1
|
Liu WJ, Chen WM, Wang XM, Tu ZC, Shao YH, Liu J. Comparative studies on microbial transglutaminase, complex phosphate and fructooligosaccharide interacts with myofibrillar proteins: Improvement of the quality and flavor of silver carp surimi. Int J Biol Macromol 2025; 306:141696. [PMID: 40044004 DOI: 10.1016/j.ijbiomac.2025.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
The aim of this study was to evaluate the effect of microbial transglutaminase (MTG), complex phosphate (CP) and fructooligosaccharide (FOS) interact with myofibrillar proteins (MPs) on the quality and flavor of silver carp surimi gels. When surimi was added with 0.3 % MTG, 0.3 % CP and 4 % FOS respectively, the gel strength and texture were superior to those of the control group, and the surimi microstructure became more compact with smaller pore sizes. This was because MTG can induce the ε-(γ-glutamate) lysine bond formation in surimi MPs and promotes cross-linking of MPs. CP can increase the ionic strength, FOS can form hydrogen bonds with water and enhance MPs hydration, both of them promoted the conversion of α-helix to β-folding of MPs, and facilitate the formation of disulfide bonds. 13 volatiles were identified in control group, whereas the number of volatiles was increased to 31, 22 and 22 after addition of MTG, CP and FOS respectively, suggesting that MTG, CP and FOS promoted lipid oxidation and interacted with MPs to produce volatile compounds. Therefore, the addition of MTG, CP and FOS improved the quality and flavor of chub surimi gels, with MTG having the greatest effect on surimi.
Collapse
Affiliation(s)
- Wen-Jun Liu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Mei Chen
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Lee JB, Yoon NY, Bae YJ, Kwon GY, Sohn SK, Lee HR, Kim HJ, Kim MJ, Park HE, Shim KB. Optimizing 3D Food Printing of Surimi via Regression Analysis: Physical Properties and Additive Formulations. Foods 2025; 14:889. [PMID: 40077594 PMCID: PMC11899386 DOI: 10.3390/foods14050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to optimize the three-dimensional (3D) printing parameters for surimi-based inks and investigate the effects of additives (starch, salt, and water) on the rheological and textural properties of surimi paste, aiming to develop a universal formulation applicable across three fish species: Alaska pollock, golden threadfin bream, and hairtail. By analyzing the hardness, adhesiveness, storage modulus (G'), and complex viscosity of the surimi inks, a formula was developed to identify the range of physical properties required for stable and precise 3D printing. The parameter windows to build a 3D structure with a 45° slope were as follows: hardness, 150-415 g/cm2, and adhesion, -300 to -115 g. Mixing surimi with additives such as water, salt, and starch to obtain the desired physical properties facilitated the printing of 3D surimi samples using a 3D food printer.
Collapse
Affiliation(s)
- Jong Bong Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Na Young Yoon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Yeon Joo Bae
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Ga Yeon Kwon
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Suk Kyung Sohn
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Hyo Rim Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Hyeong Jun Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Min Jae Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Ha Eun Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Kil Bo Shim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| |
Collapse
|
3
|
Walayat N, Blanch M, Moreno HM. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels 2025; 11:142. [PMID: 39996685 PMCID: PMC11855292 DOI: 10.3390/gels11020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Surimi-based products are nutritionally valuable due to their essential amino acid composition, their content of high-quality proteins with excellent digestibility, and their low fat content. However, to achieve the desired texture, a significant amount of salt (1-3%) must be added, which could compromise their health benefits. This study provides an overview of surimi production, the gelation mechanism of myosin, and the most relevant gelation enhancers that could be used in manufacturing low-salt surimi-based products. Reducing the salt content in surimi-based products presents a significant challenge for the industry, not only from technological and sensory perspectives but also in response to the growing demand of consumers for healthier food options. So, this manuscript highlights several strategies for achieving optimal quality characteristics in relation to functional properties for the surimi products industry. In addition, surimi as a raw material is often misunderstood by consumers, who may question its nutritional value and, consequently, its consumption. Therefore, it is crucial to thoroughly explain the processing of this raw material and emphasize the importance of proper myofibrillar protein gelation to develop high-value surimi-based products.
Collapse
Affiliation(s)
- Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - María Blanch
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helena M. Moreno
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Qiu L, Zhu Y, Zhu X, Liu L, Lv M, Huang Y, Sun B, Qu M. Effect of freeze-thaw cycles on the quality of Yuba with different protein-lipid ratios on its protein-lipid network system. Food Chem 2025; 465:142096. [PMID: 39571443 DOI: 10.1016/j.foodchem.2024.142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
We investigated the effects of freeze-thaw (FT) cycles on the quality of Yuba with different protein-lipid ratios and on its protein-lipid network system in this study. The water holding capacity (WHC), tensile strength (TS), and L* values decreased significantly and elongation at break (EAB), b* values, carbonyl and Thiobarbituric acid value (TBARS) increased significantly after FT treatment. The variation in Yuba quality weakened after the 4 FT. Ice crystals disrupt the structure of the protein network, resulting in a degradation of Yuba quality. The degradation of Yuba quality was slowed by the influence of the contraction of the protein network at a later period. The formation of a weaker protein network and the high lipid content in low protein-lipid ratios led to a new trend of higher L* than the high protein-lipid. The results showed that a high protein-lipid ratio improved the FT stability of Yuba.
Collapse
Affiliation(s)
- Lidan Qiu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Ying Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Linlin Liu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Mingshou Lv
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Bingyu Sun
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Min Qu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
5
|
Liao J, Shi H, Wang J, Xia G, Zhao Y, Yu G, Shen X. Investigation of the Gel Properties and Gelation Mechanism of a Surimi Blend Composed of Skipjack Tuna ( Katsuwonus pelamis) and Purpleback Flying Squid ( Symplectoteuthis oualaniensis). Foods 2025; 14:621. [PMID: 40002064 PMCID: PMC11854482 DOI: 10.3390/foods14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The objective of the present study was to investigate the gel properties and gelation mechanism of a surimi blend consisting of Katsuwonus pelamis and Symplectoteuthis oualaniensis. Superior gel properties, including gel strength, cooking loss and water holding capacity, were observed in mixed surimi. With increasing proportions of K. pelamis in the blend, an increase in hardness, gumminess and chewiness emerged, which compromised the resilience and whiteness of the gels. The detection of apparent viscosity revealed the shear-thinning properties of mixed surimi. The results of the molecular force measurements and differential scanning calorimetry demonstrated that heterogeneous myofibrillar proteins interacted into rigid protein aggregates with the help of enhanced hydrophobic interactions, subsequently increasing the values of G' and G". According to the FTIR spectrum, as the proportion of K. pelamis gradually increased, the protein secondary structure of surimi transitioned from a random coil to a β-sheet, facilitating the formation of a more ordered network structure. A marked improvement in the microstructure was observed via SEM. Therefore, the incorporation of surimi can be employed to optimize gel properties.
Collapse
Affiliation(s)
- Jianwei Liao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Haikou 570228, China; (J.L.); (H.S.); (J.W.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (Y.Z.); (G.Y.)
| | - Gang Yu
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China; (Y.Z.); (G.Y.)
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China;
| |
Collapse
|
6
|
Yuan L, Lu C, Shi T, Liu Y, Wang X, Li M, Zhang X, Tian Y, Gao R. The role of disulfide bonds in L-arginine ameliorating the quality of low-salt sturgeon surimi gels induced by microwave: Increasing the diameter and fractal dimension of network. Food Res Int 2025; 201:115610. [PMID: 39849770 DOI: 10.1016/j.foodres.2024.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The purpose of this study was to investigate the mechanism of enhancing gelling properties of low-salt surimi by utilizing the complementary advantages of L-arginine (L-Arg) and microwave (MW) from the perspective of gels' network characteristics. At MW 3 min, the diameters of protein filaments were increased from 0.015 μm to 0.06-0.08 μm by 2 % L-Arg. The gel strength was improved from 58.4 to 108.0 g × cm by 2 % L-Arg, the cooking loss was reduced (from 21.8 % to 3.8 %), and they showed a strong correlation (|r| ≥ 0.73) with the fractal dimension (Df). These results suggested that the improvement (P < 0.05) of L-Arg in macro qualities was attributed to the denser microstructure. The intermolecular forces proved that L-Arg changed the dominant situation of hydrophobic interactions to a more balanced composition containing decreased hydrophobic interactions and increased ionic bonds, hydrogen bonds and disulfide bonds (P < 0.05) during the MW heating. The contribution of disulfide bonds was further proved by the reduced/non-reduced SDS-PAGE, and the increase of disulfide bonds can be explained by the conversion of sulfhydryl and the decreased proportion of α-helix. The present study can not only provide a universal theory for ameliorating the quality of low-salt surimi gels by regulating their microstructures but also promote the application of MW in surimi processing industry.
Collapse
Affiliation(s)
- Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yuanxiu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China.
| |
Collapse
|
7
|
Zhang Y, Bai G, Wang Y, Wang J, Teng W, Li M, Yao X, Cao J. Exploring the potential of fibrinogen hydrolysates as enhancers for myofibrillar protein gelation: Insights into molecular assembly behavior. Food Chem 2025; 464:141587. [PMID: 39423548 DOI: 10.1016/j.foodchem.2024.141587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
This study explored the use of pig blood fibrinogen hydrolysates, enzymatically hydrolyzed with trypsin and flavorzyme, to enhance myofibrillar protein gels, addressing issues like poor gel strength and water loss in meat products. By incorporating varying concentrations of fibrinogen hydrolysates into myofibrillar proteins, heat-induced gels were prepared. The composite gels showed improved textural properties, rheological characteristics and water-holding capacity. Scanning electron microscopy and atomic force microscopy analyses revealed a uniform, dense surface and an orderly internal structure in the composite gels. The study also noted decreased α-helix and random coil and increased β-sheet and β-turn contents, indicating a more ordered secondary structure. Hydrophobic interactions and disulfide bonds were identified as key factors in enhancing gelation, and a model was proposed to explain these molecular effects. This research demonstrates a potential of fibrinogen hydrolysates to improve quality and structure of myofibrillar protein gels designed for high-quality meat products.
Collapse
Affiliation(s)
- Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Genpeng Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ming Li
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
8
|
Lu J, Tong J, Xu D, Wei H, Huang T, Yang W, Jia R. Insight into the mechanism of setting temperature and time on gel properties of Solenocera crassicornis surimi. Food Res Int 2025; 202:115813. [PMID: 39967123 DOI: 10.1016/j.foodres.2025.115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
This study explored how setting conditions affect the gel properties of shrimp surimi from Solenocera crassicornis using a two-step heating process with varying temperatures (30, 40, 50 °C) and durations (0-120 min). At 30 °C, increased hydrogen bonds and cross-linking promoted macromolecular polymer formation, with optimal elasticity achieved at 15-30 min, but longer times led to gel aggregation and uneven structure. At 40 °C, macromolecular polymer decreased, while sulfhydryl groups increased, leading to disulfide bond formation, which disrupted hydrogen bonds and increased hydrophobic groups. Gel strength decreased over setting time, with a soft and smooth texture observed after 15-30 min. Setting at 50 °C disrupted chemical bonds, exposed hydrophobic groups, and resulted in less significant changes in storage modulus and loss modulus. After high-temperature gelation at 90 °C, disulfide bonds were further disrupted, reducing the stability of gel properties. Moreover, an increase in the setting temperature affected the internal water distribution within the shrimp surimi gel. A shorter setting time promoted the absorption of water molecules by starch in the gel, thereby reducing the free water content. However, when the setting time exceeded 60 min, the proportions of bound water and immobile water decreased, gradually transforming into free water. This transformation increased the drip loss and softened the texture of gel. In summary, setting conditions significantly influenced moisture distribution, viscoelasticity, and chemical forces in shrimp surimi gels.
Collapse
Affiliation(s)
- Jiafang Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jingjing Tong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Dalun Xu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Huamao Wei
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Wenge Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| | - Ru Jia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Zhang P, Zheng M, Hou G, Zhou F, Deng K, Miao S, Zhang L, Zheng B. Enhanced Gelation Properties and Saltiness Perception of Low-Salt Surimi Gel with Psyllium Husk Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28157-28166. [PMID: 39630961 DOI: 10.1021/acs.jafc.4c09113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Reducing salt intake is an effective strategy for preventing and managing hypertension and cardiovascular diseases. In this study, psyllium husk powder (PHP) was incorporated into surimi to address the challenges of diminished saltiness and texture in low-salt surimi products. PHP promoted the conversion of α-helix structures into β-sheet and strengthening intermolecular interactions, such as ionic bonds, hydrogen bonds, hydrophobic interactions, and disulfide bonds. The addition of PHP enhanced the connectivity and uniformity of the surimi gel network, resulting in an increase in gel strength from 11.35 to 13.88 N and a reduction in cooking loss from 6.33% to 2.27%. Additionally, the more compact gel network structure improved the fluidity of immobile water within the low-salt surimi gel. The surimi gel containing 1.5% PHP accelerated a 30% higher Na+ release rate compared to the low-salt surimi gel, enhancing the saltiness perception to levels comparable with high-salt surimi gel, as measured by an electronic tongue. These findings present a promising approach to improving the texture and saltiness perception of surimi gel products while reducing salt content.
Collapse
Affiliation(s)
- Pei Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Meixia Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Guohua Hou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Fuzhen Zhou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Kaibo Deng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
- Teagasc Food Research Centre, Moorepark, Fermoy P61C996, Co. Cork, Ireland
| | - Longtao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group Co. Ltd., Xiamen 361100, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| |
Collapse
|
10
|
Hu L, Liu S, Zhang R, Song S, Xiao Z, Shao JH. Myosin supramolecular self-assembly: The crucial precursor that manipulates the covalent aggregation, emulsification and rheological properties of myosin. Food Res Int 2024; 198:115320. [PMID: 39643363 DOI: 10.1016/j.foodres.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
The transformation of molecular conformation and self-assembly properties of myosin during the heating process at different ionic strengths (0.2 M, 0.4 M and 0.6 M NaCl) and its effect on rheological behavior and emulsification properties were investigated. Under incubation temperatures between 40 °C and 50 °C, myosin underwent a supramolecular self-assembly stage dominated by noncovalent forces (hydrogen bonding, ionic bonding and hydrophobic interactions). Higher ionic strength facilitated molecular rearrangement through enhanced swelling of myosin heads and head-to-head assemblies, which contributed to enhanced ordering and homogeneity of myosin covalent aggregates (above 60 °C) and manifested itself macroscopically as enhanced gel viscoelasticity and emulsion stability. In contrast, at lower ionic strength, the tail-to-tail assemblies of myosin led to the preferential formation of covalent cross-links in the tails, which resulted in the inability of molecular rearrangement and the formation of disordered aggregates and finally led to the deterioration of the gel and the destabilization of the emulsion. In conclusion, the supramolecular self-assembly behavior of myosin, as an intermediate process in myosin's sol-gel transition, is crucial for the orderliness of myosin assemblies, gel network strengthening, and emulsion stability. The obtained insight provides a reference for the precise implementation of quality improvement strategies for meat products.
Collapse
Affiliation(s)
- Li Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Ruibang Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuyi Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China.
| |
Collapse
|
11
|
Chen J, Ma H, Guo A, Lv M, Pan Q, Ya S, Wang H, Pan C, Jiang L. Influence of (ultra-)processing methods on aquatic proteins and product quality. J Food Sci 2024; 89:10239-10251. [PMID: 39503310 DOI: 10.1111/1750-3841.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/28/2024]
Abstract
Aquatic products are a high-quality source of protein for humans, and the changes in protein during aquatic product processing are crucial for nutritional value, product performance, and consumer health. With the advancement of science and technology, aquatic product processing methods have become increasingly diverse. In addition to traditional methods such as thermal processing (steaming, roasting, and frying) and pickling, emerging non-thermal processing technologies, such as high pressure, ultrasound, and irradiation, are also being applied. During (ultra-)processing, aquatic products undergo complex biochemical reactions, among which protein oxidation significantly affects the quality of aquatic products. Protein oxidation can alter the molecular structure of proteins, thereby changing their functional properties and ultimately impacting product quality. This paper primarily explored the effects of protein changes under different processing methods on aquatic product quality and human health, as well as techniques for controlling protein oxidation. It aims to provide a theoretical basis for selecting appropriate processing methods, improving aquatic product quality, and controlling protein oxidation in aquatic products, and to offer scientific guidance for practical production.
Collapse
Affiliation(s)
- Jingjing Chen
- Tourism and Health Vocational College, Zhoushan Islands New Area, Zhoushan, China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Min Lv
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Qingyan Pan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Shiya Ya
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Hui Wang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| | - Chuanyan Pan
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Linyuan Jiang
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
12
|
Zhang T, Xue M, Xie H, Chen Y. A comparative study of different soybean oil forms on the physicochemical properties of surimi myofibrillar protein gel: The role of soybean protein isolate and κ-carrageenan. Int J Biol Macromol 2024; 282:137422. [PMID: 39532174 DOI: 10.1016/j.ijbiomac.2024.137422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Natural soybean oil, Pickering emulsion, high-internal-phase emulsion (HIPE), and emulsion gel were prepared to investigate their effects on the physicochemical properties of surimi myofibrillar protein gels. Their effects on gel strength ranked as: emulsion gel > Pickering emulsion > HIPE > soybean oil. At the same oil content, the emulsion gel exhibited higher G' than the other forms whereas natural oil exhibited the lowest G', and T22 was smaller in the emulsion gel group, indicating that the emulsion gel enhanced the interaction between water molecules and protein macromolecules. FT-IR testified that 9 % natural oil reduced the β-sheet content to 26.34 %, whereas Pickering emulsion, HIPE, and emulsion gel recovered the β-sheet content to 31.30 %, 36.17 %, and 32.69 %, respectively. Emulsion gel led to fewer voids, and the oil droplets in emulsion gel were more regularly spherical and homogeneously dispersed in the gel matrix, which might be attributed to the filling effects as well as "bridging action" of soybean protein isolate and κ-carrageenan within surimi proteins. In conclusion, we demonstrated emulsion gel as a good replacer to mitigate the negative effect of oil on the texture and structure of surimi gels, which would be a promising approach for oil supplementation in surimi production.
Collapse
Affiliation(s)
- Tao Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Meiyun Xue
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Hongkai Xie
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yinji Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
13
|
Yao W, Zhao Z, Zhang J, Kong B, Sun F, Liu Q, Cao C. Revealing the deterioration mechanism in gelling properties of pork myofibrillar protein gel induced by high-temperature treatments: Perspective on the protein aggregation and conformation. Meat Sci 2024; 217:109595. [PMID: 39004037 DOI: 10.1016/j.meatsci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.
Collapse
Affiliation(s)
- Wenjing Yao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
14
|
Li Y, Han X, Zhang Y, Wang Y, Wang J, Teng W, Wang W, Cao J. Thawed drip and its membrane-separated components: Role in retarding myofibrillar protein gel deterioration during freezing-thawing cycles. Food Res Int 2024; 188:114461. [PMID: 38823861 DOI: 10.1016/j.foodres.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Xiaoyu Han
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
15
|
Ding Y, Feng R, Zhu Z, Xu J, Xu Y. Effects of different protein cross-linking degrees on physicochemical and subsequent thermal gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Food Chem X 2024; 22:101448. [PMID: 38764785 PMCID: PMC11101881 DOI: 10.1016/j.fochx.2024.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024] Open
Abstract
Knowledge regarding the denaturation process and control methods for depolymerized sol-state myofibrillar proteins (MPs) during freezing remains scant. This study investigated the effects of protein cross-linking treatment before freezing on physicochemical and subsequent gelation properties of MPs sol subjected to freeze-thaw (F-T) cycles. Results indicated that after five F-T cycles, cross-linked MPs sols showed increased high molecular weight polymers and bound water (T21a and T21b) mobility, suggesting enhanced protein-protein interactions at the expense of protein-water interactions. Upon heating after F-T cycles, gels formed from cross-linked sols exhibited significantly higher hardness, springiness, and cooking loss (P < 0.05), alongside more contracted gel networks. Correlation analysis revealed that the formation and properties of thermal gel after freezing closely relate to changes in molecular conformation and chemical bonds of cross-linked MPs sol during freezing. This study provides new insights into regulating the freezing stability and post-thawed thermal processing properties of sol-based surimi products.
Collapse
Affiliation(s)
- Yuxin Ding
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Ruonan Feng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhifei Zhu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Junmin Xu
- Mekong Fishery Industry Co.,Ltd, Veun Kham Village, Don Khong, Champassak, Laos
- Shenzhen CF Marine Technology Co., Ltd., 140 Jinye Ave, Shenzhen, Guangdong, 518116 China
| | - Yanshun Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Zhang W, Ni Y, Ma Y, Xie Y, Li XM, Tan L, Zhao J, Li C, Xu B. Pseudomonas weihenstephanensis through the iron metabolism pathway promotes in situ spoilage capacity of prepared beef steaks during cold storage. Food Microbiol 2024; 120:104466. [PMID: 38431318 DOI: 10.1016/j.fm.2024.104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
In this study, we evaluated the histomorphology, reactive oxygen species (ROS), protein degradation, and iron metabolism characteristics and differential expression analysis of genes for siderophores synthesis and protease secretion in prepared beef steaks inoculated alone or co-inoculated with P. weihenstephanensis, B. thermotrichothrix and M. caseolyticus at 4 °C for 12 days. The results showed that the P. weihenstephanensis was the key bacteria that degraded protein in the process of prepared beef steaks spoilage, which led to protein oxidation by promoting ferritin degradation to release free iron and inducing ROS accumulation. The highest expression of FpvA and AprE was detected in the P. weihenstephanensis group by comparing qRT-PCR of the different inoculation groups. Both qRT-PCR and Western blot revealed that ferritin heavy polypeptide and ferritin light chain polypeptide gene and protein expressions were significantly higher in the P. weihenstephanensis inoculation group compared to the other inoculation groups. Results suggested that FpvA and AprE might play roles in meat spoilage and were potential positional, physiological and functional candidate genes for improving the quality traits of prepared beef steaks. This work may provide insights on controlling food quality and safety by intervening in spoilage pathways targeting iron carrier biosynthesis or protease secretion genes.
Collapse
Affiliation(s)
- Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Xiao Min Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
17
|
Xie D, Tang Y, Dong G. Various factors affecting the gel properties of surimi: A review. J Texture Stud 2024; 55:e12847. [PMID: 38924099 DOI: 10.1111/jtxs.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
As an important aquatic prepared food, surimi products are favored by consumers due to their unique viscoelastic properties and high nutritional value. Gel properties are the main indicators to measure the quality of surimi products. The gelation of surimi mainly involves intramolecular (conformational change) and intermolecular (chemical force) changes. Factors such as processing treatments, raw fish species and exogenous additives affect surimi protein structure, chemical forces and endogenous enzyme activities, which further affect the gel properties of surimi products. This review focuses on the mechanism of surimi heat-induced gel, mainly including protein chain expansion and aggregation through various chemical forces to form a three-dimensional network structure. In addition, the mechanism and application of different factors on the gel properties of surimi were also discussed, providing a reference for the selection of fish species, the control of heating conditions in the gel process of surimi products, the selection of additives and other measures to improve the gel performance.
Collapse
Affiliation(s)
- Dongfei Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Shenzhen Kenuo Medical Laboratory, Shenzhen, China
| | - Gua Dong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Ding N, Sun X, Yu Q, Hong H, Luo Y, Tan Y. Unlocking the secrets of crude myofibril-bound serine protease from grass carp: The role in degrading myofibrillar proteins. Food Chem 2024; 437:137844. [PMID: 37918161 DOI: 10.1016/j.foodchem.2023.137844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) are used as raw material for conventional surimi products in Southern China. However, endogenous serine proteases deteriorated the texture of the surimi gel. To unlock the mechanism behind, the present study isolated the crude myofibril-bound serine protease (cMBSP) in grass carp and studied its effects on surimi gel. The cMBSP activity was the highest at 40 °C and pH 8.0, and it remained stable at 20-55 °C neutral pH. Additionally, it was susceptible to serine protease inhibitors and high concentrations of Na+. The maximum degradation of myosin heavy chain by cMBSP was observed at 50 °C. Protein unc-45 homolog B (a myosin chaperone) is one of the apparent degradation products according to mass spectrometry. The cMBSP caused lower water holding capacity and deteriorated texture in the surimi gel. This study expanded insights about the mechanism of surimi gel degradation by cMBSP, which provided theoretical basis for enhancing surimi quality.
Collapse
Affiliation(s)
- Ning Ding
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyue Sun
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
19
|
Jiang Q, Wang L, Gao P, Yu P, Yang F, Yu D, Chen H, Xia W. Study on the effect and mechanism of chicken breast on the gel properties of silver carp (Hypophthalmichtys molitrix) surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1132-1142. [PMID: 37737024 DOI: 10.1002/jsfa.12998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Adding appropriate exogenous substances is an effective means to improve the quality of freshwater fish surimi. The present study investigated the effects of chicken breast on the gel properties of mixed minced meat products. RESULTS With the increase in the proportion of chicken breast, the breaking force of mixed gels gradually increased. When the addition ratio was 30:70, the gel strength of mixed gels had the highest strength of 759.00 g cm-1 and also the highest water holding capacity of 87.36%. Compared with surimi gels (0:100), the hardness, adhesiveness and chewiness of mixed gels were significantly improved. The increase in the proportion of chicken breast increased the thermal stability of the mixed sol and improved the rheological properties of the mixed sol. When the proportion was 40:60, the area of immobile water (A22 ) in the mixed gel increased significantly, and the highest A22 was 3463.24. The hydrophobic interactions and disulfide bonds in the mixed gel were significantly increased as a result of the addition of chicken breast. The results of microstructure, electrophoresis and Raman spectroscopy indicated that the addition of chicken breast promoted the cross-linking of the proteins in mixed gels, which facilitated the transformation of the protein secondary structure from α-helical to β-folded structure, thus forming a more uniform and orderly network structure. CONCLUSION These results suggest that improving the gel properties of silver carp surimi by use of chicken breast has practical implications for the development of new blended products for surimi processing. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Lishi Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Pei Gao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Peipei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Fang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Han Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Wuxi, China
| |
Collapse
|
20
|
Wang Y, Tian Y, Sun J, Yang H. Physicochemical properties of grass carp surimi as affected by pH and NaCl concentration during washing. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Bai G, Pan Y, Zhang Y, Li Y, Wang J, Wang Y, Teng W, Jin G, Geng F, Cao J. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem 2023; 429:136836. [PMID: 37453331 DOI: 10.1016/j.foodchem.2023.136836] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
During storage and processing, muscle proteins, e.g. myosin and myoglobin, will inevitably undergo degeneration, which is thus accompanied by quality deterioration of muscle foods. Some exogenous additives have been widely used to interact with muscle proteins to stabilize the quality of muscle foods. Molecular docking and molecular dynamics simulation (MDS) are regarded as promising tools for recognizing dynamic molecular information at atomic level. Molecular docking and MDS can explore chemical bonds, specific binding sites, spatial structure changes, and binding energy between additives and muscle proteins. Development and workflow of molecular docking and MDS are systematically summarized in this review. Roles of molecular simulations are, for the first time, comprehensively discussed in recognizing the interaction details between muscle proteins and exogenous additives aimed for stabilizing color, texture, flavor, and other properties of muscle foods. Finally, research directions of molecular docking and MDS for improving the qualities of muscle foods are discussed.
Collapse
Affiliation(s)
- Genpeng Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yiling Pan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Yang Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Guofeng Jin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, 610106 Chengdu, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
22
|
Zhang C, Chen L, Lu M, Ai C, Cao H, Xiao J, Zhong S, Teng H. Effect of cellulose on gel properties of heat-induced low-salt surimi gels: Physicochemical characteristics, water distribution and microstructure. Food Chem X 2023; 19:100820. [PMID: 37780301 PMCID: PMC10534169 DOI: 10.1016/j.fochx.2023.100820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
The processing of surimi products requires the addition of high levels of salt, which makes it a high-salt food that poses a risk to human health. The search for exogenous additives to reduce the salt content of surimi products while ensuring their quality characteristics is crucial. Therefore, the effect of different species of cellulose on enhancing the quality characteristics of low-salt surimi gels was investigated and the best-modified cellulose was identified. Carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), and microcrystalline cellulose (MCC) were selected for this study to compare with high-salt control and low-salt control. The results showed that cellulose could induce conformational transitions of proteins and promote the formation of an ordered and dense surimi gel network and the minimum porosity of 15.935% was obtained in the MCC-treated group. The cellulose-treated group conferred good textural properties to the surimi gels, significantly improved gel strength and water retention capacity (p < 0.05), and reduced the amount of water lost after cooking treatment (p < 0.05). Low-field NMR results showed that cellulose reduced the release of water, converting more free water to immobile water, thus increasing the water proton density. The higher energy storage modulus G' in the presence of cellulose indicated a more stable surimi gel system dominated by springiness. In summary, cellulose could confer better quality characteristics to low-salt surimi gels and MCC performance was superior to other cellulose species. This study helps the understanding of the mechanism of cellulose-surimi action on the development of high-quality low-salt surimi gels.
Collapse
Affiliation(s)
- Chang Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Hunan GaoGe Dairy Co., Ltd, Changsha, Hunan, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
23
|
Li Y, Guo J, Wang Y, Zhang F, Chen S, Hu Y, Zhou M. Effects of hydrocolloids as fat-replacers on the physicochemical and structural properties of salt-soluble protein isolated from water-boiled pork meatballs. Meat Sci 2023; 204:109280. [PMID: 37453293 DOI: 10.1016/j.meatsci.2023.109280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Konjac glucomannan (KGM), xanthan gum (XG), guar gum (GG), and κ-carrageenan (KC), as substituent, are commonly used in ground pork products. Here, the content of these (0.5, 1.0, 1.5, and 2.0%, w/w) on the gel properties, thermal properties, and interaction forces of salt-soluble protein (SSP) isolated from water-boiled pork meatballs were investigated. We found 1.0% KGM, 0.5% XG, 0.5-2.0% GG, and 0.5-2.0% KC to water-boiled pork meatballs exerted a positive effect on the denaturation temperature, hydrogen bonds, hydrophobic interactions, disulfide bonds, α-helix, and β-sheet content of SSP, as well as the strength and storage modulus of the modified protein gel. The addition of these hydrocolloids with the addition of 1.0% aggregated myosin and actin, led to the enhancement of the bands corresponding to myosin heavy chain and actin. The prediction model of gel strength showed that the gel strength was negatively correlated with Tpeak1, Tpeak2, and ionic bond. This study provides theoretical guidance for improving the application of hydrocolloids in pork-based foods.
Collapse
Affiliation(s)
- Yanhui Li
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China.
| | - Yingying Wang
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Fan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Shuxing Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China; Food Laboratory of Zhongyuan, 462000 Luohe, Henan, China
| | - Yuxi Hu
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Mingyi Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| |
Collapse
|
24
|
Wang X, Yao Y, Yu J, Cui H, Hayat K, Zhang X, Ho CT. Evolution of lean meat tenderness stimulated by coordinated variation of water status, protein structure and tissue histology during cooking of braised pork. Food Res Int 2023; 171:113081. [PMID: 37330836 DOI: 10.1016/j.foodres.2023.113081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Tenderness of lean meat in braised pork is of great importance to the consumer palatability and acceptance. The influence of water status, protein structure and histological changes on lean meat tenderness during cooking was investigated. Results indicated that lean meat began to tenderize mainly after 20 min-cooking. In the early period of cooking, the decrease of total sulfhydryl content caused the protein oxidative cross-linking, leading to the gradual unfolding of the protein structure, thus resulting in a decrease of T22 and an increase of centrifugal loss, which decreased the tenderness of lean meat. However, after cooking for 20 min, the β-sheet decreased and random coil increased, thus generating conversion between P21 and P22. The rupture of perimysium structure was observed. Changes in protein structure, water status, and tissue histology could facilitate the initiation and development of lean meat tenderness.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Yishun Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
25
|
Li S, Lin S, Jiang P, Feng Q, Bao Z, Huang Y, Sun N. Discovery of Potential Protein Markers Associated with Quality Characteristics of Antarctic Krill ( Euphausia superba) Surimi Gel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37478023 DOI: 10.1021/acs.jafc.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Antarctic krill are a consumption resource with great exploitation potential. However, the poor gel properties of Antarctic krill meat seriously limit its high-value application. In the present study, the quality characteristics and proteome changes of the κ-/ι-carrageenan-Antarctic krill surimi gel were systematically analyzed and compared. In addition, the transcriptome sequencing of Antarctic krill was carried out, which filled the gap in the Antarctic krill database. Higher molecular forces (disulfide bond and hydrophobic interaction) and the degree of network cross-linking significantly promoted the formation of κ/ι-carrageenan-Antarctic krill surimi compared to that of Antarctic krill surimi. This is the first study to investigate and map potential protein markers for quality characteristics of Antarctic krill surimi based on mass spectrometry-based label-free quantitative proteomics. The results could provide a theoretical reference for the quality control of Antarctic krill during application.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qi Feng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yihan Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
26
|
Wang Z, Li D, Liu X, Zhang M, Chu P, Zhu B, Liu D, Zhou D. Achieving dual functions of texture modification and water retention of shrimp surimi products with the combination of epigallocatechin-3-gallate and γ-cyclodextrin. Food Chem 2023; 418:136034. [PMID: 37003199 DOI: 10.1016/j.foodchem.2023.136034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) exhibits excellent cross-linking effects of myofibrillar proteins, it is prone to self-aggregation, causing excessive cross-linking and moisture loss of gels, which limits its application as a food additive in surimi products. Here, through combination γ-cyclodextrin and EGCG into one inclusion complex, we achieved proper usage of EGCG in shrimp surimi products: elevating both water holding capability and texture properties (hardness, chewiness and resilience). Moreover, the mechanism behind excellent performance was elucidated: as texture modifiers, the complexes improved gel network integrity through intermolecular interactions and moderated disulfide bonds; and as water retainer agents, the complexes promoted transformation of nitrogen in proteins towards the form of protonated amino, facilitating the occurrence of hydration. Furthermore, the inclusion complexes brought a higher phenolic retention within products in contrast with direct addition of EGCG. This work may propose novel insights for the usage of polyphenols as additives in surimi-based products.
Collapse
Affiliation(s)
- Zonghan Wang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Deyang Li
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyang Liu
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Min Zhang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Pengfei Chu
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou 310058, China.
| | - Dayong Zhou
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
27
|
Enhancing gel performance of surimi gels via emulsion co-stabilized with soy protein isolate and κ-carrageenan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Niu F, Ma S, Zhang X, Ritzoulis C, Chen Y, Pan W. The influence of KCl concentration on the gelation of myofibrillar protein giant squid ( Dosidicus gigas) due to molecular conformation change. Front Nutr 2023; 9:1082464. [PMID: 36687709 PMCID: PMC9846250 DOI: 10.3389/fnut.2022.1082464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Protein gelation process is of importance in food industry. The objective of this study is to investigate the influence of salt concentration variation, which induced protein conformation change, on protein's intermolecular interactions and its gelation process. Methods Paramyosin has been separated and purified from myofibrillar protein extracted from giant squid. Then Giant squid's paramyosin molecular mass and intermolecular interactions were quantified by means of light scattering techniques. Finally, the micro-rheology study via diffusing wave spectroscopy (DWS) technique revealed that this conformation change dramatically affected myofibrillar protein gelation process. Results The obtained apparent molecular weight (ca 2 × 105 g/mol) suggested that protein molecules existed as dimers, while the second virial coefficient A2 significantly reduced from -3.98456 × 10-5 to -5.07575 × 10-4 ml mol/g2 when KCl concentrated from 0.15 to 1 mol/L. Light scattering data also suggest that paramyosin dimers are stiff, with a persistence length of 120 nm, almost the length of a molecule and independent of salt concentration. Mean-square displacement (MSD) of tracer particles at 5 temperatures with 4 salt concentrations displayed that this conformation change had dramatic effect. Therefore, G' and G" were remarkably altered with at least one order of magnitude difference owing to this event occurrence. Conclusions Paramyosin conformation change due to KCl concentrated enhances attractive interactions with apparent molecular mass increase, which resulted in majority paramyosin molecules (> 99%) in dimeric form and promoted aggregates formation. DWS technique revealed that the conformation change dramatic affected this process characterized by the correlation functions, MSD, and G' and G". This study brings forward data on understanding the effect of a major salt supplement, KCl, on the chemical physics of a major muscle protein.
Collapse
Affiliation(s)
- Fuge Niu
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shuang Ma
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiuzhen Zhang
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Christos Ritzoulis
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China,Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Yueyue Chen
- China Aquatic Products Zhoushan Marine Fisheries Corporation, Zhoushan, China
| | - Weichun Pan
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China,*Correspondence: Weichun Pan,
| |
Collapse
|
29
|
Wang Z, Yu X, Zhao W, Wang Y, Li S, Yu C, Dong X. 3D printability of sturgeon paste as affected by colloid milling. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Influence mechanisms of different setting time at low temperature on the gel quality and protein structure of Solenocera crassicornis surimi. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Gao X, Yang S, You J, Yin T, Xiong S, Liu R. Changes in Gelation Properties of Silver Carp Myosin Treated by Combination of High Intensity Ultrasound and NaCl. Foods 2022; 11:foods11233830. [PMID: 36496636 PMCID: PMC9735971 DOI: 10.3390/foods11233830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The molecular behavior of myosin in a low-salt environment limited the production of surimi-based products. This study aimed to investigate the effect of the combination of high intensity ultrasound (HIU) and NaCl (0.1, 0.3, 0.5 mol/L) on the physicochemical indexes of myosin. The changes were evaluated by solubility, ultraviolet (UV) spectroscopy, dynamic rheological properties, water holding capacity (WHC), microstructures, etc. For control samples, the gelation properties of myosin strengthened upon NaCl increasing. Combination of HIU and NaCl significantly improved the solubility of myosin, which was due to the conformational changes and the exposure of reactive groups. Meanwhile, the particle size of myosin obviously decreased when observed by atomic force microscope, which in turn promoted the stability of myosin. Furthermore, the improvement in solution behaviors of myosin treated by combination of HIU and NaCl contributed to the gelation properties as well as the formation of compact microstructures, which obtained high WHC and low cooking loss of myosin gels. In conclusion, combination of HIU and NaCl induced the unfolding of myosin with the exposure of reactive groups, consequently facilitating the formation of denser microstructures. Moreover, the biggest degree of improvement in gelation properties was observed at 0.1 mol/L NaCl combined with HIU.
Collapse
Affiliation(s)
- Xia Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Shengnan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education , Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Correspondence:
| |
Collapse
|
32
|
Improving the Gel Quality of Threadfin Bream ( Nemipterus spp.) Surimi Using Salted Duck Egg White Powder. Foods 2022; 11:foods11213350. [PMID: 36359963 PMCID: PMC9657398 DOI: 10.3390/foods11213350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of salted duck egg white powder (SDEWP) as a source of salt at different salt equivalent (SE) levels (0−2.5% SE) on gel qualities and texture properties of threadfin bream surimi was investigated. SDEWP possessed a high protein (64.59%) and salt (34.86%) concentration. The breaking force of surimi gel increased by the amount of SDEWP (p < 0.05). The addition of SDEWP up to 1.5% SE into the surimi gel has significantly increased the deformation (13.8%) and decreased the expressible moisture content (38.5%). Hardness, gumminess, and chewiness were augmented as higher levels of SDEWP were added, whereas cohesiveness decreased when the SDEWP above 1.5% SE was used. The incorporation of SDEWP had no significant effect on the springiness (p < 0.05). Less proteolytic degradation was observed in the surimi gel fortified with SDEWP. A higher amount of added SDEWP enhanced the whiteness of the surimi gel (p < 0.05). A denser and more ordered gel network was attained when SDEWP with 1.5% SE was added. SDEWP could be exploited as a source for salt and non-fish proteins in threadfin bream surimi, in which SDEWP containing 1.5% SE could significantly improve the quality of surimi gel.
Collapse
|
33
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
34
|
Xiong Z, Shi T, Jin W, Bao Y, Monto AR, Yuan L, Gao R. Gel performance of surimi induced by various thermal technologies: A review. Crit Rev Food Sci Nutr 2022; 64:3075-3090. [PMID: 36193875 DOI: 10.1080/10408398.2022.2130154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
35
|
Wasinnitiwong N, Benjakul S, Hong H. Effects of κ-carrageenan of gel quality on threadfin bream (Nemipterus spp.) surimi containing salted duck egg white powder. Int J Biol Macromol 2022; 221:61-70. [PMID: 36063896 DOI: 10.1016/j.ijbiomac.2022.08.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to evaluate the combined effect of κ-carrageenan and salted duck egg white powder (SDEWP) in improving the gel quality of threadfin bream surimi. Effects of κ-carrageenan at different levels (0-2 %) on gel properties of threadfin bream surimi without and with salted duck egg white powder at 3 % (protein equivalent) were investigated. A combination of 0.5 % κ-carrageenan and SDEWP increased breaking force of surimi gel by 139.7 % and deformation by 55.1 %, compared to the control (P < 0.05). The expressible moisture content (EMC) was decreased by 50.0 % in the surimi gel added with 0.5 % κ-carrageenan and SDEWP. Hardness, cohesiveness, gumminess, and chewiness of surimi gel were also improved (P < 0.05). However, springiness of surimi gel was not affected. SDEWP reduced proteolytic degradation in surimi gel. Surimi gel with augmented whiteness was attained when κ-carrageenan was added at higher levels. Microstructure of surimi gel shown that the gel became denser and more uniform when added with 0.5 % κ-carrageenan and SDEWP. Therefore, κ-carrageenan can be used to enhance the effectiveness of SDEWP and further improve the gel quality of threadfin bream surimi added with SDEWP.
Collapse
Affiliation(s)
- Naphat Wasinnitiwong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
36
|
Priyadarshini MB, Balange A, Xavier M, Nayak BB. Effect of spray‐dried cluster bean seed protein extract on the gel properties of single washed Nile tilapia surimi. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Bhargavi Priyadarshini
- Department of Fish Processing Technology and Engineering College of Fisheries CAU‐I, Lembucherra West Tripura India
| | - Amjad Balange
- Department of Post‐Harvest Technology, ICAR‐Central Institute of Fisheries Education, Versova Mumbai Maharashtra India
| | - Martin Xavier
- Department of Post‐Harvest Technology, ICAR‐Central Institute of Fisheries Education, Versova Mumbai Maharashtra India
| | - Binaya Bhusan Nayak
- Department of Post‐Harvest Technology, ICAR‐Central Institute of Fisheries Education, Versova Mumbai Maharashtra India
| |
Collapse
|
37
|
Gao X, You J, Yin T, Xiong S, Liu R. Simultaneous effect of high intensity ultrasound power, time, and salt contents on gelling properties of silver carp surimi. Food Chem 2022; 403:134478. [DOI: 10.1016/j.foodchem.2022.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022]
|
38
|
Evaluation of partial salt-replacement with konjac glucomannan on chicken batters: Edible quality and physicochemical properties of heat-set gel. Food Chem 2022; 387:132952. [DOI: 10.1016/j.foodchem.2022.132952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/16/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
|
39
|
Shen D, Song H, Zou T, Raza A, Li P, Li K, Xiong J. Reduction of sodium chloride: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3931-3939. [PMID: 35266156 DOI: 10.1002/jsfa.11859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Sodium chloride (NaCl) is an enjoyable condiment. However, evidence is accumulating to indicate that an excessive intake of Na+ in food may lead to an increased risk of cardiovascular and cerebrovascular diseases. Previous systematic reviews have focused on replacing NaCl with other metal salts (e.g. KCl). However, new salty flavor enhancers (yeast extract, taste peptides, and odor compounds) have yet to be reviewed. This systematic review evaluates the methods for, and feasibility, of NaCl reduction. It defines NaCl reduction and considers the methods used for this purpose, especially the use of flavor enhancers (yeast extract, taste peptides, and odor compounds). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyu Shen
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Huanlu Song
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Tingting Zou
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Ali Raza
- Beijing Research Center for Food Additive Engineering Technology, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Pei Li
- Angel Yeast Co. Ltd., Yichang, China
| | - Ku Li
- Angel Yeast Co. Ltd., Yichang, China
| | | |
Collapse
|
40
|
Pudtikajorn K, Sae‐leaw T, Buamard N, Zhou A, Ma L, Benjakul S. Characterisation of fish tofu fortified with skipjack tuna (
Katsuwonus pelamis
) eyeball scleral cartilage biocalcium. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khamtorn Pudtikajorn
- Faculty of Agro‐Industry International Center of Excellence in Seafood Science and Innovation Prince of Songkla University, Hat Yai Songkhla 90110 Thailand
| | - Thanasak Sae‐leaw
- Faculty of Agro‐Industry International Center of Excellence in Seafood Science and Innovation Prince of Songkla University, Hat Yai Songkhla 90110 Thailand
| | - Natchaphol Buamard
- Faculty of Agro‐Industry International Center of Excellence in Seafood Science and Innovation Prince of Songkla University, Hat Yai Songkhla 90110 Thailand
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science South China Agricultural University Guangzhou China
| | - Lukai Ma
- College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou China
| | - Soottawat Benjakul
- Faculty of Agro‐Industry International Center of Excellence in Seafood Science and Innovation Prince of Songkla University, Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
41
|
Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Yu N, Yang F, Gong H, Zhou J, Jie C, Wang W, Chen X, Sun L. Gel & three-dimensional printing properties of sheep plasma protein-surimi induced by transglutaminase. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Tian Z, Jiang X, Xiao N, Zhang Q, Shi W, Guo Q. Assessing the Gel Quality and Storage Properties of Hypophythalmalmichthys molitrix Surimi Gel Prepared with Epigallocatechin Gallate Subject to Multiple Freeze-Thaw Cycles. Foods 2022; 11:foods11111612. [PMID: 35681362 PMCID: PMC9179997 DOI: 10.3390/foods11111612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Epigallocatechin gallate (EGCG) with concentrations of 0-0.03% was added to manufacture surimi gels, respectively, while effects on gel quality and storage properties indicators during freeze-thaw (F-T) cycles were investigated. The results implied that the gel quality and storage properties of surimi gels added without EGCG were seriously destroyed during F-T cycles. The addition of EGCG could inhibit the decline of texture and gel strength. Moreover, EGCG has effect on inhibiting the microbial growth and the formation of off-odor compounds such as total volatile basic nitrogen (TVB-N) and malondialdehyde (MDA). Low-field nuclear magnetic resonance (LF-NMR) and water-holding capacity (WHC) results showed that immobilized water migrated to free water with the extension of F-T cycles. The scanning electron microscope (SEM) observed denser protein networks and smaller holes from the surimi gels added with EGCG. However, excessive (0.03%) EGCG showed the loose network structure and moisture loss. Overall, EGCG in 0.01-0.02% addition was good for resisting damage of surimi gels during F-T cycles.
Collapse
Affiliation(s)
- Zhihang Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.T.); (X.J.); (N.X.); (Q.Z.)
| | - Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.T.); (X.J.); (N.X.); (Q.Z.)
| | - Naiyong Xiao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.T.); (X.J.); (N.X.); (Q.Z.)
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.T.); (X.J.); (N.X.); (Q.Z.)
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.T.); (X.J.); (N.X.); (Q.Z.)
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
- Correspondence: (W.S.); (Q.G.); Tel.: +86-156-9216-5859 (W.S.)
| | - Quanyou Guo
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- Correspondence: (W.S.); (Q.G.); Tel.: +86-156-9216-5859 (W.S.)
| |
Collapse
|
44
|
Nguyen TB, Mueni LM, Bui TNTV, Bao HND, Thi Kim Cuc N, Nicolai T. Characterization of tuna dark muscle protein isolate. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Jiang Q, Wu W, Han J, Chung HY, Gao P, Yu D, Yu P, Xu Y, Xia W. Characteristics of silver carp surimi gel under high temperature (≥100 °C): quality changes, water distribution and protein pattern. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Wenmin Wu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jingwen Han
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
46
|
Effect of microwave-ultrasonic combination treatment on heating-induced gel properties of low-sodium tilapia surimi during gel setting stage and comparative analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Yingchutrakul M, Wasinnitiwong N, Benjakul S, Singh A, Zheng Y, Mubango E, Luo Y, Tan Y, Hong H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022; 11:1318. [PMID: 35564045 PMCID: PMC9101759 DOI: 10.3390/foods11091318] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Asian carp is a general designation for grass carp, silver carp, bighead carp, and black carp. These fish species belong to the family Cyprinidae. In 2018, more than 18.5 million tons of Asian carp were produced globally. Asian carp can be used for producing surimi, a stabilized myofibrillar protein concentrate that can be made into a wide variety of products such as imitation crab sticks, fish balls, fish cakes, fish tofu, and fish sausage. Surimi is usually made from marine fish, but Asian carp have been widely used for surimi production in China. The quality of surimi is affected by various factors, including the processing methods and food additives, such as polysaccharides, protein, salt, and cryoprotectant. With an impending shortage of marine fish due to overfishing and depletion of fish stocks, Asian carp have a potential to serve as an alternative raw material for surimi products thanks to their high abundancy, less emissions of greenhouse gases from farming, desirable flesh color, and sufficient gel forming ability. The utilization of Asian carp in surimi production could also contribute to relieving the overflow of Asian carp in the United States.
Collapse
Affiliation(s)
- Manatsada Yingchutrakul
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Naphat Wasinnitiwong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Yanyan Zheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
48
|
Niu F, Yu J, Fan J, Zhang B, Ritzoulis C, Pan W. The role of glycerol on the thermal gelation of myofibrillar protein from giant squid (Dosidicus gigas) mince. Food Chem 2022; 371:131149. [PMID: 34583173 DOI: 10.1016/j.foodchem.2021.131149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
This work studies the effect of glycerol on the chemical physics of the thermal gelatin of protein from giant squid minced meat. The presence of glycerol induced changes in the nano protein particles (NPP) self-assembled structures. These nanoscale events resulted in dramatic changes on the interactions between proteins when forming gels, with the contribution of ionic interactions increasing by 17% upon gelation, that of hydrogen bonds reducing by 50%, that of hydrophobic interactions decreasing by 45%, and that of disulphide bonding increasing by 18%. Glycerol also induced cluster formation in myofibrillar solutions. As a result, incorporation of glycerol increased springiness, resilience, and adhesiveness of the formed gels by 13%, 25%, and 370% respectively. The heating gelation of myofibrillar proteins was monitored at various temperatures via recording the elastic and storage moduli. Rheology and micro-rheology studies revealed that the presence of glycerol increased G' and G″ of thermally-gelled giant squid meat.
Collapse
Affiliation(s)
- Fuge Niu
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiao Yu
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiamei Fan
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Bo Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Christos Ritzoulis
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Weichun Pan
- The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
49
|
Pi R, Li G, Zhuang S, Yu Q, Luo Y, Tan Y, Dai R, Hong H. Effect of the Partial Substitution of Sodium Chloride on the Gel Properties and Flavor Quality of Unwashed Fish Mince Gels from Grass Carp. Foods 2022; 11:foods11040576. [PMID: 35206053 PMCID: PMC8871401 DOI: 10.3390/foods11040576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive salt is usually required to maintain good gel properties and quality characteristics for unwashed fish mince gels (UFMG). This study aimed to investigate the effects of partial sodium chloride substitution (30%) with different substitutes (potassium chloride, disodium inosine-5′-monophosphate, basil) on the gel and flavor properties of UFMG from Ctenopharyngodon idellus. The results indicated that the texture and gel strength of NK (30% NaCl was replaced with 30% KCl) were fairly similar to that of N group (NaCl only), and the whiteness had improved significantly (p < 0.05), while the product eventually yielded a certain bitter taste. The addition of disodium inosine-5′-monophosphate (DIMP) significantly (p < 0.05) increased the hardness, chewiness, buriedness degree of tryptophan and gel strength, decreased the content of α-helix structure in the gels, while less change occurred in gel whiteness and network structure. Basil significantly (p < 0.05) reduced the buriedness degree of tryptophan, gel strength and whiteness, and deteriorated the gel structure. Nevertheless, the addition of DIMP or basil reduced the bitterness induced by KCl and improved the overall acceptability scores of gels of the N group. Moreover, there was no distinct difference in moisture content and water-holding capacity between all groups. Therefore, replacing sodium chloride in UFMG with 25% potassium chloride and 5% DIMP may be an ideal sodium salt substitution strategy.
Collapse
Affiliation(s)
- Ruobing Pi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Gaojing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Ruitong Dai
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence:
| |
Collapse
|
50
|
Effect of Extracts Derived from Brown Algae (Sargassum horneri) on the Gel Property and Moisture Distribution of Hairtail Surimi Gel (Trichiurus haumela). Foods 2022; 11:foods11030411. [PMID: 35159562 PMCID: PMC8834317 DOI: 10.3390/foods11030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The cross-linking degree between myosin affected the surimi gel properties in the hairtail. In this study, the effects of phlorotannin extracts (PE) derived from brown algae (Sargassum horneri) with different concentrations (0.05%, 0.3%, 1% w/w) on the hairtail surimi gel-forming properties were investigated in comparison with the commercial phloroglucinol (PG). The breaking forces of surimi gel with 1% PE and 0.05% PG were increased by 14.80% and 2.73%, respectively. The increase in deformation was 9.66% with 1% PE compared with the control added with water, but there was no increase in deformation of surimi gel with 0.05% PG. The improved surimi gel structure with PE as a bridge for the three-dimensional network forming of protein was observed in the microstructure. Moreover, PE could significantly shorten the water relaxation time (p < 0.05), reduce free water content (p < 0.05), and increase the hydrogen proton density of the hairtail surimi according to the results of NMR, dielectric properties, and MRI map, respectively. Our findings suggest that the extracts from the brown algae could be a potential economical gel structure enhancer to improve the myosin network.
Collapse
|