 × 10-2-4.63 × 10-2 min-1 to 3.29 × 10-2-3.67 × 10-2 min-1. HMT and ANN promoted hydrogen bonding between WPH and starch molecules, thus increasing the molecular size of starch. In addition, the shear stability of WPH-S mixture was improved with the hysteresis loop area decreased after HMT/ANN treatments, resulting in a more stable structure. Most importantly, the hydrothermal treatment made the scatterers of WPH-S complexes denser and the surface smoother. Especially after ANN treatment, the WPH60-S complex formed a denser aggregate structure, which hindered the in vitro digestion of starch to a certain extent. These results enrich our understanding of the regulation of starch digestion by protein hydrolysates under different hydrothermal treatments and have guiding significance for the development of foods with a low glycemic index.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
26
|
Liu Q, Wang Y, Yang Y, Yu X, Xu L, Jiao A, Jin Z. Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
A novel starch-based microparticle with polyelectrolyte complexes and its slow digestion mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Impact of high pressure homogenization on the properties of potato flour film-forming dispersions and the resulting films. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Structural, Thermal and Pasting Properties of Heat-Treated Lotus Seed Starch–Protein Mixtures. Foods 2022; 11:foods11192933. [PMID: 36230010 PMCID: PMC9563054 DOI: 10.3390/foods11192933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
The interactions between starch and protein, the essential components of lotus seed, strongly influence the quality of lotus seed processing by-products. This study investigated the effects of lotus seed starch–protein (LS-LP) interactions on the structural, thermal and gelatinization properties of LS-LP mixtures, using LS/LP ratios of 6:1, 6:2, 6:3, 6:4, 6:5, or 1:1, after heat treatment (95 °C, 30 min). Fourier transform infrared peaks at 1540 cm−1 and 3000–3600 cm−1 revealed the major interactions (electrostatic and hydrogen bonding) between LS and LP. The UV–visible absorption intensities (200–240 nm) of LS-LP mixtures increased with increased protein content. X-ray diffraction and electron microscopy revealed that LS-LP consists of crystalline starch granules encapsulated by protein aggregates. Increasing the addition of protein to the mixtures restricted the swelling of the starch granules, based on their solubility, swelling properties and thermal properties. Viscometric analysis indicated that the formation of LS-LP mixtures improved structural and storage stability. These findings provide a practicable way to control the thermal and gelatinization properties of lotus seed starch–protein mixtures, by changing the proportions of the two components, and provide a theoretical basis for developing novel and functional lotus-seed-based foods.
Collapse
|
30
|
Chi C, Shi M, Zhao Y, Chen B, He Y, Wang M. Dietary compounds slow starch enzymatic digestion: A review. Front Nutr 2022; 9:1004966. [PMID: 36185656 PMCID: PMC9521573 DOI: 10.3389/fnut.2022.1004966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Dietary compounds significantly affected starch enzymatic digestion. However, effects of dietary compounds on starch digestion and their underlying mechanisms have been not systematically discussed yet. This review summarized the effects of dietary compounds including cell walls, proteins, lipids, non-starchy polysaccharides, and polyphenols on starch enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides restricted starch disruption during hydrothermal treatment and the retained ordered structures limited enzymatic binding. Moreover, they encapsulated starch granules and formed physical barriers for enzyme accessibility. Proteins, non-starchy polysaccharides along with lipids and polyphenols interacted with starch and formed ordered assemblies. Furthermore, non-starchy polysaccharides and polyphenols showed robust abilities to reduce activities of α-amylase and α-glucosidase. Accordingly, it can be concluded that dietary compounds lowered starch digestion mainly by three modes: (i) prevented ordered structures from disruption and formed ordered assemblies chaperoned with these dietary compounds; (ii) formed physical barriers and prevented enzymes from accessing/binding to starch; (iii) reduced enzymes activities. Dietary compounds showed great potentials in lowering starch enzymatic digestion, thereby modulating postprandial glucose response to food and preventing or treating type II diabetes disease.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Chengdeng Chi
| | - Miaomiao Shi
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yingting Zhao
- Center for Nutrition and Food Sciences, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Meiying Wang
- School of Engineering, University of Guelph, Guelph, ON, Canada
- Meiying Wang
| |
Collapse
|
31
|
Effect of Physical and Enzymatic Modifications on Composition, Properties and In Vitro Starch Digestibility of Sacred Lotus ( Nelumbo nucifera) Seed Flour. Foods 2022; 11:foods11162473. [PMID: 36010474 PMCID: PMC9407196 DOI: 10.3390/foods11162473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, native lotus seed flour (N-LSF) was modified by different methods, namely, partial gelatinization (PG), heat−moisture treatment (HMT), or pullulanase treatment (EP). Their composition, functional properties, starch composition, and estimated glycemic index (eGI) were compared. PG contained similar protein, soluble dietary fiber, and insoluble dietary fiber contents to N-LSF, while those of HMT and EP differed from their native form. PG increased rapid digestible starch (RDS) but decreased resistant starch (RS); while HMT and EP increased amylose and RS contents to 34.57−39.23% and 86.99−92.52% total starch, respectively. Such differences led to the different pasting properties of the modified flours rather than PG, which was comparable to the native flour. HMT had limited pasting properties, while EP gave the highest viscosities upon pasting. The eGI of all samples could be classified as low (<50), except that of PG, which was in the medium range (60). It was plausible that lotus seed flour modified either with HMT or EP could be used as carbohydrate source for diabetes patients or health-conscious people.
Collapse
|
32
|
Structural, physicochemical properties, and digestibility of lotus seed starch-conjugated linoleic acid complexes. Int J Biol Macromol 2022; 214:601-609. [PMID: 35760162 DOI: 10.1016/j.ijbiomac.2022.06.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022]
Abstract
This paper describes a new method combining octenyl succinic anhydride (OSA) esterification and high hydrostatic pressure for starch modification, which interacts with conjugated linoleic acid (CLA) to form an octenyl succinic anhydride-lotus seed starch-conjugated linoleic acid (OSA-LS-CLA) complex. This method proves the formation of complex observed by fourier transform infrared spectroscopy and complex index. The stable structure of the complex was derived from increasing molecular weight by introducing macromolecular conjugated linoleic acid and the higher crystallinity than original starch observed by X-ray diffraction. The formation method and changes of complex were observed by scanning electron microscopy and confocal laser scanning microscope. The solubility and swelling power of the complex increases as the temperature increased, significantly at 75 °C. The formation of the OSA-LS-CLA complex significantly reduced the digestion rate of LS, which was 26 % lower than that of LS. These results indicate that the OSA-LS-CLA under high hydrostatic pressure can form a complex with stable structure, which makes up for the deficiency of raw starch to a certain extent. And the formation of this structure can improve the thermal stability of the complex and has strong digestion resistance, which provides a potential direction for further research in reducing starch digestibility.
Collapse
|
33
|
Dhull SB, Chandak A, Collins MN, Bangar SP, Chawla P, Singh A. Lotus Seed Starch: A Novel Functional Ingredient with Promising Properties and Applications in Food—A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Ankita Chandak
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa Haryana 125055 India
| | - Maurice N. Collins
- Bernal Institute School of Engineering University of Limerick Limerick V94 T9PX Ireland
- Health Research Institute University of Limerick Limerick V94 T9PX Ireland
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC 29631 USA
| | - Prince Chawla
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab 144411 India
| | - Ajay Singh
- Department of Food Technology Mata Gujri College Fatehgarh Sahib Punjab 140406 India
| |
Collapse
|
34
|
Oskaybaş-Emlek B, Özbey A, Aydemir LY, Kahraman K. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. Int J Biol Macromol 2022; 207:978-989. [PMID: 35378155 DOI: 10.1016/j.ijbiomac.2022.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
In this study, the effect of reaction parameters on complex index (CI%) value of complexes formed between buckwheat starch (BS) and myristic acid (MA) was investigated. The temperature (60-90 °C) and MA to BS ratio (0.1-0.8 mmoL/g) were determined as the most effective parameters and their effect on CI% was evaluated using response surface methodology. The MA to BS ratio, temperature, and interaction between them had an influence on CI%. The CI% of BS-MA complexes increased with increasing MA ratio until a certain level of MA. Principal component analysis (PCA) was used for correlation analysis between parameters. Swelling power and paste clarity of BS decreased with complex formation while syneresis increased. Peak and final viscosity values of the BS-MA complexes were significantly lower than those of BS. FT-IR revealed the complex formation led to change in starch structure. The XRD confirmed the BS-MA complex formation but the BS-MA produced using 0.1 mmoL/g at 60 °C was not detected by XRD due to having low crystallinity, and expectedly, the lowest relative crystallinity value was achieved with this sample among complex samples. All results showed that the buckwheat might be an alternative starch source for starch-lipid complex formation.
Collapse
Affiliation(s)
| | - Ayşe Özbey
- Dept. of Food Eng., Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Levent Yurdaer Aydemir
- Dept. of Food Eng., Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Kevser Kahraman
- Dept. of Nanotechnology Eng., Abdullah Gül University, Kayseri, Turkey.
| |
Collapse
|
35
|
Di Marco AE, Ixtaina VY, Tomás MC. Analytical and technological aspects of amylose inclusion complexes for potential applications in functional foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Sengupta A, Chakraborty I, G I, Mazumder N. An insight into the physicochemical characterisation of starch-lipid complex and its importance in food industry. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aditi Sengupta
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Indira G
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
SU L, XIANG F, QIN R, FANG Z, ZENG J, LI G. Study on mechanism of starch phase transtion in wheat with different moisture content. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lei SU
- Henan Institute of Science and Technology, China
| | | | - Renbing QIN
- Henan Institute of Science and Technology, China
| | | | - Jie ZENG
- Henan Institute of Science and Technology, China
| | - Guanglei LI
- Henan Institute of Science and Technology, China
| |
Collapse
|
38
|
Xu H, Fu X, Ding Z, Kong H, Ding S. Effect of ozone and high‐pressure homogenization on the physicochemical, functional, and in vitro digestibility properties of lily starch. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haishan Xu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Xincheng Fu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Zemin Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Hui Kong
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| | - Shenghua Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Changsha China
- Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety Changsha China
| |
Collapse
|
39
|
Jiang X, Wang J, Ou Y, Zheng B. Effect of chlorogenic acid on the structural properties and digestibility of lotus seed starch during microwave gelatinization. Int J Biol Macromol 2021; 191:474-482. [PMID: 34563574 DOI: 10.1016/j.ijbiomac.2021.09.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
The structural evolution of lotus starch (LS)-chlorogenic acid (CA) complexes was investigated after microwave-heating treatment, to reveal the relationship between the interactions of lotus starch and chlorogenic acid molecules, and the digestive properties of the starch, after microwave gelatinization. During the early stage of microwave gelatinization (65, 70 °C), CA was mainly participating in the rearrangement of starch molecules in a weakly-bound form, and at that stage, the LS-CA complex acted as an inhibitor of digestion, under small intestine conditions, mainly through the release of CA, which inhibited amylase. However, during the late stage of microwave gelatinization (85 °C), many chlorogenic acid molecules entered the hydrophobic helical cavity of the starch, promoting formation of the V-type starch helical structure in the LS-CA complex, which made a major contribution to inhibiting digestion under oral digestion conditions.
Collapse
Affiliation(s)
- Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Chang Q, Zheng B, Zhang Y, Zeng H. A comprehensive review of the factors influencing the formation of retrograded starch. Int J Biol Macromol 2021; 186:163-173. [PMID: 34246668 DOI: 10.1016/j.ijbiomac.2021.07.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
The retrogradation of starch is an inevitable change that occurs in starchy food during processing and storage, in which gelatinized starch rearranges into an ordered state. The chain length, proportion and structure of amylose and amylopectin vary in different types of starch granules, and the process is affected by the genes and growth environment of plants. The internal factors play a significant role in the formation of retrograded starch, while the external factors have a direct impact on its structural rearrangement, and the creation of suitable conditions enables food components to affect the rearrangement of starch. Interestingly, water not only directly affects the gelatinization and retrogradation of starch, but also serves as a bridge to deliver the influence of other components that influence retrogradation. Moreover, there are three mechanisms responsible for forming retrograded starch: the migration of starch molecular chains in the starch-water mixed system, the redistribution of water molecules, and the recrystallization kinetics of gelatinized starch. In this paper, the effects of internal factors (amylose, amylopectin, food ingredients) and external factors (processing conditions) on the formation of retrograded starch and the mechanism controlling these effects are reviewed.
Collapse
Affiliation(s)
- Qing Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Physicochemical and functional properties of a novel xanthan gum-lysozyme nanoparticle material prepared by high pressure homogenization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Zou J, Xu M, Zou Y, Yang B. Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
In vitro digestibility and structural control of rice starch-unsaturated fatty acid complexes by high-pressure homogenization. Carbohydr Polym 2021; 256:117607. [PMID: 33483084 DOI: 10.1016/j.carbpol.2020.117607] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
This study emphasized on structural alteration of rice starch-unsaturated fatty acid complexes by adding trans-2-dodecaenoic acid (t12), trans-oleic acid (t18), cis-oleic acid (c18) and linoleic acid (loa) with different concentration under high-pressure homogenization treatment, and further illustrated the underlying mechanism of modulating digestibility. Results showed that the complex primarily presented as V6 or type IIa polymorph; complex index, content of ordered structure and thermal stability appeared to be positively correlated to the concentration of unsaturated fatty acids. t12 was too mobile to form single helix, leading to the formation of loose matrix; t18 fitted better within the cavity of starch than c18, and formed structural domain with higher compactness and thermal stability; Rloa had lower complex index but higher degree of short-range order, and tended to form alternating amorphous and crystalline structure. The digestibility was higher in the order of Rloa, Rt18, Rc18 and Rt12.
Collapse
|
46
|
Li S, Zhang R, Lei D, Huang Y, Cheng S, Zhu Z, Wu Z, Cravotto G. Impact of ultrasound, microwaves and high-pressure processing on food components and their interactions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Tu D, Ou Y, Zheng Y, Zhang Y, Zheng B, Zeng H. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Int J Biol Macromol 2021; 177:447-454. [PMID: 33636260 DOI: 10.1016/j.ijbiomac.2021.02.168] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
The effects of multiple cycles of freeze-thaw treatment, combined with pullulanase debranching, on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes were investigated. The formation and melting of ice crystals during freeze-thaw treatment disrupted the crystalline structure of the starch granules, creating pores which facilitated access of pullulanase to the interior of the granules. Pullulanase debranching increased the free amylose content of the starch, which promoted the formation of starch-lipid complexes, which, in turn, increased the proportion of resistant starch and the overall resistance of the starch to digestive enzyme action. These effects increased with the number of freeze-thaw cycles, because more cycles increased both the disruption of the granule structure and the extent of pullulanase debranching. These findings provide a basis for the preparation of functional foods with low glycemic indices, which have strong potential for management of type II diabetes.
Collapse
Affiliation(s)
- Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
48
|
Kang X, Gao W, Wang B, Yu B, Guo L, Cui B, Abd El-Aty AM. Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes. Food Chem 2021; 351:129303. [PMID: 33647689 DOI: 10.1016/j.foodchem.2021.129303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Herein, we investigated the impact of moist (steaming and boiling) and dry (baking and microwaving)-heat treatment processes on the structure and physicochemical properties of wheat starch (WS) supplemented with lauric acid (LA). Elemental composition analysis revealed the interplay between WS and LA. Scanning electron microscopy (SEM) and iodine staining revealed that lamellar crystalline structure of WS-LA complexes was improved after moist-heat treatment (relative to samples without any heat treatments); the finding which is at variance to dry-heat treatment process. Additionally, high resistance to thermal decomposition and a lower 1022/995 cm-1 absorbance ratio were observed in moist-heat treated WS-LA compared with dry-heat samples. Moreover, the V-type diffraction peak intensity and resistance to in vitro enzymatic hydrolysis of samples treated with moist-heat were increased to a greater extent than the dry-heat treated counterparts. In sum, this study would facilitate the application of functional starch-lipid complexes in food necessitated heat treatments.
Collapse
Affiliation(s)
- Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240-Erzurum, Turkey.
| |
Collapse
|
49
|
Zheng Y, Ou Y, Zhang C, Zhang Y, Zheng B, Zeng S, Zeng H. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. Int J Biol Macromol 2021; 175:49-57. [PMID: 33524480 DOI: 10.1016/j.ijbiomac.2021.01.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
In order to investigate the effects of exogenous V-type starch on the structural properties and dispersion stability of lotus seed starch after autoclave treatment, the crystal structure, molecular structure, and dispersion stability were analyzed and discussed, as well as compared with exogenous A-type and B-type starches. Analysis of structural properties indicated that the addition of different crystal nuclei led the crystallization of disordered helices to a specific direction. The B- and V-type starch addition increased the crystallinities of starch and enhanced the ordered arrangement of disordered helices, whereas A-type starch had no significant positive influence on the stability of starch system. The microstructure observation showed that A- and B-type starch addition led to a rough and porous morphology of starch particles; the presence of V-type starch retarded the agglomeration and retrogradation of starch after autoclaving. Analysis of contact angle and dispersion stability revealed that the addition of various exogenous starch increased the contact angle of starch particles in different extent, suggesting the enhancement of hydrophobicity. But B-type starch addition resulted in the poor dispersion stability compared to A-type starch, instead V-type starch addition improved the dispersion stability of starch in aqueous solution, allowing the particles to stay dispersed for 141.12 ± 6.52 min. These results provided a theoretical basis for the effects of exogenous type starch on original starch properties, and revealed the potential of V-type starch as dispersion stabilizer.
Collapse
Affiliation(s)
- Yixin Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chong Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
50
|
Ding Y, Xiao Y, Ouyang Q, Luo F, Lin Q. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment. ULTRASONICS SONOCHEMISTRY 2021; 70:105350. [PMID: 33010579 PMCID: PMC7786522 DOI: 10.1016/j.ultsonch.2020.105350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 05/10/2023]
Abstract
Chemically modified starch (RS4) was commercially available as a food ingredient, however, there was a lack of knowledge on how ultrasonic treatment (non-thermal technology) modulated the enzymatic resistance of RS4. In this study, structural change of RS4 during ultrasonic treatment and its resulting digestibility was investigated. Results from scanning electron microscopy, particle size analysis, chemical composition analysis, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that ultrasonic treatment remained the granule morphology, increased the apparent amylose content, reduced the particle size, destroyed the crystalline structure, decreased the helical orders, but enhanced the short-range molecular orders of ultrasonic-processed RS4. In vitro digestibility analysis showed that the total content of rapidly digestible starch and slowly digestible starch was increased, whereas the content of resistant starch was decreased. Overall, ultrasonic treatment substantially reduced the enzymatic resistance of RS4, indicating that RS4 was not stability against the non-thermal processing technology of ultrasonic treatment.
Collapse
Affiliation(s)
- Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qunfu Ouyang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|