1
|
López-Bascón MA, Moscoso-Ruiz I, Quirantes-Piné R, del Pino-García R, López-Gámez G, Justicia-Rueda A, Verardo V, Quiles JL. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. Int J Mol Sci 2024; 25:4878. [PMID: 38732097 PMCID: PMC11084348 DOI: 10.3390/ijms25094878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.
Collapse
Affiliation(s)
- María Asunción López-Bascón
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Inmaculada Moscoso-Ruiz
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071 Granada, Spain;
| | - Raquel del Pino-García
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Gloria López-Gámez
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Andrea Justicia-Rueda
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Vito Verardo
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
- Department of Nutrition and Food Science, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
2
|
Lam TP, Tran NVN, Pham LHD, Lai NVT, Dang BTN, Truong NLN, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:4. [PMID: 38185713 PMCID: PMC10772047 DOI: 10.1007/s13659-023-00424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on α-glucosidase and α-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on α-amylase and α-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both α-glucosidase and α-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA .
Collapse
Affiliation(s)
- Thua-Phong Lam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Ngoc-Vi Nguyen Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Uppsala University, 75105, Uppsala, Sweden
| | - Long-Hung Dinh Pham
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Nghia Vo-Trong Lai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Bao-Tran Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Ngoc-Lam Nguyen Truong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Song-Ky Nguyen-Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
| | - Thuy-Linh Hoang
- California Northstate University College of Pharmacy, California, 95757, USA
| | - Tan Thanh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Ansari P, Samia JF, Khan JT, Rafi MR, Rahman MS, Rahman AB, Abdel-Wahab YHA, Seidel V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023; 15:3266. [PMID: 37513684 PMCID: PMC10383178 DOI: 10.3390/nu15143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serves as a source of primary healthcare and plant-based foods in many low- and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion, and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically active phytoconstituents, and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Jannatul F Samia
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Joyeeta T Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Musfiqur R Rafi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Md Sifat Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Akib B Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | | | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
4
|
Cascant-Vilaplana MM, Viteritti E, Sadras V, Medina S, Sánchez-Iglesias MP, Oger C, Galano JM, Durand T, Gabaldón JA, Taylor J, Ferreres F, Sergi M, Gil-Izquierdo A. Wheat Oxylipins in Response to Aphids, CO 2 and Nitrogen Regimes. Molecules 2023; 28:molecules28104133. [PMID: 37241874 DOI: 10.3390/molecules28104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved plant oxylipins. Plants were grown in chambers with a factorial combination of two nitrogen rates (100% N vs. 20% N in Hoagland solution), and two concentrations of CO2 (400 vs. 700 ppm). The seedlings were challenged with Rhopalosiphum padi or Sitobion avenae for 8 h. Wheat leaves produced phytoprostanes (PhytoPs) of the F1 series, and three types of phytofurans (PhytoFs): ent-16(RS)-13-epi-ST-Δ14-9-PhytoF, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF. The oxylipin levels varied with aphids, but not with other experimental sources of variation. Both Rhopalosiphum padi and Sitobion avenae reduced the concentrations of ent-16(RS)-13-epi-ST-Δ14-9-PhytoF and ent-16(RS)-9-epi-ST-Δ14-10-PhytoF in relation to controls, but had little or no effect on PhytoPs. Our results are consistent with aphids affecting the levels of PUFAs (oxylipin precursors), which decreased the levels of PhytoFs in wheat leaves. Therefore, PhytoFs could be postulated as an early indicator of aphid hosting for this plant species. This is the first report on the quantification of non-enzymatic PhytoFs and PhytoPs in wheat leaves in response to aphids.
Collapse
Affiliation(s)
- Mari Merce Cascant-Vilaplana
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Eduardo Viteritti
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Víctor Sadras
- South Australian Research and Development Institute, Adelaide, SA 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - María Puerto Sánchez-Iglesias
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, CNRS, University of Montpellier, ENSCM, 34090 Montpellier, France
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Federico Ferreres
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
5
|
Farhan N, Al-Maleki AR, Sarih NM, Yahya R, Shebl M. Therapeutic importance of chemical compounds in extra virgin olive oil and their relationship to biological indicators: A narrative review and literature update. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Fratianni F, Amato G, De Feo V, d'Acierno A, Coppola R, Nazzaro F. Potential therapeutic benefits of unconventional oils: assessment of the potential in vitro biological properties of some Rubiaceae, Cucurbitaceae, and Brassicaceae seed oils. Front Nutr 2023; 10:1171766. [PMID: 37153908 PMCID: PMC10160382 DOI: 10.3389/fnut.2023.1171766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction Seed oils are versatile in the food sector and for pharmaceutical purposes. In recent years, their biological properties aroused the interest of the scientific world. Materials and methods We studied the composition of fatty acids (FAs) and some in vitro potential therapeutic benefits of five cold-pressed commercial oils obtained from broccoli, coffee, green coffee, pumpkin, and watermelon seeds. In particular, we assayed the antioxidant activity (using diphenyl-1-picrylhydrazyl (DPPH) and azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays). In addition, through the fatty acid composition, we calculated the atherogenicity index (AI) and thrombogenicity index (TI) to evaluate the potential impact of such oils on cardiovascular diseases. Furthermore, we assessed the in vitro anti-inflammatory capacity of the oils (evaluated through their effectiveness in preventing protein degradation, using bovine serum albumin as protein standard) and the ability of the oils to inhibit in vitro activity of three among the essential enzymes, cholinesterases and tyrosinase, involved in the Alzheimer's and Parkinson's neurodegenerative diseases. Finally, we evaluated the capacity of the oils to inhibit the biofilm of some pathogenic bacteria. Results The unsaturated fatty acids greatly predominated in broccoli seed oil (84.3%), with erucic acid as the main constituent (33.1%). Other unsaturated fatty acids were linolenic (20.6%) and linoleic (16.1%) acids. The saturated fatty acids fraction comprised the palmitic (6.8%) and stearic acids (0.2%). Broccoli seed oil showed the best AI (0.080) and TI (0.16) indexes. The oils expressed a good antioxidant ability. Except for the watermelon seed oil, the oils exhibited a generally good in vitro anti-inflammatory activity, with IC50 values not exceeding 8.73 micrograms. Broccoli seed oil and green coffee seed oil showed the best acetylcholinesterase inhibitory activity; coffee seed oil and broccoli seed oil were the most effective in inhibiting butyrylcholinesterase (IC50 = 15.7 μg and 20.7 μg, respectively). Pumpkin and green coffee seed oil showed the best inhibitory activity against tyrosinase (IC50 = 2 μg and 2.77 μg, respectively). In several cases, the seed oils inhibited the biofilm formation and the mature biofilm of some gram-positive and gram-negative bacteria, with Staphylococcus aureus resulting in the most sensitive strain. Such activity seemed related only in some cases to the capacity of the oils to act on the sessile bacterial cells' metabolism, as indicated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric method.
Collapse
Affiliation(s)
- Florinda Fratianni
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonio d'Acierno
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Raffaele Coppola
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, National Research Council of Italy, Avellino, Italy
- *Correspondence: Filomena Nazzaro
| |
Collapse
|
7
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Singular Olive Oils from a Recently Discovered Spanish North-Western Cultivar: An Exhaustive 3-Year Study of Their Chemical Composition and In-Vitro Antidiabetic Potential. Antioxidants (Basel) 2022; 11:antiox11071233. [PMID: 35883723 PMCID: PMC9311737 DOI: 10.3390/antiox11071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, the quality and physicochemical parameters, phenolic composition, and antidiabetic potential of olive oils obtained from olives belonging to centenarian olive trees of the so-called ‘Mansa de Figueiredo’ cultivar were evaluated during three consecutive crop seasons (2017–2019). The oils produced during the three crop years were classified as extra virgin based on the quality-related indices, sensory analysis, and the genuineness-related parameters. In addition, LC-ESI-TOF MS was used to get a comprehensive characterisation of the phenolic fraction while LC-ESI-IT MS was applied for quantitation purposes. The content of phenolic compounds (ranging from 1837 to 2434 mg/kg) was significantly affected by the harvest year due to the environmental conditions and ripening index. Furthermore, although significant differences in the inhibitory effects against the α-glucosidase enzyme for the EVOOs extracted throughout the three successive years were detected, all the studied EVOOs exhibited a stronger inhibitor effect than that found for acarbose.
Collapse
|
9
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Ahmed OS, Sedraoui S, Zhou B, Reversat G, Rocher A, Bultel-Poncé V, Guy A, Vercauteren J, Selim S, Galano JM, Durand T, Oger C, Vigor C. Phytoprostanes from Date Palm Fruit and Byproducts: Five Different Varieties Grown in Two Different Locations As Potential sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13754-13761. [PMID: 34766764 DOI: 10.1021/acs.jafc.1c03364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Date palm fruit has been considered for centuries as an ancient nutritional constituent in the human diet. Recently, global trade in dates increased at an average that, simultaneously, will be accompanied by an increase in date palm byproducts. Supported by date phytochemicals and their health benefits, the aim of this work is to evaluate for the first time the presence of special metabolites of plant called phytoprostanes (PhytoPs) in five different varieties of the Phoenix dactylifera L. pulps and pits using a microLC-ESI-QTrap-MS/MS methodology. Results obtained showed the interest of using these matrices as potential sources of several PhytoPs (ent-16-B1-PhytoP; ent-9-L1-PhytoP; and epimers of ent-16-F1t-PhytoP and of 9-F1t-PhytoP). The variation in concentration between different varieties and different DPF parts was also evaluated. Results obtained will help to unravel the biological activities associated with DPF consumption that could be related to these bioactive metabolites.
Collapse
Affiliation(s)
- Omar S Ahmed
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
- Department of Analytical Chemistry, Faculty of Pharmacy, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City 12566, Egypt
| | - Sami Sedraoui
- Laboratory of Cardio-circulatory, Respiratory, and Hormonal Adaptations to Muscular Exercise, Faculty of Sciences of Bizerte, University of Carthage, Tunis 1054, Tunisia
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, MAMMA (Montpellier Alliance for Metabolomics and Metabolism Analysis), BIOCampus, 34090 Montpellier, France
| |
Collapse
|
11
|
Antioxidant Capacities, Antimicrobial Activity, Phenolic Contents and α-Amylase Inhibitory of Salvia leriifolia Extracts from Sabzevar. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01162-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
13
|
Ozyurt VH, Çakaloğlu B, Otles S. Optimization of cold press and enzymatic‐assisted aqueous oil extraction from tomato seed by response surface methodology: Effect on quality characteristics. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vasfiye Hazal Ozyurt
- Department of Food Engineering Faculty of Engineering Near East University Lefkosa Turkey
| | - Büşra Çakaloğlu
- Department of Food Engineering Faculty of Engineering Ege University Izmir Turkey
| | - Semih Otles
- Department of Food Engineering Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
14
|
Campillo M, Medina S, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Bultel-Poncé V, Durand T, Galano JM, Tomás-Barberán FA, Gil-Izquierdo Á, Domínguez-Perles R. Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radic Biol Med 2021; 167:335-347. [PMID: 33722629 DOI: 10.1016/j.freeradbiomed.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammation is a fundamental pathophysiological process which occurs in the course of several diseases. The present work describes the capacity of phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (plant oxylipins), present in plant-based foods, to modulate inflammatory processes mediated by prostaglandins (PGs, human oxylipins) in lipopolysaccharide (LPS)-stimulated THP-1 monocytic cells, through a panel of 21 PGs and PG's metabolites, analyzed by UHPLC-QqQ-ESI-MS/MS. Also, the assessment of the cytotoxicity of PhytoPs and PhytoFs on THP-1 cells evidenced percentages of cell viability higher than 90% when treated with up to 100 μM. Accordingly, 50 μM of the individual PhytoPs and PhytoFs 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16-epi-16-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF, ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF were evaluated on their capacity to modulate the expression of inflammatory markers. The results obtained demonstrated the presence of 7 metabolites (15-keto-PGF2α, PGF2α, 11β-PGF2α, PGE2, PGD2, PGDM, and PGF1α) in THP-1 monocytic cells, which expression was significantly modulated when exposed to LPS. The evaluation of the capacity of the individual PhytoPs and PhytoFs to revert the modification of the quantitative profile of PGs induced by LPS revealed the anti-inflammatory ability of 9-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, as evidenced by their capacity to prevent the up-regulation of 15-keto-PGF2α, PGF2α, PGE2, PGF1α, PGDM, and PGD2 induced by LPS. These results indicated that specific plant oxylipins can protect against inflammatory events, encouraging further investigations using plant-based foods rich in these oxylipins or enriched extracts, to identify specific bioactivities of the diverse individual molecules, which can be useful for nutrition and health in the frame of well-defined pathophysiological processes.
Collapse
Affiliation(s)
- María Campillo
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Federico Fanti
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, TE, Italy
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | | | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain
| |
Collapse
|
15
|
Bioguided design of new black truffle (Tuber aestivum Vittad.) product enriched with herbs and spices. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wannasaksri W, On-Nom N, Chupeerach C, Temviriyanukul P, Charoenkiatkul S, Suttisansanee U. In Vitro Phytotherapeutic Properties of Aqueous Extracted Adenia viridiflora Craib. towards Civilization Diseases. Molecules 2021; 26:molecules26041082. [PMID: 33670795 PMCID: PMC7922288 DOI: 10.3390/molecules26041082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023] Open
Abstract
Adenia viridiflora Craib. is an indigenous edible plant that became an endangered species due to limited consumption of the local population with unknown reproduction and growth conditions. The plant is used as a traditional herb; however, its health applications lack scientific-based evidence. A. viridiflora Craib. plant parts (old leaves and young shoots) from four areas as Kamphaeng Phet (KP), Muang Nakhon Ratchasima (MN), Pakchong Nakhon Ratchasima (PN), and Uthai Thani (UT) origins were investigated for phenolic compositions and in vitro health properties through the inhibition of key enzymes relevant to obesity (lipase), diabetes (α-glucosidase and dipeptidyl peptidase-IV), Alzheimer’s disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Phenolics including p-coumaric acid, sinapic acid, naringenin, and apigenin were detected in old leaves and young shoots in all plant origins. Old leaves exhibited higher total phenolic contents (TPCs) and total flavonoid contents (TFCs), leading to higher enzyme inhibitory activities than young shoots. Besides, PN and MN with higher TPCs and TFCs tended to exhibit greater enzyme inhibitory activities than others. These results will be useful to promote this plant as a healthy food with valuable medicinal capacities to support its consumption and agricultural stimulation, leading to sustainable conservation of this endangered species.
Collapse
Affiliation(s)
- Werawat Wannasaksri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Nattira On-Nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Chaowanee Chupeerach
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Somsri Charoenkiatkul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (W.W.); (N.O.-N.); (C.C.); (P.T.); (S.C.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-(0)-2800-2380 (ext. 422)
| |
Collapse
|
17
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
18
|
Ribeiro TB, Oliveira A, Campos D, Nunes J, Vicente AA, Pintado M. Simulated digestion of an olive pomace water-soluble ingredient: relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct 2020; 11:2238-2254. [PMID: 32101211 DOI: 10.1039/c9fo03000j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olive pomace is a semisolid by-product with great potential as a source of bioactive compounds. Using its soluble fraction, a liquid-enriched powder (LOPP) was obtained, exhibiting a rich composition in sugars, polyphenols and minerals, with potential antioxidant, antihypertensive and antidiabetic health benefits. To validate the potential of LOPP as a functional ingredient the effect of the gastrointestinal tract on its bioactive composition and bioactivities was examined. Polyphenols and minerals were the most affected compounds; however, a significant bioaccessibility of potassium and hydroxytyrosol was verified (≥57%). As a consequence, the LOPP bioactivities were only moderately affected (losses around 50%). For example, 57.82 ± 1.27% of the recovered antioxidant activity by ORAC was serum-available. From an initial α-glucosidase inhibition activity of 87.11 ± 1.04%, at least 50% of the initial potential was retained (43.82 ± 1.14%). Regarding the initial ACE inhibitory activity (91.98 ± 3.24%), after gastrointestinal tract losses, significant antihypertensive activity was retained in the serum-available fraction (43.4 ± 3.65%). The colon-available fraction also exhibited an abundant composition in phenolics and minerals. LOPP showed to be a potential functional ingredient not only with potential benefits in preventing cardiovascular diseases but also in gut health.
Collapse
Affiliation(s)
- Tânia B Ribeiro
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal. and Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Débora Campos
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João Nunes
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
19
|
León-Perez D, Domínguez-Perles R, Collado-González J, Cano-Lamadrid M, Durand T, Guy A, Galano JM, Carbonell-Barrachina Á, Londoño-Londoño J, Ferreres F, Jiménez-Cartagena C, Gil-Izquierdo Á, Medina S. Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Medina S, Gil-Izquierdo Á, Abu-Reidah IM, Durand T, Bultel-Poncé V, Galano JM, Domínguez-Perles R. Evaluation of Phoenix dactylifera Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8942-8950. [PMID: 32693588 DOI: 10.1021/acs.jafc.0c03364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though traditionally date-fruit has been featured by a marginal use, mainly restricted to its dietary intake, in recent years, it has raised the range of applications for this agro-food production. These new uses have entailed an enlarged production of date fruits and, simultaneously, of date palm byproducts. Encouraged by the traditional medicinal uses of dates, according to their phytochemical composition, the present work was focused on the evaluation of a new family of secondary metabolites, the plant oxylipins phytoprostanes (PhytoPs) and phytofurans (PhytoFs), in six separate matrixes of the date palm edible parts and byproducts, applying an UHPLC-ESI-QqQ-MS/MS-based methodology. The evaluation for the first time of date palm edible parts and byproducts as a dietary source of PhytoPs and PhytoFs provides evidence on the value of six different parts (pulp, skin, pits, leaves, clusters, and pollen) regarding their content in these plant oxylipins evidenced by the presence of the PhytoPs, 9-F1t-PhytoP (201.3-7223.1 ng/100 g dw) and 9-epi-9-F1t-PhytoP (209.7-7297.4 ng/100 g dw), and the PhytoFs ent-16(RS)-9-epi-ST-Δ14-10-PhytoF (4.6-191.0 ng/100g dw), and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF as the most abundant compounds. Regarding the diverse matrixes assessed, pollen, clusters, and leaves for PhytoPs and skins and pollen for PhytoFs were identified as the most interesting sources of these compounds. In this concern, the information obtained upon the detailed characterization performed in the present work will allow unravelling the biological interest of PhytoPs and PhytoFs and the extent to which these compounds could exert valuable biological activities upon in vitro (mechanistic) and in vivo studies, allocating the effort-focus on the chemical species of PhytoPs and PhytoFs responsible for such traits.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ibrahim M Abu-Reidah
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
- Department of Industrial Chemistry, Arab American University, P.O. Box 240, 13 Zababdeh-Jenin, Palestine
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| |
Collapse
|
21
|
Collado-González J, Cano-Lamadrid M, Pérez-López D, Carbonell-Barrachina ÁA, Centeno A, Medina S, Griñán I, Guy A, Galano JM, Durand T, Domínguez-Perles R, Torrecillas A, Ferreres F, Gil-Izquierdo Á. Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8915-8924. [PMID: 32683865 DOI: 10.1021/acs.jafc.0c02901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pistachio (Pistacia vera L.) is a drought-tolerant species grown under the semiarid conditions of the Mediterranean basin. For this reason, it is essential to make an exhaustive quantification of yield and quality benefits of the kernels because the regulated deficit irrigation will allow significant water savings with a minimum impact on yield while improving kernel quality. The goal of this scientific work was to study the influence of the rootstock, water deficit during pit hardening, and kernel roasting on pistachio (P. vera, cv. Kerman) fruit yield, fruit size, and kernel content of fatty acids phytoprostanes (PhytoPs) and phytofurans (PhytoFs) for the first time. Water stress during pit hardening did not affect the pistachio yield. The kernel cultivar showed a lower oleic acid and a higher linoleic acid contents than other cultivars. Kernels from plants grafted on the studied rootstocks showed very interesting characteristics. P. integerrima led to the highest percentage of monounsaturated fatty acids. Regarding the plant oxylipins, P. terebinthus led to the highest contents of PhytoPs and PhytoFs (1260 ng/100 g and 16.2 ng/100 g, respectively). In addition, nuts from trees cultivated under intermediate water deficit during pit hardening showed increased contents of the 9-series F1-phytoprostanes and ent-16(RS)-9-epi-ST-Δ14-10-phytofuran. However, roasting of pistachios led to PhytoP degradation. Therefore, plant cultivar, deficit irrigation, rootstock, and roasting must be considered to enhance biosynthesis of these secondary metabolites. New tools using agricultural strategies to produce hydroSOS pistachios have been opened thanks to the biological properties of these prostaglandin-like compounds linking agriculture, nutrition, and food science technology for further research initiatives.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Marina Cano-Lamadrid
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - David Pérez-López
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Ángel A Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group ″Food Quality and Safety, CSA", Miguel Hernández University of Elche (UMH). Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, km 3,2, Orihuela, Alicante 03312, Spain
| | - Ana Centeno
- Department of Agricultural Production, School of Agricultural Engineering, Technical University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Isabel Griñán
- Department of Plant Production and Microbiology. Plant Production and Technology Research Group, Miguel Hernández University of Elche, Carretera. de Beniel, km 3,2, Orihuela, Alicante E-03312, Spain
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montpellier 34093, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| | - Arturo Torrecillas
- Departamento de Producción Vegetal y Microbiología, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Carretera de Beniel, Km 3.2, Orihuela 03312, Spain
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia (UCAM), Campus Los Jerónimos, s/n, Murcia 30107, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Food Science and Technology Dept., CEBAS-CSIC, Campus de Espinardo 25, Espinardo 30100, Spain
| |
Collapse
|
22
|
Jimenez-Lopez C, Carpena M, Lourenço-Lopes C, Gallardo-Gomez M, Lorenzo JM, Barba FJ, Prieto MA, Simal-Gandara J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020; 9:E1014. [PMID: 32731481 PMCID: PMC7466243 DOI: 10.3390/foods9081014] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023] Open
Abstract
(1) Background: Extra virgin olive oil (EVOO) is responsible for a large part of many health benefits associated to Mediterranean diet as it is a fundamental ingredient of this diet. The peculiarities of this golden, highly valued product are in part due to the requirements that must be met to achieve this title, namely, it has to be obtained using exclusively mechanical procedures, its free acidity cannot be greater than 0.8%, it must not show sensory defects, and it has to possess a fruity taste. (2) Methods: All these characteristics are key factors to EVOO quality, thus the chemical composition of these many health-promoting compounds, such as unsaturated fatty acids (which are also the major compounds, especially oleic acid), as well as minor components such as tocopherols or phenolic compounds (which behave as natural antioxidants) must be preserved. (3) Results: Due to the presence of all these compounds, the daily consumption of EVOO entails health benefits such as cardioprotective, antioxidant, anti-inflammatory, anti-tumor properties or acting as regulator of the intestinal microbiota, among others. (4) Conclusions: Taking all together, conserving EVOO chemical composition is essential to preserve its properties, so it is worth to control certain factors during storage like exposure to light, temperature, oxygen presence or the chosen packaging material, to maintain its quality and extend its shelf-life until its consumption.
Collapse
Affiliation(s)
- Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (C.J.-L.); (M.C.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (C.J.-L.); (M.C.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (C.J.-L.); (M.C.); (C.L.-L.)
| | - Maria Gallardo-Gomez
- CINBIO, Universidade de Vigo, Department of Biochemistry, Genetics and Immunology, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain;
| | - Jose M. Lorenzo
- Meat Technology Centre Foundation, 32900 San Cibrao das Viñas, Spain;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (C.J.-L.); (M.C.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (C.J.-L.); (M.C.); (C.L.-L.)
| |
Collapse
|
23
|
Medina S, Domínguez-Perles R, Auñón D, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á. Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7789-7799. [PMID: 32603105 DOI: 10.1021/acs.jafc.0c01938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipophenols have been stressed as an emerging class of functional compounds. However, little is known about their diversity. Thus, this study is aimed at developing a new method for the extraction, cleanup, and ultrahigh-performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS)-based analysis of the lipophenols derived from hydroxytyrosol (HT): α-linolenic (HT-ALA), linoleic acid (HT-LA), and oleic acid (HT-OA). The method validated provides reliable analytical data and practical applications. It was applied to an array of oily (extra virgin olive oil, refined olive oil, flaxseed oil, grapeseed oil, and margarine) and aqueous (pineapple juice) matrices, nonfortified and fortified with HT. Also, the present work reported the formation of fatty acid esters of HT (HT-FAs) that seem to be closely dependent on the fatty acid profile of the food matrix, encouraging the further exploration of the theoretical basis for the generation of HT-FAs, as well as their contribution to the healthy attributions of plant-based foods.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - David Auñón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
24
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
25
|
Makinde EA, Radenahmad N, Adekoya AE, Olatunji OJ. Tiliacora triandra extract possesses antidiabetic effects in high fat diet/streptozotocin-induced diabetes in rats. J Food Biochem 2020; 44:e13239. [PMID: 32281660 DOI: 10.1111/jfbc.13239] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 02/04/2023]
Abstract
The antidiabetic properties of Tiliacora triandra ethanol extract in diabetic rats induced with high-fat diet (HFD)/streptozotocin (STZ) was investigated. Rats were fed with HFD for 4 weeks to induced insulin resistance, and thereafter administered with 35 mg/kg of STZ to induce diabetes. Diabetic rats received 100 and 400 mg/kg of T. triandra daily for 30 days. The body weight, blood glucose level, food and fluid intake were monitored. Furthermore, biochemical and histological assessment was performed to evaluate the hypoglycemic effect of the extract in the treated rats. T. triandra significantly decreased the blood glucose level, increased the body weight and insulin secretion. Furthermore, T. triandra attenuated hyperlipidemia, improved liver and kidney functions of treated diabetic rats. Thus, T. triandra could effectively attenuate diabetes and it complications. PRACTICAL APPLICATIONS: Tiliacora triandra is a common vegetable consumed in Thailand and Laos. It is traditionally employed in the treatment of fever, cancer, malaria, and diabetes. The extract from the aerial part was investigated for its antidiabetic properties. The results obtained provides important pharmacological information that supports the use of T. triandra in management of diabetes.
Collapse
Affiliation(s)
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | | | |
Collapse
|
26
|
Deligiannidou GE, Philippou E, Vidakovic M, Berghe WV, Heraclides A, Grdovic N, Mihailovic M, Kontogiorgis C. Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds. Curr Pharm Des 2020; 25:1760-1782. [PMID: 31298162 DOI: 10.2174/1381612825666190705191000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Mediterranean diet is a healthy eating pattern that protects against the development of Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by elevated blood sugar levels due to pancreatic beta-cell functional impairment and insulin resistance in various tissues. Inspired by the ancient communities, this diet emphasizes eating primarily plant-based foods, including vegetables, legumes, fruits, cereals, and nuts. Importantly, virgin olive oil is used as the principal source of fat. Red meat is consumed in low amounts while wine and fish are consumed moderately. OBJECTIVE Here, we review the most beneficial components of the Mediterranean Diet and tentative mechanisms of action for prevention and/or management of T2DM, based on research conducted within the last decade. METHODS The references over the last five years have been reviewed and they have been selected properly according to inclusion/ exclusion criteria. RESULTS Several bioactive diet components were evaluated to prevent inflammation and cytokine-induced oxidative damage, reduce glucose concentration, carbohydrate absorption and increase insulin sensitivity and related gene expression. CONCLUSION The adherence to a healthy lifestyle, including diet, exercise and habits remains the best approach for the prevention of diabetes as well as frequent check-ups and education. Though diabetes has a strong genetic component, in recent years many reports strongly point to the critical role of lifestyle specific epigenetic modifications in the development of T2DM. It remains to be established how different components of the Mediterranean Diet interact and influence the epigenetic landscape to prevent or treat the disease.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Makedonitissis, Nicosia 2417, Cyprus.,Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Melita Vidakovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Wim V Berghe
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Alexandros Heraclides
- Department of Primary Care and Population Health, University of Nicosia Medical School, Ayiou Nikolaou Street, Egkomi, Cyprus
| | - Nevena Grdovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Mihailovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
27
|
Investigation of α-Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC-MS Metabolite Profiling and Docking Studies. Biomolecules 2020; 10:biom10020287. [PMID: 32059529 PMCID: PMC7072363 DOI: 10.3390/biom10020287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
Collapse
|
28
|
Wang Y, Sun J, Ma D, Li X, Gao X, Miao J, Gao W. Improving the contents of the active components and bioactivities of Chrysanthemum morifolium Ramat.: The effects of drying methods. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
López-Yerena A, Lozano-Castellón J, Olmo-Cunillera A, Tresserra-Rimbau A, Quifer-Rada P, Jiménez B, Pérez M, Vallverdú-Queralt A. Effects of Organic and Conventional Growing Systems on the Phenolic Profile of Extra-Virgin Olive Oil. Molecules 2019; 24:E1986. [PMID: 31126122 PMCID: PMC6572524 DOI: 10.3390/molecules24101986] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 11/26/2022] Open
Abstract
Extra-virgin olive oil (EVOO) is largely appreciated for its proven nutritional properties. Additionally, organic foods are perceived as healthier by consumers. In this context, the aim of the present study was to compare the phenolic profiles of EVOO from olives of the Hojiblanca variety, cultivated under organic and conventional systems. The quantification and identification of individual polyphenols was carried out by liquid chromatography coupled to mass spectrometry in tandem mode (LC-MS/MS). Significantly higher levels (p < 0.05) of phenolic compounds were found in organic EVOOs. The methodology used was able to detect previously unreported differences in bioactive components between organic and conventional EVOOs.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Anna Tresserra-Rimbau
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
- Human Nutrition Unit, University Hospital of Sant Joan de Reus, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Center, Universitat Rovira i Virgili, 43002 Reus, Spain.
| | - Paola Quifer-Rada
- Department of Endocrinology & Nutrition, CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
| | - Brígida Jiménez
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica, Centro de Cabra, Antigua Ctra, Cabra-Doña Mencía, Km. 2.5, 14940 Córdoba, Spain.
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
30
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo Á. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2194-2204. [PMID: 30315579 DOI: 10.1002/jsfa.9413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In Colombia, agro-industrial residues represent an enormous economic and environmental problem, which could be reduced if different techniques for the addition of value to such residues were implemented by this industrial sector. One of the fruits with the highest export rates is Physalis peruviana (goldenberry); however, this fruit is generally marketed without its calyx, generating a large amount of residues. To develop a strategy to add value to these residues, it is essential to know their chemical composition. RESULTS In the present work, phytoprostanes (PhytoPs) - new active oxylipins - have been detected for the first time in Physalis peruviana calyces by ultra-high performance liquid chromatography triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS), F1t -phytoprostanes and D1t -phytoprostanes being the predominant and minor classes, respectively. In addition, we were able to characterize the phenolic compounds profile of this matrix using LC-IT-DAD-MS/MS, describing six phenolic derivatives for the first time therein. CONCLUSIONS This study increases our knowledge of the chemical composition of the calyces of this fruit and thereby supports the recycling of this class of residue. Consequently, goldenberry calyces could be used as phytotherapeutic, nutraceutic, or cosmetic ingredients for the development of diverse natural products. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Julián Londoño-Londoño
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Claudio Jiménez-Cartagena
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas, Colombia
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-University of Montpellier - ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
31
|
Yang HW, Fernando KHN, Oh JY, Li X, Jeon YJ, Ryu B. Anti-Obesity and Anti-Diabetic Effects of Ishige okamurae. Mar Drugs 2019; 17:E202. [PMID: 30934943 PMCID: PMC6520893 DOI: 10.3390/md17040202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Obesity is associated with several health complications and can lead to the development of metabolic syndrome. Some of its deleterious consequences are related to insulin resistance, which adversely affects blood glucose regulation. At present, there is a growing concern regarding healthy food consumption, owing to awareness about obesity. Seaweeds are well-known for their nutritional benefits. The brown alga Ishige okamurae (IO) has been studied as a dietary supplement and exhibits various biological activities in vitro and in vivo. The bioactive compounds isolated from IO extract are known to possess anti-obesity and anti-diabetic properties, elicited via the regulation of lipid metabolism and glucose homeostasis. This review focuses on IO extract and its bioactive compounds that exhibit therapeutic effects through several cellular mechanisms in obesity and diabetes. The information discussed in the present review may provide evidence to develop nutraceuticals from IO.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - K H N Fernando
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Jae-Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Xining Li
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
32
|
Zhu J, Zhang B, Wang B, Li C, Fu X, Huang Q. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
33
|
Zhu J, Chen C, Zhang B, Huang Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit Rev Food Sci Nutr 2019; 60:695-708. [DOI: 10.1080/10408398.2018.1548428] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jianzhong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Sino-Singapore International Joint Research Institute, Guangzhou, China
| | - Chun Chen
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Sino-Singapore International Joint Research Institute, Guangzhou, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Sino-Singapore International Joint Research Institute, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
34
|
Zhu J, Zhang B, Tan C, Huang Q. α-Glucosidase inhibitors: consistency of in silico docking data with in vitro inhibitory data and inhibitory effect prediction of quercetin derivatives. Food Funct 2019; 10:6312-6321. [DOI: 10.1039/c9fo01333d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relationship between in silico and in vitro experiments regarding the inhibitory effects of polyphenols on α-glucosidase was investigated.
Collapse
Affiliation(s)
- Jianzhong Zhu
- School of Food Science and Engineering
- South China University of Technology
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Guangzhou 510640
- China
| | - Bin Zhang
- School of Food Science and Engineering
- South China University of Technology
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Guangzhou 510640
- China
| | - Chinping Tan
- Department of Food Technology
- Faculty of Food Science and Technology
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Qiang Huang
- School of Food Science and Engineering
- South China University of Technology
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- Guangzhou 510640
- China
| |
Collapse
|
35
|
Ryu B, Jiang Y, Kim HS, Hyun JM, Lim SB, Li Y, Jeon YJ. Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae. Mar Drugs 2018; 16:E436. [PMID: 30413003 PMCID: PMC6266998 DOI: 10.3390/md16110436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Nutraceutical use of algae requires understanding of the diversity and significance of their active compositions for intended activities. Ishige okamurae (I. okamurae) extract is well-known to possess α-glucosidase inhibitory activity; however, studies are needed to investigate its active composition in order to standardize its α-glucosidase inhibitory activity. In this study, we observed the intensity of the dominant compounds of each I. okamurae extract harvested between 2016 and 2017, and the different potency of each I. okamurae extract against α-glucosidase. By comparing the anti-α-glucosidase ability of the dominant compounds, a novel Ishophloroglucin A with highest α-glucosidase inhibitory activity was identified and suggested for standardization of anti-α-glucosidase activity in I. okamurae extract. Additionally, a validated analytical method for measurement of Ishophloroglucin A for future standardization of I. okamurae extract was established in this study. We suggest using Ishophloroglucin A to standardize anti-α-glucosidase potency of I. okamurae and propose the significance of standardization based on their composition for effective use of algae as marine-derived nutraceuticals.
Collapse
Affiliation(s)
- BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Jee-Min Hyun
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea.
| | - Yong Li
- Department of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jing Yue Economic Development Zone, Chanchun 130117, China.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
36
|
Bonvino NP, Liang J, McCord ED, Zafiris E, Benetti N, Ray NB, Hung A, Boskou D, Karagiannis TC. OliveNet™: a comprehensive library of compounds from Olea europaea. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4851153. [PMID: 29688352 PMCID: PMC5808783 DOI: 10.1093/database/bay016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Accumulated epidemiological, clinical and experimental evidence has indicated the beneficial health effects of the Mediterranean diet, which is typified by the consumption of virgin olive oil (VOO) as a main source of dietary fat. At the cellular level, compounds derived from various olive (Olea europaea), matrices, have demonstrated potent antioxidant and anti-inflammatory effects, which are thought to account, at least in part, for their biological effects. Research efforts are expanding into the characterization of compounds derived from Olea europaea, however, the considerable diversity and complexity of the vast array of chemical compounds have made their precise identification and quantification challenging. As such, only a relatively small subset of olive-derived compounds has been explored for their biological activity and potential health effects to date. Although there is adequate information describing the identification or isolation of olive-derived compounds, these are not easily searchable, especially when attempting to acquire chemical or biological properties. Therefore, we have created the OliveNet™ database containing a comprehensive catalogue of compounds identified from matrices of the olive, including the fruit, leaf and VOO, as well as in the wastewater and pomace accrued during oil production. From a total of 752 compounds, chemical analysis was sufficient for 676 individual compounds, which have been included in the database. The database is curated and comprehensively referenced containing information for the 676 compounds, which are divided into 13 main classes and 47 subclasses. Importantly, with respect to current research trends, the database includes 222 olive phenolics, which are divided into 13 subclasses. To our knowledge, OliveNet™ is currently the only curated open access database with a comprehensive collection of compounds associated with Olea europaea. Database URL: https://www.mccordresearch.com.au
Collapse
Affiliation(s)
- Natalie P Bonvino
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Health Innovations Research Institute, School of Applied Sciences, RMIT University, VIC 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Health Innovations Research Institute, School of Applied Sciences, RMIT University, VIC 3001, Australia
| | | | - Elena Zafiris
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Natalia Benetti
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | | | - Andrew Hung
- Health Innovations Research Institute, School of Applied Sciences, RMIT University, VIC 3001, Australia
| | | | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
37
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Carrasco-Pancorbo A, Cancho-Grande B, Simal-Gándara J. The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Food Res Int 2018; 116:447-454. [PMID: 30716967 DOI: 10.1016/j.foodres.2018.08.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
Abstract
'Brava' and 'Mansa de Figueiredo' extra-virgin olive oils (EVOOs) are two varieties identified from north-western Spain. A systematic phenolic characterization of the studied oils was undertaken by LC-ESI-IT-MS. In addition, the role of dietary polyphenols from these EVOOs has been evaluated against the inhibition of key enzymes (α-glucosidase and α-amylase) in the management of diabetes mellitus (DM). Oleuropein and ligstroside derivatives comprised 83% and 67% of the total phenolic compounds in 'Brava' and 'Mansa de Figueiredo' EVOOs, respectively. The main secoiridoids from oleuropein were DOA (3,4-DHPEA-EDA, 59 and 22 mg kg-1, respectively) and the main isomer of OlAgl (3,4-DHPEA-EA, 74 and 23 mg kg-1). The main secoiridoids from ligstroside were D-LigAgl (p-HPEA-EDA or oleocanthal, 23 and 167 mg kg-1) and the main isomer of LigAgl (p-HPEA-EA, 214 and 114 mg kg-1). For α-glucosidase, both EVOO extracts displayed stronger inhibitory activity (IC50 values of 60 ± 8 and 118 ± 9 μg mL-1, respectively) than the commercial inhibitor acarbose (IC50 = 356 ± 21 μg mL-1). Nevertheless, for α-amylase, only 'Brava' extracts showed anti-α-amylase capacity. A daily VOO intake lower than the requirements of EFSA seem to be enough to reach both 50% for α-glucosidase and 25% for α-amylase inhibition. These findings support the potential health benefits derived from Galician EVOOs that might be probably linked to the outstanding high concentration levels of phenolic acids and flavonoids.
Collapse
Affiliation(s)
- M Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - P Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy
| | - C González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - A Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - B Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
38
|
Wani TA, Masoodi F, Gani A, Baba WN, Rahmanian N, Akhter R, Wani IA, Ahmad M. Olive oil and its principal bioactive compound: Hydroxytyrosol – A review of the recent literature. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Simal-Gándara J, Valentão P, Carrasco-Pancorbo A, Andrade P, Cancho-Grande B. Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Res Int 2018; 106:558-567. [DOI: 10.1016/j.foodres.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
|
40
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Carrasco-Pancorbo A, Simal-Gándara J, Cancho-Grande B. Nutraceutical Potential of Phenolics from 'Brava' and 'Mansa' Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of 'Picual' and 'Cornicabra'. Molecules 2018; 23:E722. [PMID: 29561824 PMCID: PMC6017695 DOI: 10.3390/molecules23040722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
The increasing interest in the Mediterranean diet is based on the protective effects against several diseases, including neurodegenerative disorders. Polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for these disorders. Extra-virgin olive oils (EVOOs) obtained from 'Brava' and 'Mansa', varieties recently identified from Galicia (northwestern Spain), were selected for in vitro screening to evaluate their capacity to inhibit key enzymes involved in Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LOX)), major depressive disorder (MDD) and Parkinson's disease (PD) (monoamine oxidases: hMAO-A and hMAO-B respectively). 'Brava' oil exhibited the best inhibitory activity against all enzymes, when they are compared to 'Mansa' oil: BuChE (IC50 = 245 ± 5 and 591 ± 23 mg·mL-1), 5-LOX (IC50 = 45 ± 7 and 106 ± 14 mg·mL-1), hMAO-A (IC50 = 30 ± 1 and 72 ± 10 mg·mL-1) and hMAO-B (IC50 = 191 ± 8 and 208 ± 14 mg·mL-1), respectively. The inhibitory capacity of the phenolic extracts could be associated with the content of secoiridoids, lignans and phenolic acids.
Collapse
Affiliation(s)
- María Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy.
| | - Carmen González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Beatriz Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| |
Collapse
|
41
|
Domínguez-Perles R, Abellán Á, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo Á. Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 2018; 107:619-628. [PMID: 29580528 DOI: 10.1016/j.foodres.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP, and 9-L1-PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL-1, respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL-1, and of ent-16-(RS)-9-epi-ST-Δ14-10-PhytoF (21.46 μg mL-1). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL-1). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Abellán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Daniel León
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Alexander Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
42
|
Corella D, Coltell O, Macian F, Ordovás JM. Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect. Annu Rev Food Sci Technol 2018; 9:227-249. [PMID: 29400994 DOI: 10.1146/annurev-food-032217-020802] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasingly, studies showing the protective effects of the Mediterranean diet (MedDiet) on different diseases (cardiovascular, diabetes, some cancers, and even total mortality and aging indicators) are being published. The scientific evidence level for each outcome is variable, and new studies are needed to better understand the molecular mechanisms whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases but also discussing other related diseases. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a critical review of the limitations of the studies undertaken and propose new analyses and greater bioinformatic integration to better understand the most important molecular mechanisms whereby the MedDiet as a whole, or its main food components, may exercise their protective effects.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain; .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.,Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Universitat Jaume I, Castellón, 12071, Spain
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.,Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,IMDEA Alimentación, Madrid, 28049, Spain
| |
Collapse
|