1
|
Sun X, Ye Z, Xiao M, Zhang C, Guo M, Zhao J, Chen W, Tian F, Yu L, Zhai Q. The formation mechanism of volatile and nonvolatile flavor substances in sourdough based on genomics and metabolomics. Food Chem 2025; 476:143283. [PMID: 39965342 DOI: 10.1016/j.foodchem.2025.143283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Sourdough technology is known for improving pasta texture, flavor, and quality, but traditional fermented Jiaozi from various regions is still underexplored, especially in terms of flavor formation and microbial communities. This study collected Jiaozi from 16 regions to analyze sensory attributes and flavor indicators. The aroma components of Jiaozi-fermented Chinese steamed bread (CSB) were identified using HS-SPME-GC-MS, LC-MS, and HPLC methodologies. Microbial communities were characterized via genus-level sequencing. The samples were categorized into five groups based on volatile flavor substances, with group A's DZ samples scoring highest on most attributes. 31 significantly different metabolites were identified. In the highest scoring DZ samples, the contents of compounds such as 1-nonanol, octanoic acid-ethyl ester and phenylethyl alcohol differed significantly from the other samples. Saccharomyces and Lactobacillus were closely associated with the characteristic flavor of DZ-Jiaozi. These findings could inform the design of leavening agents to produce CSB with desirable aroma properties.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Liu X, Wang S, Pan M, Tian A, Chen K, Qu W, Zhou W, Zhou Y, Fan L, Zhao C, Qu L, Liu Q, Wang S, Zheng C, Zheng L, Zhong F, Xu L, Ma A. Effect of cooking methods on volatile compounds and texture properties in millet porridge. Food Chem X 2024; 23:101652. [PMID: 39113744 PMCID: PMC11304996 DOI: 10.1016/j.fochx.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
To instruct the production of millet porridge, the effect of cooking methods on flavor and texture of millet porridge was investigated. A total of 91 volatiles were detected and most volatile compounds decreased with cooking time, e.g. alcohols. The esters as major volatiles had a high content in electric rice cooker (IC). Multiple chemometric results indicated that volatiles from different cooking methods were distinguished respectively. Texture analysis indicated that the hardness of millet porridge prepared in IC had a more dominant decrease trend than electromagnetic oven and the electric pressure cooker before 40 min. In conclusion, different cooking methods had a more significant influence on the volatiles than cooking time, while the texture is opposite. The comprehensive sensory score reached its peak in IC-30 min. The comprehensive sensory scores of IC and EC decreased with the prolongation of cooking time. This study helps to improve the sensory attributes of millet porridge.
Collapse
Affiliation(s)
- Xinyang Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Shihao Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Meifan Pan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Ailing Tian
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Kaixuan Chen
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Wenwen Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
- Shandong Laiyang Health School, 265200, Laiyang, China
| | - Wenkai Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Yarui Zhou
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lijjiao Fan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Cong Zhao
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lingyun Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Qiangwei Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Saihan Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Chuanxu Zheng
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System, College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhong
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lirong Xu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| |
Collapse
|
3
|
Chulibert ME, Roppolo P, Buzzanca C, Alfonzo A, Viola E, Sciurba L, Tinebra I, D’Amico A, Farina V, Piazzese D, Di Stefano V, Barbera M, Gaglio R, Settanni L. Exploring the Addition of Mango Peel in Functional Semolina Sourdough Bread Production for Sustainable Bio-Reuse. Antioxidants (Basel) 2024; 13:1278. [PMID: 39594420 PMCID: PMC11591155 DOI: 10.3390/antiox13111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Mango, a tropical fruit celebrated for its delightful fragrance and high nutritional value, generates significant waste during processing, with approximately 35-60% of the fruit being discarded. However, this waste contains valuable components, such as fibre, carotenoids, polyphenols, and other bioactive compounds. In an effort to repurpose mango peel, this study dehydrated it to create mango peel powder (MPP), which was then incorporated into sourdough bread to produce functional breads with enhanced nutritional value. Semolina was replaced with MPP at levels of 5% (MPP-5) and 10% (MPP-10) (w/w). After dehydration, the mango peel had a yield of 22%, and the procedure used did not cause any organoleptic changes. The bread fermentation process was conducted at 30 °C for 8 h. During dough fermentation, the pH was monitored, showing a value of 4.14 ± 0.02 in the MPP-10 dough. Overall, the MPP-10 bread received a higher score (6.51) than the control (CTR) bread (5.6) and the MPP-5 bread (6.11). The total phenolic content of the fortified breads ranged from 44.760 to 98.931 mg gallic acid equivalents (GAE)/g, and the antiradical activity ranged from 15.213 to 29.461 mmol trolox equivalent antioxidant activity (TEAC)/100 g, depending on the percentage of enrichment.
Collapse
Affiliation(s)
- María Eugenia Chulibert
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Pasquale Roppolo
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Carla Buzzanca
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Lino Sciurba
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Ilenia Tinebra
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Angela D’Amico
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Vittorio Farina
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Centre for Sustainability and Ecological Transition, University of Palermo, Piazza Marina, 90133 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Marcella Barbera
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi, 90123 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
4
|
Ding X, Yue M, Gu H, Li S, Chen S, Wang L, Sun L. Effects of Wickerhamomyces anomalus Co-Fermented with Saccharomyces cerevisiae on Volatile Flavor Profiles during Steamed Bread Making Using Electronic Nose and HS-SPME-GC-MS. Foods 2024; 13:2490. [PMID: 39200416 PMCID: PMC11354084 DOI: 10.3390/foods13162490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Steamed bread is a traditional staple food in China, and it has gradually become loved by people all over the world because of its healthy production methods. With the improvement in people's living standards, the light flavor of steamed bread fermented by single yeast cannot meet people's needs. Multi-strain co-fermentation is a feasible way to improve the flavor of steamed bread. Here, the dynamic change profiles of volatile substances in steamed bread co-fermented by Saccharomyces cerevisiae SQJ20 and Wickerhamomyces anomalus GZJ2 were analyzed using the electronic nose (E-nose) and headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The five detectors of the E-nose rapidly detected the changes in volatile substances in different dough or steamed bread with the highest response value in co-fermented dough. A total of 236 volatile substances were detected in all the samples using HS-SPME-GC-MS, and alcohols were the most variable component, especially Phenylethyl alcohol. Significantly, more alcohols and esters were upregulated in co-fermented dough, and the addition of W. anomalus GZJ2 improved the key volatile aroma compounds of steamed bread using the relative odor activity value method (ROAV), especially the aldehydes and alcohols. Moreover, these key volatile aroma compounds can be quickly distinguished using the W2S detector of the E-nose, which can be used for the rapid detection of aroma components in steamed bread.
Collapse
|
5
|
Porrello A, Orecchio S, Maggio A. Matrix-matched quantification of volatile organic compounds (VOCs) in gluten free flours and bakery products. Food Chem X 2024; 22:101399. [PMID: 38840722 PMCID: PMC11152647 DOI: 10.1016/j.fochx.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024] Open
Abstract
The aim of this study deals with characterize the volatile profiles of gluten free flours and bakery products. An appropriate HS-SPME/GC-MS methods for the quantification analyses was performed and corn starch solid as standards was used. 34 different samples were analysed, and 127 compounds distributed in 4 classes (alcohols, aldehydes and ketones, heterocyclic compounds, and terpenes), that make up the aroma of these gluten free, were identified. The developed method is characterized by detection limits of 0.0004 and 0.0047 mg/kg for camphor and pyrazine, respectively, and linearity of quantification standards were between 0.990 and 0.998 for a range of 3-50 mg/kg.
Collapse
Affiliation(s)
- Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, building 17, Italy
| | - Santino Orecchio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, building 17, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, building 17, Italy
| |
Collapse
|
6
|
Wang S, Chen K, Tian A, Pan M, Liu X, Qu L, Jin J, Lv S, Xu Y, Li Y, Yang W, Zhang X, Zheng L, Zhang Y, Yang X, Zhong F, Xu L, Ma A. Effect of cooking methods on volatile compounds and texture properties in maize porridge. Food Chem X 2024; 22:101515. [PMID: 38883914 PMCID: PMC11176657 DOI: 10.1016/j.fochx.2024.101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
To investigate the optimal processing of maize porridge, the volatile compounds and texture under different cooking methods and time have been studied. A total of 51 volatile compounds were identified in maize porridge. Notably, the major volatiles, aldehydes and esters exhibited a relatively high content in electric pressure cooker (EPC), and esters tend to significantly increase after cooking. Among aldehydes, nonanal and hexanal played a great role in flavor due to their relatively high content. Volatile compounds of maize porridge in different cooking methods could be clearly distinguished by multiple chemometrics. Furthermore, texture analysis revealed that almost all the indicators in the EPC can reach the lowest value at 60 min. To summarize, different cooking methods had a more significant influence on the volatile compounds and texture compared to time. This study helps to improve the sensory attributes of maize porridge, and thus contributes to healthier and more sustainable production.
Collapse
Affiliation(s)
- Shihao Wang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Kaixuan Chen
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Ailing Tian
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Meifan Pan
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Xinyang Liu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lingyun Qu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Jin Jin
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Sijie Lv
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Yanqiu Xu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Yangguang Li
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Wenzhe Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xinfang Zhang
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China
| | - Yani Zhang
- Medical College, Qingdao University, Qingdao 266071, China
| | - Xueliang Yang
- Medical College, Qingdao University, Qingdao 266071, China
| | - Feng Zhong
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Lirong Xu
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| | - Aiguo Ma
- Institute of Nutrition and Health, School of public health, Qingdao University, 266071, Qingdao, China
| |
Collapse
|
7
|
Timmermans E, Langie I, Bautil A, Brijs K, Buvé C, Van Loey A, Scheirlinck I, Van der Meulen R, Courtin CM. Study of the Fermentation Characteristics of Non-Conventional Yeast Strains in Sweet Dough. Foods 2023; 12:foods12040830. [PMID: 36832904 PMCID: PMC9956332 DOI: 10.3390/foods12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Despite the diverse functions of yeast, only a relatively homogenous group of Saccharomyces cerevisiae yeasts is used in the baking industry. Much of the potential of the natural diversity of yeasts has not been explored, and the sensory complexity of fermented baked foods is limited. While research on non-conventional yeast strains in bread making is increasing, it is minimal for sweet fermented bakery products. In this study, the fermentation characteristics of 23 yeasts from the bakery, beer, wine, and spirits industries were investigated in sweet dough (14% added sucrose w/w dm flour). Significant differences in invertase activity, sugar consumption (0.78-5.25% w/w dm flour), and metabolite (0.33-3.01% CO2; 0.20-1.26% ethanol; 0.17-0.80% glycerol; 0.09-0.29% organic acids) and volatile compound production were observed. A strong positive correlation (R2 = 0.76, p < 0.001) between sugar consumption and metabolite production was measured. Several non-conventional yeast strains produced more positive aroma compounds and fewer off-flavors than the reference baker's yeast. This study shows the potential of non-conventional yeast strains in sweet dough.
Collapse
Affiliation(s)
- Evelyne Timmermans
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Ine Langie
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - An Bautil
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Carolien Buvé
- Laboratory of Food and Microbial Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ann Van Loey
- Laboratory of Food and Microbial Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ilse Scheirlinck
- Vandemoortele Izegem NV, Prins Albertlaan 12, 8870 Izegem, Belgium
| | | | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
- Correspondence: ; Tel.: +32-1632-1917
| |
Collapse
|
8
|
Liu Y, Zhang Q, Wang Y, Xu P, Wang L, Liu L, Rao Y. Enrichment of Wheat Bread with Platycodon grandiflorus Root (PGR) Flour: Rheological Properties and Microstructure of Dough and Physicochemical Characterization of Bread. Foods 2023; 12:foods12030580. [PMID: 36766109 PMCID: PMC9914062 DOI: 10.3390/foods12030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Platycodon grandiflorus (Jacq.) A.DC. root (PGR) flour is well known for its medical and edible values. In order to develop nutritionally fortified products, breads were prepared using wheat flour, partially replaced with PGR flour. The rheological properties and microstructure of dough and the physicochemical characterization of bread were investigated. Results showed that lower level of PGR addition (3 and 6 g/100 g) would improve the baking performance of breads, while the higher level of PGR addition (9 g/100 g) led to smaller specific volume (3.78 mL/g), increased hardness (7.5 ± 1.35 N), and unpalatable mouthfeel (21.8% of resilience and 92.6% of springiness) since its negative effect on the viscoelasticity and microstructure of dough. Moreover, sensory evaluation analysis also showed that the PGR3 and PGR6 breads exhibited a similar flavor to the control bread, but the 9 g/100 g addition of PGR provided bread with an unpleasant odor through its richer volatile components. As expected, the phenolic content and antioxidant capacity of bread increased significantly (p < 0.05) as PGR flour was added to the bread formulation. The total phenolic content (TPC) ranged from 14.23 to 22.36 g GAE/g; thus, DPPH• and ABTS•+ scavenging capacity increased from 10.44 and 10.06 μg Trolox/g to 14.69 and 15.12 μg Trolox/g, respectively. Therefore, our findings emphasized the feasibility of PGR flour partially replacing wheat flour in bread-making systems.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Qian Zhang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuhan Wang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pingkang Xu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Luya Wang
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lei Liu
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou Veterinary Research Institute, College of Veterinary Medicine, Lanzhou University, Lanzhou 730099, China
- Correspondence: (L.L.); (Y.R.); Tel./Fax: +86-028-87720552 (L.L.)
| | - Yu Rao
- School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Correspondence: (L.L.); (Y.R.); Tel./Fax: +86-028-87720552 (L.L.)
| |
Collapse
|
9
|
Wieczorek M, Kowalczewski P, Drabińska N, Różańska M, Jeleń H. Effect of Cricket Powder Incorporation on the Profile of Volatile Organic Compounds, Free Amino Acids and Sensory Properties of Gluten-Free Bread. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/156404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Comprehensive Two-Dimensional Gas Chromatography as a Powerful Strategy for the Exploration of Broas Volatile Composition. Molecules 2022; 27:molecules27092728. [PMID: 35566076 PMCID: PMC9102332 DOI: 10.3390/molecules27092728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 12/07/2022] Open
Abstract
Broa is a Portuguese maize bread with characteristic sensory attributes that can only be achieved using traditional maize varieties. This study intends to disclose the volatile compounds that are mainly associated with the baking process of broas, which can be important contributors to their aroma. Twelve broas were prepared from twelve maize flours (eleven traditional maize varieties and one commercial hybrid). Their volatile compounds were analyzed by GC×GC–ToFMS (two-dimensional gas chromatography coupled with time-of-flight mass spectrometry) for an untargeted screening of the chemical compounds mainly formed during baking. It was possible to identify 128 volatiles that belonged to the main chemical families formed during this stage. Among these, only 16 had been previously detected in broas. The most abundant were furans, furanones, and pyranones, but the most relevant for the aroma of broas were ascribed to sulfur-containing compounds, in particular dimethyl trisulfide and methanethiol. Pyrazines might contribute negatively to the aroma of broas since they were present in higher amounts in the commercial broa. This work constitutes the most detailed study of the characterization of broas volatile compounds, particularly those formed during the Maillard reaction. These findings may contribute to the characterization of other maize-based foodstuffs, ultimately improving the production of foods with better sensory features.
Collapse
|
11
|
Revilla P, Alves ML, Andelković V, Balconi C, Dinis I, Mendes-Moreira P, Redaelli R, Ruiz de Galarreta JI, Vaz Patto MC, Žilić S, Malvar RA. Traditional Foods From Maize ( Zea mays L.) in Europe. Front Nutr 2022; 8:683399. [PMID: 35071287 PMCID: PMC8780548 DOI: 10.3389/fnut.2021.683399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production.
Collapse
Affiliation(s)
- Pedro Revilla
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | - Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Violeta Andelković
- Department of Genebank, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Carlotta Balconi
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Isabel Dinis
- Instituto Politécnico de Coimbra, Escola Superior Agrária, Coimbra, Portugal
| | | | - Rita Redaelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Bergamo, Italy
| | - Jose Ignacio Ruiz de Galarreta
- Department of Plant Production, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Vitoria, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sladana Žilić
- Department Food Technology and Biochemistry, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Rosa Ana Malvar
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
12
|
|
13
|
Cincotta F, Brighina S, Condurso C, Arena E, Verzera A, Fallico B. Sugars Replacement as a Strategy to Control the Formation of α-Dicarbonyl and Furanic Compounds during Cookie Processing. Foods 2021; 10:2101. [PMID: 34574211 PMCID: PMC8466310 DOI: 10.3390/foods10092101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023] Open
Abstract
In the last decade, several preventive strategies were considered to mitigate the chemical hazard accumulation in food products. This work aimed to study the effect of different sugars on the development of the main chemical hazard in cookies. For this purpose, model biscuits prepared using sucrose, fructose, and glucose were baked at different temperatures (150, 170, and 190 °C) and for different times (from 5 to 45 min), and the levels of α-dicarbonyl compounds, such as 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO), 5-hydroxymethylfurfural (HMF), and furanic aromatic compounds were monitored. The replacement of sucrose in the cookie recipes with monosaccharides had as a consequence the highest accumulation of 3-DG (200-600 times higher), MGO, HMF, and furanic volatile compounds, while the use of sucrose allowed for maintaining the 3-DG, MGO, and HMF levels at less than 10 mg/kg dry matter in cookies for the estimated optimal baking time. Moreover, cookies with sucrose were characterised in terms of volatile compounds, mainly in terms of lipid oxidation products, while cookies with fructose or glucose baked at the highest temperature were characterised almost exclusively by Maillard reaction products, confirming a faster development of this reaction during baking at the studied temperatures.
Collapse
Affiliation(s)
- Fabrizio Cincotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Selina Brighina
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Concetta Condurso
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Elena Arena
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| | - Antonella Verzera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.C.); (C.C.); (A.V.)
| | - Biagio Fallico
- Dipartimento di Agricoltura, Alimentazione, Ambiente (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy; (S.B.); (B.F.)
| |
Collapse
|
14
|
Ekpa O, Fogliano V, Linnemann A. Carotenoid stability and aroma retention during the post-harvest storage of biofortified maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4042-4049. [PMID: 33349938 PMCID: PMC8248037 DOI: 10.1002/jsfa.11039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maize varieties that are rich in carotenoids have been developed to combat vitamin A deficiency in Sub-Saharan Africa. Unfortunately, after harvest, carotenoids degrade and off-flavor volatiles develop, which affect nutrient intake and consumer acceptance. This study evaluated carotenoid retention and aroma compound stability in provitamin A biofortified maize, variety Pool 8A, as influenced by dry milling and storage in different packaging and temperature conditions. RESULTS The lowest amount of total carotenoids was found in flour stored in laminated paper bags at 37 °C (only 16% retention after 180 days), attributable to the high storage temperature and oxygen permeability of the packaging material. No significant effect on carotenoid degradation was found for dry milling, either by rotor mill or freezer mill, but the formation of volatile compounds was significantly (P < 0.05) affected. Volatile compounds such as hexanal, 2-pentylfuran, 1-propanol, 2-heptanone, butyrolactone, limonene, and hexanoic acid were found in different proportions after milling. The highest concentration of hexanal was in flour milled by rotor mill or freezer mill, and stored in laminated paper bags at 37 °C after 180 days, and the lowest concentrations were for flour in aluminium bags and double-layered polyethylene bags stored at 4 °C. CONCLUSION Maize flour stored in double-layered polyethylene bags had the highest carotenoid retention and aroma stability. Importantly, the use of these bags is economically feasible in low-income countries. Overall, our results show that effective control of storage conditions is crucial to prevent carotenoid loss and decrease off-odor formation. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Onu Ekpa
- Food Quality and Design Group, Department of Agrotechnology and Food SciencesWageningen University and Research CentreWageningenThe Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food SciencesWageningen University and Research CentreWageningenThe Netherlands
| | - Anita Linnemann
- Food Quality and Design Group, Department of Agrotechnology and Food SciencesWageningen University and Research CentreWageningenThe Netherlands
| |
Collapse
|
15
|
Gancarz M, Malaga-Toboła U, Oniszczuk A, Tabor S, Oniszczuk T, Gawrysiak-Witulska M, Rusinek R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Xi J, Zhao Q, Xu D, Jin Y, Wu F, Jin Z, Xu X. Volatile compounds in Chinese steamed bread influenced by fermentation time, yeast level and steaming time. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Dynamics of Volatile Compounds in Triticale Bread with Sourdough: From Flour to Bread. Foods 2020; 9:foods9121837. [PMID: 33321806 PMCID: PMC7763431 DOI: 10.3390/foods9121837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Triticale has been suggested for human consumption due to its valuable nutritional composition. The aim of this study was to evaluate volatile compound dynamics in the technological processes of triticale bread and triticale bread with sourdough prepared using Lactobacillus sanfranciscensis based cultures. Two types of sourdough ready-to-use sourdough and two-stage sourdough were used for bread making. Triticale bread without sourdough was used as a control. Volatile compounds from a headspace of flour blend, sourdough, as well as mixed dough, fermented dough, bread crumb and crust were extracted using solid-phase microextraction (SPME) in combination with gas chromatography/mass spectrometry. Alcohols, mainly 1-hexanol, were the main volatiles in the triticale flour blend, whereas in the headspace of sourdough samples ethyl-acetate, ethanol and acetic acid dominated. Two-stage sourdough after 30 min fermentation showed the highest sum of peak areas formed by 14 volatile compounds, resulting in substrates for further aroma development in bread. A total of 29 compounds were identified in the bread: in the crumb the dominant volatile compounds were alcohols, ketones, acids, but in the crust—alcohols, aldehydes, furans dominated. The use of two-stage sourdough provided a more diverse spectrum of volatile compounds. Such volatile compounds as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 2-hydroxy-2-butanone, 2-methylpropanoic acid, and acetic acid were identified in all the analysed samples in all stages of bread making.
Collapse
|
18
|
Pico J, Khomenko I, Capozzi V, Navarini L, Biasioli F. Real-Time Monitoring of Volatile Compounds Losses in the Oven during Baking and Toasting of Gluten-Free Bread Doughs: A PTR-MS Evidence. Foods 2020; 9:foods9101498. [PMID: 33092071 PMCID: PMC7588997 DOI: 10.3390/foods9101498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Losses of volatile compounds during baking are expected due to their evaporation at the high temperatures of the oven, which can lead to a decrease in the aroma intensity of the final product, which is crucial for gluten-free breads that are known for their weak aroma. Volatiles from fermentation and lipids oxidation are transferred from crumb to crust, and they flow out to the air together with Maillard and caramelisation compounds from the crust. In this study, the release to the oven of volatile compounds from five gluten-free breads (quinoa, teff and rice flours, and corn and wheat starches) and wheat bread during baking and toasting was measured in real-time using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). Baking showed different volatile release patterns that are described by bell-shaped curves, plateaus and exponential growths. Flour-based breads had the higher overall volatile release during baking, but also high ratios in the final bread, while starch-based breads showed high pyrazine releases due to moisture losses. Meanwhile, toasting promoted the release of volatile compounds from the bread matrix, but also the additional generation of volatiles from Maillard reaction and caramelisation. Interestingly, gluten-free breads presented higher losses of volatiles during baking than wheat bread, which could partially explain their weaker aroma.
Collapse
Affiliation(s)
- Joana Pico
- I.U. Cinquima, Analytical Chemistry Group, University of Valladolid, Paseo de Belén Street 7, 47011 Valladolid, Spain
- Correspondence:
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all’Adige (TN), Italy; (I.K.); (F.B.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | | | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all’Adige (TN), Italy; (I.K.); (F.B.)
| |
Collapse
|
19
|
Wang B, Xiao L, Chai D, Jiang Y, Wang M, Xu X, Li C, Dong L. Metabolite analysis of wheat dough fermentation incorporated with buckwheat. Food Sci Nutr 2020; 8:4242-4251. [PMID: 32884705 PMCID: PMC7455966 DOI: 10.1002/fsn3.1720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022] Open
Abstract
Dough fermentation represents an important developmental stage in the manufacturing process. In this study, volatile and nonvolatile metabolite analysis were carried out to investigate time-dependent metabolic changes in the course of wheat dough fermentation incorporated with buckwheat based on gas chromatography-mass spectrometry (GC/MS). A total of 70 nonvolatile metabolites were identified, covering a broad spectrum of polar (e.g., amino acids, sugars, sugar alcohols, and acids) and nonpolar (e.g., fatty acid methyl esters, free fatty acids, and sterols) low molecular weight dough constituents. Meanwhile, sixty-four volatile metabolites comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds, and furans were identified using solid-phase micro-extraction combined with GC-MS. Some differences may exist in the volatile composition between fermented and unfermented dough. Statistical assessment of the nonvolatile data via principal component analysis demonstrated that the metabolic changes during the mixed dough fermentation are reflected by time-dependent shifts of polar nonvolatile metabolites. And some potential nutritional markers, such as amino acids and sugars, could be developed to optimize and control the industrial dough fermentation incorporated with buckwheat.
Collapse
Affiliation(s)
- Binchen Wang
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Lin Xiao
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Duo Chai
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Yumeng Jiang
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Meiting Wang
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Xianbing Xu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| | - Chongwei Li
- Engineering Research Center of Agricultural Microbiology TechnologyMinistry of EducationHeilongjiang UniversityHarbinHeilongjiangChina
| | - Liang Dong
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
- National Engineering Research Center of SeafoodDalianLiaoningChina
| |
Collapse
|
20
|
Alves ML, Bento-Silva A, Gaspar D, Paulo M, Brites C, Mendes-Moreira P, Bronze MDR, Malosetti M, van Eeuwijk F, Vaz Patto MC. Volatilome-Genome-Wide Association Study on Wholemeal Maize Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7809-7818. [PMID: 32571020 DOI: 10.1021/acs.jafc.0c01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Odor and aroma, resulting from the perception of volatiles by the olfactory receptors, are important in consumer food acceptance. To develop more efficient molecular breeding tools to improve the odor/aroma on maize (Zea mays L.), a staple food crop, increasing the knowledge on the genetic basis of maize volatilome is needed. In this work, we conducted a genome-wide association study on a unique germplasm collection to identify genomic regions controlling maize wholemeal flour's volatilome. We identified 64 regions on the maize genome and candidate genes controlling the levels of 15 volatiles, mainly aldehydes. As an example, the Zm00001d033623 gene was within a region associated with 2-octenal (E) and 2-nonenal (E), two byproducts of linoleic acid oxidation. This gene codes for linoleate 9S-lipoxygenase, an enzyme responsible for oxidizing linoleic acid. This knowledge can now support the development of molecular tools to increase the selection efficacy/efficiency of these volatiles within maize breeding programs.
Collapse
Affiliation(s)
- Mara Lisa Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, Oeiras 2780-157, Portugal
| | - Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, Oeiras 2780-157, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal
| | - Daniel Gaspar
- Instituto Politécnico de Coimbra-Escola Superior Agrária, Bencanta, Coimbra 3045-601, Portugal
| | - Manuel Paulo
- Instituto Politécnico de Coimbra-Escola Superior Agrária, Bencanta, Coimbra 3045-601, Portugal
| | - Cláudia Brites
- Instituto Politécnico de Coimbra-Escola Superior Agrária, Bencanta, Coimbra 3045-601, Portugal
| | - Pedro Mendes-Moreira
- Instituto Politécnico de Coimbra-Escola Superior Agrária, Bencanta, Coimbra 3045-601, Portugal
| | - Maria do Rosário Bronze
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, Oeiras 2780-157, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
- Instituto de Biologia Experimental e Tecnológica, Av. da República, Quinta do Marquês, Oeiras 2780-157, Portugal
| | - Marcos Malosetti
- Biometris-Applied Statistics, Wageningen University, Radix, Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Fred van Eeuwijk
- Biometris-Applied Statistics, Wageningen University, Radix, Building 107, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Quinta do Marquês, Oeiras 2780-157, Portugal
| |
Collapse
|
21
|
Cao Y, Zhang H, Yang Z, Zhang M, Guo P, Li H. Influence of the fermentation time and potato pulp addition on the technological properties and volatile compounds of wheat dough and steamed bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Yang P, Zheng Y, You M, Song H, Zou T. Characterization of key aroma-active compounds in four commercial egg flavor Sachimas with differing egg content. J Food Biochem 2019; 43:e13040. [PMID: 31502280 DOI: 10.1111/jfbc.13040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
To characterize the aroma components of Sachima and provide insight into the influence of egg on the flavor of Sachima, the key aroma-active compounds in four commercial egg flavor Sachimas with different egg content, which named Premium, Classical, Whole egg, and Egg yolk, were identified using GC-MS-O analysis, aroma extract dilution analysis (AEDA) combined with sensory evaluation. In total, 75 volatile compounds were identified by GC-MS, including 26 compounds were revealed of having aroma activities by AEDA/GC-O. The major volatile compounds in Sachima were the aldehydes and heterocyclic compounds. The OAV further revealed the significant activity of eight key aroma-active compounds include 2-methylbutanal, 3-methylbutanal, hexanal, n-propylacetate, 2-pentylfuran, 2-ethylpyrazine, nonanal, and benzaldehyde. The OAV of 2-methylbutanal and 3-methylbutanal were much higher in Premium sample that has the most egg content, than that in other samples, whereas hexanal was the highest in Whole egg samples. The plot analyzed by PLS suggest that the Premium sample with more egg content was shown more complicated flavor than other kind of Sachima. Practical applications Sachima is a type of famous sweet Chinese traditional pastries. The flavor and texture of this kind of pastry were appreciated by all age group, especially for almost all elderly Chinese. Because Sachima is not only a suitable food that easy to chew, but a type of food which filled with childhood memory. Egg flavor of Sachima was always the most popular and classic flavor category. However, the characteristic aroma compounds of Sachima-one of the most important factor of the Sachima's quality-have been still uncovered and had not been identified yet, not to mentioned the comparison between different egg content in Sachima. What's more, GC-MS-O/AEDA analysis has been always a very effect and well-known method for aroma compounds analysis. This study trying to find the contribution of eggs to Sachima and the key aroma-active compounds of Sachima, so as to provide some useful information for practical production and flavor quality improving.
Collapse
Affiliation(s)
- Ping Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yingying Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing, China
| | - Mengchen You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing, China
| | - Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing, China
| | - Tingting Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
23
|
Performance of non-Saccharomyces yeasts isolated from Jiaozi in dough fermentation and steamed bread making. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Roman L, Belorio M, Gomez M. Gluten‐Free Breads: The Gap Between Research and Commercial Reality. Compr Rev Food Sci Food Saf 2019; 18:690-702. [DOI: 10.1111/1541-4337.12437] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Laura Roman
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Mayara Belorio
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| | - Manuel Gomez
- Food Technology AreaCollege of Agricultural EngineeringUniv. of Valladolid Palencia 34004 Spain
| |
Collapse
|
25
|
Barbarisi C, De Vito V, Pellicano MP, Boscaino F, Balsamo S, Laurino C, Sorrentino G, Volpe MG. Bread chemical and nutritional characteristics as influenced by food grade sea water. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Valentina De Vito
- Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Floriana Boscaino
- Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Carmine Laurino
- Institute of Food Science, National Council of Research, Avellino, Italy
| | - Giuseppe Sorrentino
- Institute for Agricultural and Forestry Systems of the Mediterranean, National Council of Research, Ercolano, Italy
| | - Maria Grazia Volpe
- Institute of Food Science, National Council of Research, Avellino, Italy
| |
Collapse
|
26
|
Pico J, Reguilón MP, Bernal J, Gómez M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Godiya CB, Gabrielli S, Materazzi S, Pianesi MS, Stefanini N, Marcantoni E. Depolymerization of waste poly(methyl methacrylate) scraps and purification of depolymerized products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1012-1020. [PMID: 30602225 DOI: 10.1016/j.jenvman.2018.10.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/21/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
A big challenge for the civilization in energy saving/waste management can be "the regeneration of monomers from the waste plastics followed by their re-polymerization" using an ideal recycling method. Herein, we investigate the thermal depolymerization of poly(methyl methacrylate) (PMMA) using thermogravimetric analysis coupled with mass spectrometry (TGA-MS). In this process, the polymer chains were decomposed to methyl methacrylate (MMA) in high yield and the degradation species were thoroughly characterized. The obtained MMA contained traces of byproducts. Firstly, the byproducts were found to be nonpolymerizable, secondly, their presence interrupt the polymerization reaction, and thirdly, they reduce the quality of re-polymerized PMMA (r-PMMA). This study reclaims that besides the main byproduct (methyl isobutyrate), traces of methyl pyruvate and 2,3-butanedione were also formed during the thermal depolymerization of PMMA. The formed 2,3-butanedione was found to be responsible for the unpleasant smell in the recovered MMA that also found itself in the r-PMMA. Further, the generated byproducts were eliminated from the r-PMMA by a dissolution/re-precipitation method. The structural characterizations of the recycled and purified PMMA were carried out by Fourier-transform-infrared spectroscopy (FT-IR), Hydrogen-1 (1H)- and Carbon-13 (13C)-nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). The chemical properties of the r-PMMA and purified PMMA proved to be similar to that of the virgin commercial PMMA. This study can provide an effective and practical prototype for the recycling of waste PMMA scraps and thus reduction in pollution caused by the landfilling of waste PMMA scraps.
Collapse
Affiliation(s)
- Chirag B Godiya
- Chemistry Division, School of Science and Technology, University of Camerino, Via. S. Agostino 1, 62032, Camerino, MC, Italy.
| | - Serena Gabrielli
- Chemistry Division, School of Science and Technology, University of Camerino, Via. S. Agostino 1, 62032, Camerino, MC, Italy
| | - Stefano Materazzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | | | - Nicola Stefanini
- Chemistry Division, School of Science and Technology, University of Camerino, Via. S. Agostino 1, 62032, Camerino, MC, Italy
| | - Enrico Marcantoni
- Chemistry Division, School of Science and Technology, University of Camerino, Via. S. Agostino 1, 62032, Camerino, MC, Italy.
| |
Collapse
|
28
|
Pico J, Khomenko I, Capozzi V, Navarini L, Bernal J, Gómez M, Biasioli F. Analysis of volatile organic compounds in crumb and crust of different baked and toasted gluten-free breads by direct PTR-ToF-MS and fast-GC-PTR-ToF-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:893-902. [PMID: 30019512 DOI: 10.1002/jms.4258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Joana Pico
- IU Cinquima, Analytical Chemistry Group, University of Valladolid, Paseo de Belén Street 7, E-47011, Valladolid, Spain
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Technikerstr. 25, Innsbruck, Austria
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Napoli Street 25, E-71122, Foggia, Italy
| | | | - José Bernal
- IU Cinquima, Analytical Chemistry Group, University of Valladolid, Paseo de Belén Street 7, E-47011, Valladolid, Spain
| | - Manuel Gómez
- Food Technology Area, ETS Ingenierías Agrarias, University of Valladolid, Madrid Avenue 57, E-34071, Palencia, Spain
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, Italy
| |
Collapse
|
29
|
Kesen S, Amanpour A, Tsouli Sarhir S, Sevindik O, Guclu G, Kelebek H, Selli S. Characterization of Aroma-Active Compounds in Seed Extract of Black Cumin ( Nigella sativa L.) by Aroma Extract Dilution Analysis. Foods 2018; 7:E98. [PMID: 29954052 PMCID: PMC6068864 DOI: 10.3390/foods7070098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
Turkish Nigella sativa L. seed extracts were used to detect the aroma and key odorant compounds of the spice using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Volatile compounds were extracted by the purge and trap extraction (PTE) method. A total of 32 volatile compounds consisting of different chemical classes acids (13), alcohols (7), phenols (3), terpene (1), esters (2), ketones (2), aldehyde (1), lactone (1) and hydrocarbons (2) were determined. The amounts of volatile compounds were found to be 21,544 µg kg−1. The application of aroma extract dilution analysis (AEDA) revealed the presence of 13 odor-active compounds alcohols (2), carboxylic acids (4), phenols (2), terpene (1), ketone (1), hydrocarbon (1) and unknown compounds (2) in Nigella sativa L. extract. Flavor dilution (FD) factors of key odorants ranged between 4 and 1024, while odor activity values (OAV) were in the range of 1.0 to 170.8. Acetoin was the only aroma-active ketone detected in Nigella sativa L. seed extracts. It had the strongest aroma (FD = 1024) and provided a buttery odor. This compound represented the most abundant compound of overall aroma profile with a concentration of 9394 µg kg−1, followed by isobutanoic acid (FD = 512 with a concentration of 218 µg kg−1) and contributed a powerful aroma and a cheesy characteristic odor.
Collapse
Affiliation(s)
- Songul Kesen
- Department of Food Processing, Naci Topcuoglu Vocational High School, Gaziantep University, 27600 Gaziantep, Turkey.
| | - Armin Amanpour
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Salwa Tsouli Sarhir
- Agri-Food Laboratory and Food Safety, Faculty of Sciences Dhar El Mahraz University Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fez, Morocco.
| | - Onur Sevindik
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Gamze Guclu
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Science and Technology University, 01250 Adana, Turkey.
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Cukurova University, 01330 Adana, Turkey.
| |
Collapse
|