1
|
Ratsamisomsi A, Khongsiri C, Wilairat P, Tiyapongpattana W. Vortex-assisted dispersive low-density liquid-liquid microextraction of xanthydrol derivatized acrylamide in processed chips and water samples for gas chromatographic analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:701-713. [PMID: 39420532 DOI: 10.1080/03601234.2024.2416333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Acrylamide, a probable human carcinogen present in heat-processed foods and environmental contaminants, requires sample extraction and preconcentration before chromatographic analysis. The method developed in this study employed derivatization with xanthydrol and dispersive liquid-liquid microextraction utilizing low-density anisole. Durian or potato chips were combined with deionized water, defatted with hexane, and subjected to precipitation of soluble carbohydrates and proteins using clarification reagents. Water samples were filtered through a membrane filter. Acrylamide was derivatized by introducing an acidic methanolic solution of xanthydrol at 50 °C. The derivatized acrylamide was extracted with 70 µL of anisole and vortexed, with the methanol from the xanthydrol solution serving as the disperser solvent. The anisole layer was analyzed using gas chromatography with both flame ionization and mass spectrometric detection. Linear calibration plots exhibited coefficients of determination >0.9997. The precision was measured at <10% RSD, and recoveries ranged from 84% to 107%. The quantitation limit varied from 2 to 10 µg kg-1 for processed chips and from 0.05 to 0.10 µg L-1 for water samples. Acrylamide was detected in all processed chip samples, with some concentrations exceeding the benchmark value of 750 μg kg-1. However, no acrylamide was identified in any of the water samples.
Collapse
Affiliation(s)
- Anuwat Ratsamisomsi
- Department of Chemistry, Thammasat University, Khlong Luang, Pathumthani, Thailand
- Center of Scientific Equipment for Advanced Research, Office of Advanced Science and Technology, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Chookiat Khongsiri
- Department of Chemistry, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Prapin Wilairat
- Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Yang L, Yu B, Yuan J, Xing R, Wang R, Chen X, Hu S. Trioctylphosphine oxide-based hydrophobic magnetic deep eutectic solvent as a novel extractant for the enrichment of primary aromatic amines from juice and environmental water. Talanta 2024; 277:126338. [PMID: 38823328 DOI: 10.1016/j.talanta.2024.126338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In this study, a novel technique utilizing vortex-assisted dispersive liquid-liquid microextraction with magnetic deep eutectic solvents (MDESs) was established and coupled with HPLC-UV to analyze six primary aromatic amines (PAAs). A novel hydrophobic MDES prepared from trioctylphosphine oxide, octanol, and CoCl2 was used as the extractant, which could be dispersed uniformly during extraction, then floated onto the sample surface and re-aggregated into a single drop spontaneously after the extraction. The variables influencing the efficiency of the extraction process were investigated. When performing under the optimal extraction conditions, this method exhibited excellent linearity, low limits of detection (0.2-0.9 ng mL-1), and high precision (RSD ≤ 8.3 %). The enrichment factors ranged from 56 to 182. Satisfactory recoveries in the range of 91.6-109.2 % with RSDs < 7.1 % were obtained from three apple juices and three environmental water samples. The greenness and practicality of the developed method were assessed by AGREE, AGREEprep, and blue applicability grade index metric tools. Overall, the established procedure demonstrated its simplicity, speediness, environmental friendliness, and effectiveness in analyzing PAAs from aqueous matrices.
Collapse
Affiliation(s)
- Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Bolin Yu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jie Yuan
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Rongrong Xing
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Runqin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
3
|
Zhao Q, Hou HM, Zhang GL, Hao H, Zhu BW, Bi J. In-situ growth of metal-organic frameworks on cellulose nanofiber aerogels for rapid adsorption of heterocyclic aromatic amines. Int J Biol Macromol 2024; 267:131584. [PMID: 38615856 DOI: 10.1016/j.ijbiomac.2024.131584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 μmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.
Collapse
Affiliation(s)
- Qiyue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hong-Man Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Gong-Liang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Hongshun Hao
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China; Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning 116034, People's Republic of China.
| |
Collapse
|
4
|
Wei S, Li L, Gou L, Wu L, Hou X. Thiol-ene click derivatization reaction coupled with ratiometric surface-enhanced Raman scattering for reproducible and accurate determination of acrylamide. Food Chem 2023; 429:136991. [PMID: 37523913 DOI: 10.1016/j.foodchem.2023.136991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Acrylamide (AA) is a carcinogen mainly ingested through food and drinking water, making its accurate determination crucial for both food safety and environmental protection. Herein, we proposed a derivatization-based ratiometric surface-enhanced Raman scattering (SERS) method for the quantification of AA. High density Au NPs were anchored to the surface of Cu-TCPP MOF nanosheets (MOFNs) to form the SERS sensor. The abundant Raman "hot spots" at the nanogaps generated by the Au NPs and the internal standard (IS) signal provided by Cu-TCPP MOFNs improved the sensitivity and quantitative accuracy of the method. Following the thiol-ene click derivatization reaction between p-aminothiophenol (PATP) and AA, the Raman peak intensity ratio (I1080/I395) was employed to quantify AA. The linear range was 0.1 nM to 10 μM, and the limit of detection (LOD) was as low as 0.08 nM. Trace amounts of AA in food and water samples were successfully determined using this method.
Collapse
Affiliation(s)
- Siqi Wei
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China; College of Chemistry and Key Lab of Green Chem & Tech of MOE, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
5
|
Fan M, Xu X, Lang W, Wang W, Wang X, Xin A, Zhou F, Ding Z, Ye X, Zhu B. Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115059. [PMID: 37257344 DOI: 10.1016/j.ecoenv.2023.115059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Thermal processing is one of the important techniques for most of the plant-based food and herb medicines before consumption and application in order to meet the specific requirement. The plant and herbs are rich in amino acids and reducing sugars, and thermal processing may lead to Maillard reaction, resulting as a high risk of acrylamide pollution. Acrylamide, an organic pollutant that can be absorbed by the body through the respiratory tract, digestive tract, skin and mucous membranes, has potential carcinogenicity, neurological, genetic, reproductive and developmental toxicity. Therefore, it is significant to conduct pollution determination and risk assessment for quality assurance and security of medication. This review demonstrates state-of-the-art research of acrylamide focusing on the toxicity, formation, contamination, determination, and mitigation in taking food and herb medicine, to provide reference for scientific processing and ensure the security of consumers.
Collapse
Affiliation(s)
- Min Fan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China; Wenshui Center for Disease Control and Prevention, Luliang City, Shanxi Province 032100 PR China
| | - Xiaoying Xu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjun Lang
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, PR China
| | - Wenjing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xinyu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Angjun Xin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
6
|
Schettino L, García-Juan A, Fernández-Lozano L, Benedé JL, Chisvert A. Trace determination of prohibited acrylamide in cosmetic products by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1687:463651. [PMID: 36462477 DOI: 10.1016/j.chroma.2022.463651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
An analytical method for the determination of residual acrylamide in cosmetic products containing potential acrylamide-releasing ingredients is presented. The method is based on vortex-assisted reversed-phase dispersive liquid-liquid microextraction (VA-RP-DLLME) to extract and preconcentrate acrylamide by using water as extraction solvent taking advantage the highly polar behavior of this analyte, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for its determination. Under optimized conditions (5 mL toluene as supporting solvent, 50 µL of water as extraction solvent, 1 min for vortex extraction time) the method was properly validated obtaining good analytical features (linearity up to 20 ng mL-1, method limits of detection and quantification of 0.51 and 1.69 ng g-1, respectively, enrichment factor of 52, and good repeatability (RSD < 4.1%)). The proposed analytical method was applied to the determination of acrylamide in commercial samples that were weighed and dispersed in the minimum quantity of methanol (50 µL) by vortex stirring before applying the VA-RP-DLLME procedure. Through the pretreatment of the sample and the use of acrylamide-d3 as surrogate, the matrix effect was overcome, obtaining good relative recovery values (88-108%). The proposed method has shown efficacy, simplicity, and speed, and it allows the determination of acrylamide at trace levels easily, which could make it very useful for companies in the quality control of cosmetic products containing potential acrylamide-releasing ingredients to fulfill the safety limits imposed by European Regulation.
Collapse
Affiliation(s)
- Lorenza Schettino
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Alejandro García-Juan
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Laura Fernández-Lozano
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Juan L Benedé
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain.
| |
Collapse
|
7
|
Sha H, Wang Z, Zhang J. SiO 2 Microsphere Array Coated by Ag Nanoparticles as Raman Enhancement Sensor with High Sensitivity and High Stability. SENSORS 2022; 22:s22124595. [PMID: 35746375 PMCID: PMC9228801 DOI: 10.3390/s22124595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
In this paper, a monolayer SiO2 microsphere (MS) array was self-assembled on a silicon substrate, and monolayer dense silver nanoparticles (AgNPs) with different particle sizes were transferred onto the single-layer SiO2 MS array using a liquid–liquid interface method. A double monolayer “Ag@SiO2” with high sensitivity and high uniformity was prepared as a surface-enhanced Raman scattering (SERS) substrate. The electromagnetic distribution on the Ag@SiO2 substrate was analyzed using the Lumerical FDTD (finite difference time domain) Solutions software and the corresponding theoretical enhancement factors were calculated. The experimental results show that a Ag@SiO2 sample with a AgNPs diameter of 30 nm has the maximal electric field value at the AgNPs gap. The limit of detection (LOD) is 10−16 mol/L for Rhodamine 6G (R6G) analytes and the analytical enhancement factor (AEF) can reach ~2.3 × 1013. Our sample also shows high uniformity, with the calculated relative standard deviation (RSD) of ~5.78%.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- Correspondence: ; Tel.: +86-135-9413-5451
| |
Collapse
|
8
|
Faraji M, Ghanati K, Kamankesh M, Aryanasab F, Mohammadi A. New and efficient magnetic nanocomposite extraction using multifunctional deep eutectic solvent based on ferrofluid and vortex assisted-liquid-liquid microextraction: Determining primary aromatic amines (PAAs) in tetra-packed fruit juices. Food Chem 2022; 386:132822. [PMID: 35366633 DOI: 10.1016/j.foodchem.2022.132822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
In this work, a novel magnetic nanocomposite solvent (MNCS) based on ferrofluid and multifunctional deep eutectic solvent (MDES) was synthesized and applied in vortex assisted-liquid-liquid microextraction (VA-LLME). The ferrofluid has been composed from zirconium phosphate (modified magnetic graphene oxide) and tetrabutylammonium bromide-octanoic acid deep eutectic solvent (MGO/α-ZrP@TBAB-OA). This efficient method was employed to determine primary aromatic amines including aniline, 4-methoxyanniline, 4,4'-diaminodiphenylmethane, orthotoluidine, 2,6-dimethylaniline, 2-naphtylamine in tetra-packed juice samples. The proposed method showed the excellent extraction efficiency of PAAs according to strong interactions of new extraction solvent including electrostatic, π-π, and hydrogen bonding attractions. The found levels of PAAs are lower than the limit of quantifications (2.0 µg L-1). Therefore, the migration of PAAs from packaging to the juice samples is lower than permitted level (<10 µg kg-1). The results indicated high potential use of the offered method to analyze aromatic amine compounds in foodstuff and biologic samples in the future.
Collapse
Affiliation(s)
- Mohammad Faraji
- Food, Halal and Agricultural Products Research Group, Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj P.O. Box 31745-139, Iran.
| | - Kiandokht Ghanati
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran.
| | - Fezzeh Aryanasab
- Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), P.O. Box 31745‑139, Karaj, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Tajdar-oranj B, Kamankesh M, Mohammadi A. Application of novel and efficient hollow fiber electro-membrane extraction assisted by microwave extraction and high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Abedi A, Hemmati F, Abedini AH, Mohammadi A, Moslemi M. Application of thermal ultrasound‐assisted liquid–liquid micro‐extraction coupled with
HPLC‐UV
for rapid determination of synthetic phenolic antioxidants in edible oils. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abdol‐Samad Abedi
- Food and Nutrition Policy and Planning Research Department, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fatemeh Hemmati
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Amir Hossein Abedini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masoumeh Moslemi
- Halal Research Center of IRI. Ministry of Health and Medical Education Tehran Iran
| |
Collapse
|
11
|
Mersal GAM, Hessien MM, Al Jouaid R, El‐Hendawy MM, Alminderej FM, Ibrahim MM. A molecular biomimetic sensor of tris(2‐benzimidazolylmethyl)amine‐based iron(
III
) complex for acrylamide detection: Electrochemical study and
DFT
calculations. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaber A. M. Mersal
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| | - Mahmoud M. Hessien
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| | - Rema Al Jouaid
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| | - Morad M. El‐Hendawy
- Department of Chemistry, Faculty of Science New Valley University Kharga Egypt
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science Qassim University Buraydah Saudi Arabia
| | - Mohamed M. Ibrahim
- Chemistry Department, College of Science Taif University Taif Saudi Arabia
| |
Collapse
|
12
|
Kamankesh M, Mohammadi A, Ghanati K. Determination of biogenic amines in Lighvan cheese using a novel hollow‐fibre electromembrane‐microextraction coupled with gas chromatography–mass spectrometry. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marzieh Kamankesh
- Cellular and Molecular Research Center Sabzevar University of Medical Sciences Assad Abadi street Sabzevar Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology Faculty of Nutrition Science Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Arghavan street, Tehran Iran
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Valiasre street Tehran Iran
| | - Kiandokht Ghanati
- Department of Food Science and Technology Faculty of Nutrition Science Food Science and Technology/National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Arghavan street, Tehran Iran
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Valiasre street Tehran Iran
| |
Collapse
|
13
|
Barzegar F, Kamankesh M, Mohammadi A. Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Trace Analysis of Anions in Perfluorodecalin by Green Liquid–Liquid Extraction Combined with Ion Chromatography. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Shen Y, Zhao S, Liu Q, Jiang Y, Dong H, Feng W, Liu T, Xu H, Shao M. Investigation on the interaction of acrylamide with soy protein isolate: Exploring the binding mechanism in vitro. J Food Sci 2021; 86:2766-2777. [PMID: 33931852 DOI: 10.1111/1750-3841.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
Acrylamide (AA), which is a carcinogen in humans, has been a research focus in terms of food risk assessment. However, few published studies have explored protein strategies to reduce the health risks of AA. The objective of this study was to investigate the binding of AA with soy protein isolate (SPI) and elucidate the binding mechanism. The results showed that AA could bind with nontreated, heat-treated, high-pressure homogenization-treated, and ultrasound-treated SPI in vitro. Fourier-transform infrared spectroscopy suggested that secondary structure of SPI changed significantly after binding with AA in the nontreated and different treated groups. Moreover, fluorescence quenching experiments suggested that the quenching of SPI by AA was static quenching and hydrogen bonds, hydrophobic interactions, and van der Waals forces were involved in this process. PRACTICAL APPLICATION: The study of SPI and AA binding could provide a new perspective for reducing the bioaccessibility of AA in human body by using protein. The results showed that SPI could potentially be used as a novel health strategy to reduce the harm of AA in the human body.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sijia Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingbo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Heliang Dong
- Heilongjiang Institute of Quality Supervision and Testing, Harbin, China
| | - Wenxiao Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Tianxu Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Meili Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Pantalone S, Tonucci L, Cichelli A, Cerretani L, Gómez-Caravaca AM, d'Alessandro N. Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Schettino L, Benedé JL, Chisvert A, Salvador A. Development of a sensitive method for determining traces of prohibited acrylamide in cosmetic products based on dispersive liquid-liquid microextraction followed by liquid chromatography-ultraviolet detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Wu L, Zhang W, Liu C, Foda MF, Zhu Y. Strawberry-like SiO 2/Ag nanocomposites immersed filter paper as SERS substrate for acrylamide detection. Food Chem 2020; 328:127106. [PMID: 32485584 DOI: 10.1016/j.foodchem.2020.127106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
In this work, based on the strawberry-like SiO2/Ag nanocomposites (SANC) immersed filter paper, a newly surface-enhanced Raman scattering (SERS) substrate was constructed for the detection of acrylamide (AAm) in food products. To construct filter paper-based SANC (F-SANC) SERS substrates, SiO2 nanoparticles (SNP) were firstly synthesized and acted as carriers. After that, the in-situ preparation of silver nanoparticles (Ag NP) on SNP surface was carried out to form the strawberry-like three-dimensional (3D) structure of SANC. Finally, SANC were entangled into the filter paper to produce nanoarchitecture, thus providing enhanced plasmon resonance between SANC with strong SERS signal. Under the optimized conditions, the method exhibited good performance toward AAm with a vast linear response from 0.1 nM to 50 μM (R = 0.9935), limit of detection (LOD) of 0.02 nM (S/N = 3), and the recoveries of 80.5%~105.6% for practical samples. This strategy showed good robustness in the rapid and sensitive detection of AAm, which could be a promising strategy in food analysis and verification.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Weimin Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Jena-Member of the Research Alliance Leibniz Health Technologies, Albert-Einstein-Street 9, 07745 Jena, Germany
| | - Mohamed F Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yongheng Zhu
- College of Food Science and Technology, and Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (hanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Zokaei M, Kamankesh M, Abedi AS, Moosavi MH, Mohammadi A, Rezvani M, Shojaee-Aliabadi S, Khaneghah AM. Reduction in Acrylamide Formation in Potato Crisps: Application of Extract and Hydrocolloid-Based Coatings. J Food Prot 2020; 83:754-761. [PMID: 32294761 DOI: 10.4315/0362-028x.jfp-19-357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Two different potato chip coatings-aqueous extracts including Zataria multiflora and Allium hirtifolium at concentrations of 1, 3, 5, and 7% and hydrocolloids individually or in combination-were used to decrease acrylamide content, and their effects on the characteristics of the product were then investigated. According to the results, the incorporation of hydrocolloids as the coating was more efficient in the reduction of acrylamide production than with the extracts. Also, the application of each extract and hydrocolloids individually can be considered a more efficient technique for acrylamide reduction than their mixture. In this regard, the economic aspects of the application of hydrocolloids in the coating of fried potato crisps can be evaluated. HIGHLIGHTS
Collapse
Affiliation(s)
- Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and
| | - Marzieh Kamankesh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and
| | - Abdol-Samad Abedi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and
| | - Motahareh Hashemi Moosavi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rezvani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran; and
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, and
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, São Paulo, Brazil (ORCID: https://orcid.org/0000-0001-5769-0004 [A.M.K.])
| |
Collapse
|
21
|
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020; 9:E524. [PMID: 32331265 PMCID: PMC7230758 DOI: 10.3390/foods9040524] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Acrylamide (AA) is produced by high-temperature processing of high carbohydrate foods, such as frying and baking, and has been proved to be carcinogenic. Because of its potential carcinogenicity, it is very important to detect the content of AA in foods. In this paper, the conventional instrumental analysis methods of AA in food and the new rapid immunoassay and sensor detection are reviewed, and the advantages and disadvantages of various analysis technologies are compared, in order to provide new ideas for the development of more efficient and practical analysis methods and detection equipment.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
22
|
Combination of solid-phase extraction with microextraction techniques followed by HPLC for simultaneous determination of 2-methylimidazole and 4-methylimidazole in beverages. Food Chem 2020; 305:125389. [PMID: 31520918 DOI: 10.1016/j.foodchem.2019.125389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/14/2019] [Accepted: 08/17/2019] [Indexed: 11/22/2022]
Abstract
A sensitive analytical method for the monitoring 2-methylimidazole and 4-methylimidazole (2-MI and 4-MI) is desirable due to their carcinogenic property. Here, we propose a highly sensitive method basing on the combination of solid-phase extraction and dispersive liquid-liquid microextraction techniques followed by high-performance liquid chromatography to simultaneously determine 2-MI and 4-MI in beverages. Dansyl chloride was used as a derivatizing reagent. Microextraction parameters were optimized by Plackett-Burman design and response surface methodology. Results show that derivatization led to significant improvements in chromatographic behavior for 2-MI and 4-MI due to increased hydrophobicity. The method shows good linearity (R2 ≥ 0.9985), satisfactory precision (%RSD ≤ 8.3%) and low limit of quantification (20 ng/mL), and was successfully applied to determine 2-MI and 4-MI in carbonated drinks, beers and energy drinks, achieving satisfactory recoveries (85-101%). This method provides a potential for routine analysis of 2-MI and 4-MI at the nanogram per milliliter level in beverages.
Collapse
|
23
|
Ghalebi M, Hamidi S, Nemati M. High-Performance Liquid Chromatography Determination of Acrylamide after Its Extraction from Potato Chips. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Acrylamide is a known carcinogenic product that has been found among the substances such as potato chips which to be processed under the heat-treatment. In order to extract amounts of acrylamide from fried chips in market, an ultrasound-assisted liquid– liquid extraction (UA-LLE) technique is proposed. The UA-LLE coupled LLE and ultrasonication in a single step. Methods: Chips samples were dissolved in an extracting organic solvent using ultrasonication to prompt transferring of acrylamide into the organic phase. As a result, the extraction time and process efficiency were significantly enhanced through increasing the collision power and mass transfer between grounded chips and organic phase. Results: Important parameters affecting the extraction efficiency such as kind of organic solvent and its volume, re-dissolving solvent and pH were optimized. This newly proposed method has been applied to determine the trace acrylamide in potato chips samples purchased from local market. Conclusion: UA-LLE is a handy, economic and time-saving method, with high extraction yield (over 103% average recovery) and good precision (lower than 15% relative standard deviation, RSD). Most importantly, it seems this method to be an ideal pre-treatment method for the extraction of acrylamide in food matrix in food quality control laboratories.
Collapse
Affiliation(s)
- Maryam Ghalebi
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz 51664, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz 51664, Iran
| |
Collapse
|
24
|
Bani SM, Saaid M, Saad B. An In Situ Dansylation Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Ionic Liquid for Determination of Biogenic Amines in Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01656-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Fernandes CL, Carvalho DO, Guido LF. Determination of Acrylamide in Biscuits by High-Resolution Orbitrap Mass Spectrometry: A Novel Application. Foods 2019; 8:E597. [PMID: 31756928 PMCID: PMC6963597 DOI: 10.3390/foods8120597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Acrylamide (AA), a molecule which potentially increases the risk of developing cancer, is easily formed in food rich in carbohydrates, such as biscuits, wafers, and breakfast cereals, at temperatures above 120 °C. Thus, the need to detect and quantify the AA content in processed foodstuffs is eminent, in order to delineate the limits and mitigation strategies. This work reports the development and validation of a high-resolution mass spectrometry-based methodology for identification and quantification of AA in specific food matrices of biscuits, by using LC-MS with electrospray ionization and Orbitrap as the mass analyser. The developed analytical method showed good repeatability (RSDr 11.1%) and 3.55 and 11.8 μg kg-1 as limit of detection (LOD) and limit of quantification (LOQ), respectively. The choice of multiplexed targeted-SIM mode (t-SIM) for AA and AA-d3 isolated ions provided enhanced detection sensitivity, as demonstrated in this work. Statistical processing of data was performed in order to compare the AA levels with several production parameters, such as time/cooking temperature, placement on the cooking conveyor belt, color, and moisture for different biscuits. The composition of the raw materials was statistically the most correlated factor with the AA content when all samples are considered. The statistical treatment presented herein enables an important prediction of factors influencing AA formation in biscuits contributing to putting in place effective mitigation strategies.
Collapse
Affiliation(s)
| | | | - Luis F. Guido
- REQUIMTE—Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; (C.L.F.); (D.O.C.)
| |
Collapse
|
26
|
Simultaneous detection of 4(5)-methylimidazole and acrylamide in biscuit products by isotope-dilution UPLC-MS/MS. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Liu W, Quan J. A Novel Ionic Liquid of [BeMIM] [Tf2N] for Extracting Pesticides Residues in Tea Sample by Dispersive Liquid–Liquid Microextraction. Chromatographia 2019. [DOI: 10.1007/s10337-019-03819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Moreda-Piñeiro J, Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Yang S, Li Y, Li F, Yang Z, Quan F, Zhou L, Pu Q. Thiol-ene Click Derivatization for the Determination of Acrylamide in Potato Products by Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8053-8060. [PMID: 31276393 DOI: 10.1021/acs.jafc.9b01525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of analytical methods for acrylamide formed during food processing is of great significance for food safety, but limited by its inherent characteristics, the analysis of acrylamide is a continuing challenge. In this study, an efficient derivatization strategy for acrylamide based on thiol-ene click reaction with cysteine as derivatization reagent was proposed, and the resulting derivative was then analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). After systematic investigation including catalyst dosage (0-20 mM), reaction temperature (30-90 °C) and time (1-60 min), and cysteine concentration (0.2-3.6 mM), acrylamide could be efficiently labeled by 2.0 mM cysteine at 70 °C for 10 min using 4 mM n-butylamine as catalyst. Application of 10 mM triethylamine as separation buffer, the labeled acrylamide was analyzed within 2.0 min, and the relative standard deviations of migration time and peak area were less than 0.84% and 5.6%, indicating good precision. The C4D signal of acrylamide derivative showed a good linear relationship with acrylamide concentration in the range of 7-200 μM with the correlation coefficient of 0.9991. The limit of detection and limit of quantification were calculated to be 0.16 μM and 0.52 μM, respectively. Assisted further by the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample pretreatment, the developed derivatization strategy and subsequent CE-C4D method were successfully applied for the determination of acrylamide in potato products.
Collapse
Affiliation(s)
- Shuping Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Yuting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Fan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Zhenyu Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Feifei Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Lei Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| |
Collapse
|
30
|
Yoshioka T, Izumi Y, Nagatomi Y, Miyamoto Y, Suzuki K, Bamba T. A highly sensitive determination method for acrylamide in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry. Food Chem 2019; 294:486-492. [PMID: 31126491 DOI: 10.1016/j.foodchem.2019.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Acrylamide (AA) analysis is an important topic in food safety. However, it is difficult to rapidly and accurately analyze low concentrations of AA with currently available methods. In the present study, we introduce a highly sensitive method that enables the determination of AA in beverages, grains, and confectioneries by supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS). The sensitivity of the SFC/MS/MS technique is 11-times higher than that obtained by ultra-high performance liquid chromatography tandem mass spectrometry. We demonstrated that the highly sensitive SFC/MS/MS method was able to quantify low concentrations of AA in beverages (i.e., roasted barley tea and coffee) extracts at less than 10 µg kg-1 level without solid-phase purification. Furthermore, the simplification of the sample preparation procedure provided an improvement in data acquisition time (60 samples per 12 h). In conclusion, the developed analytical system is a potentially useful tool for practical AA determination.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan; Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasushi Nagatomi
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Yasuhisa Miyamoto
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Koji Suzuki
- Food Safety Laboratories, Asahi Quality & Innovations, LTD., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
Huang Y, Li C, Hu H, Wang Y, Shen M, Nie S, Chen J, Zeng M, Xie M. Simultaneous Determination of Acrylamide and 5-Hydroxymethylfurfural in Heat-Processed Foods Employing Enhanced Matrix Removal-Lipid as a New Dispersive Solid-Phase Extraction Sorbent Followed by Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5017-5025. [PMID: 30839206 DOI: 10.1021/acs.jafc.8b05703] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The goal of this study was to develop a method for simultaneous determination of acrylamide (AA) and 5-hydroxymethylfurfural (5-HMF) in heat-processed foods by liquid chromatography-tandem mass spectrometry analysis. Several cleanup methods for the quick, easy, cheap, effective, rugged, and safe (QuEChERS) protocol were investigated and compared: (a) dispersive solid-phase extraction (d-SPE) with Enhanced Matrix Removal-Lipid (EMR-Lipid), (b) d-SPE with primary secondary amine, (c) without the cleanup step, and (d) cleanup with n-hexane. It is the first time that EMR-Lipid sorbent has been used as a d-SPE material to detect AA and 5-HMF in heat-processed foods, and among the four cleanup methods, the EMR-Lipid method provided the best cleanup of co-extracted matrix interferences and the highest extraction efficiency. Validation experiments were carried out for the method using EMR-Lipid as the d-SPE sorbent. Excellent linearity ( R2 > 0.999) was achieved, and the limits of detection (LODs) of AA and 5-HMF were 2.5 and 12.5 μg/kg, respectively. The recoveries of AA and 5-HMF levels obtained were in the ranges of 87.3-103.3 and 83.2-104.3%, with precision [relative standard deviations (RSDs)] of 1.2-6.8 and 1.4-7.4% ( n = 3), respectively. The method is accurate and reliable and was successfully applied to analyze the AA and 5-HMF in eight categories of Chinese heat-processed foods.
Collapse
Affiliation(s)
- Yousheng Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
- Jiangxi Institute of Analysis and Testing , Nanchang , Jiangxi 330029 , People's Republic of China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Huiyu Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yuting Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
32
|
Azeem HA, Tolcha T, Hyberg PE, Essén S, Stenström K, Swietlicki E, Sandahl M. Extending the scope of dispersive liquid-liquid microextraction for trace analysis of 3-methyl-1,2,3-butanetricarboxylic acid in atmospheric aerosols leading to the discovery of iron(III) complexes. Anal Bioanal Chem 2019; 411:2937-2944. [PMID: 30931501 PMCID: PMC6522453 DOI: 10.1007/s00216-019-01741-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) is a secondary organic aerosol and can be used as a unique emission marker of biogenic emissions of monoterpenes. Seasonal variations and differences in vegetation cover around the world may lead to low atmospheric MBTCA concentrations, in many cases too low to be measured. Hence, an important tool to quantify the contribution of terrestrial vegetation to the loading of secondary organic aerosol may be compromised. To meet this challenge, a dispersive liquid–liquid microextraction (DLLME) method, known for the extraction of hydrophobic compounds, was extended to the extraction of polar organic compounds like MBTCA without compromising the efficiency of the method. The extraction solvent was fine-tuned using tri-n-octyl phosphine oxide as additive. A multivariate experimental design was applied for deeper understanding of significant variables and interactions between them. The optimum extraction conditions included 1-octanol with 15% tri-n-octyl phosphine oxide (w/w) as extraction solvent, methanol as dispersive solvent, 25% NaCl dissolved in 5 mL sample (w/w) acidified to pH 2 using HNO3, and extraction time of 15 min. A limit of detection of 0.12 pg/m3 in air was achieved. Furthermore, unique complexation behavior of MBTCA with iron(III) was found when analyzed with ultra-high-performance liquid chromatography coupled with electrospray ionization–quadrupole time-of-flight mass spectrometry (UHPLC–ESI–QToF). A comprehensive overview of this complexation behavior of MBTCA was examined with systematically designed experiments. This newly discovered behavior of MBTCA will be of interest for further research on organometallic photooxidation chemistry of atmospheric aerosols. a) Additive assisted DLLME and MBTCA complexes with Fe(III), b) A good quality figure is attached in ppt format to facilitate editable objects ![]()
Collapse
Affiliation(s)
- Hafiz Abdul Azeem
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Teshome Tolcha
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Department of Chemistry, Addis Ababa University, 1000, Addis Ababa, Ethiopia
| | - Petter Ekman Hyberg
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Sofia Essén
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Kristina Stenström
- Department of Physics, Division of Nuclear Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Erik Swietlicki
- Department of Physics, Division of Nuclear Physics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Margareta Sandahl
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
33
|
Hu S, Chen X, Wang RQ, Yang L, Bai XH. Natural product applications of liquid-phase microextraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Elahi M, Kamankesh M, Mohammadi A, Jazaeri S. Acrylamide in Cookie Samples: Analysis Using an Efficient Co-Derivatization Coupled with Sensitive Microextraction Method Followed by Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Xian Y, Wu Y, Dong H, Chen L, Zhang C, Hou X, Zeng X, Bai W, Guo X. Modified QuEChERS purification and Fe 3O 4 nanoparticle decoloration for robust analysis of 14 heterocyclic aromatic amines and acrylamide in coffee products using UHPLC-MS/MS. Food Chem 2019; 285:77-85. [PMID: 30797378 DOI: 10.1016/j.foodchem.2019.01.132] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 01/08/2023]
Abstract
Based on QuEChERS dispersed purification, Fe3O4 nanoparticle decoloration and UHPLC-MS/MS, a robust and sensitive method was established for simultaneous analysis of 14 heterocyclic aromatic amines (HAAs) and acrylamide (AA) in coffee products. Sample was extracted by 90% acetonitrile water (v/v), dispersed with primary secondary amine (PSA) and further purified with Fe3O4 nanoparticle. Then, 15 analytes were detected using ESI positive ion under MRM mode. Good linearity was observed for all analytes in the range of 0.2-100 μg/L with the determination coefficients being above 0.996. Limits of detection (S/N ≥ 3) and limits of quantification (S/N ≥ 10) were in the range of 0.02-0.15 µg/L and 0.2-0.7 µg/L, respectively. The intra-day average recoveries were between 81.6% and 100%, and the intra-day precisions ranged from 4.3% to 9.0%. The inter-day average recoveries were in the range of 81.0-101% with precisions ranging from 5.0% to 7.8%. Results indicated that the combination of PSA and Fe3O4 exhibited superior purification and adsorption effects for removing pigments and acid compounds. Real samples analysis indicated that coffee products were widely contaminated with AA, harman and norharman.
Collapse
Affiliation(s)
- Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Liwei Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Chi Zhang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
36
|
Zhou Z, Fu Y, Qin Q, Lu X, Shi X, Zhao C, Xu G. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. J Chromatogr A 2018; 1560:19-25. [DOI: 10.1016/j.chroma.2018.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/14/2018] [Accepted: 05/08/2018] [Indexed: 01/20/2023]
|
37
|
Sajid M, Płotka-Wasylka J. Combined extraction and microextraction techniques: Recent trends and future perspectives. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
2-Naphthalenthiol derivatization followed by dispersive liquid-liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography. J Chromatogr A 2018; 1558:14-20. [PMID: 29773343 DOI: 10.1016/j.chroma.2018.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L-1 with a determination coefficient (R2) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L-1, respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L-1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%).
Collapse
|
39
|
|
40
|
Lambert M, Inthavong C, Hommet F, Leblanc JC, Hulin M, Guérin T. Levels of acrylamide in foods included in ‘the first French total diet study on infants and toddlers’. Food Chem 2018; 240:997-1004. [DOI: 10.1016/j.foodchem.2017.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/07/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|