1
|
Hoang PL, Van Vuong Q. A Comprehensive Review of the Botany, Bioactive Compounds and Health Benefits of Leptospermum. Chem Biodivers 2025; 22:e202401335. [PMID: 39599991 DOI: 10.1002/cbdv.202401335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
There is increasing interest in research and application of natural bioactive compounds due to the growing demand for functional ingredients from the pharmaceutical, cosmetic and food industries. A major challenge is finding suitable natural plant resources for the development of functional ingredients. Leptospermum, a genus of the myrtle family (Myrtaceae), is primarily native to Australia. This genus has been traditionally used for the treatment of a range of ailments, such as colds, fever, constipation, diarrhoea, skin, inflammation, stomach disorder and both internal and external pain. Manuka honey, known for its medicinal properties, is produced from the nectar of Leptospermum flowers, and the leaves of some species are used for essential oil production. Various volatiles, such as pinene, citral and citronellal, have been identified in Leptospermum essential oils. In addition, various non-volatile compounds like leptosperin, cyanidin, quercetin, ellagic acid, delphinidin and myricetin have been isolated from Leptospermum extracts. Preliminary studies have linked Leptospermum essential oils and extracts with various health-promoting properties, such as antimicrobial activity, antidiabetes, anticancer and anti-Alzheimer's disease activities, revealing potential applications of Leptospermum as functional ingredients. To provide a comprehensive understanding of Leptospermum for future research and applications, this review presents an overview of its botanical features, outlines volatile and non-volatile active molecules identified in the genus, reviews potential health benefits and finally proposes trends for future studies on Leptospermum.
Collapse
Affiliation(s)
- Phuong Lan Hoang
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, New South Wales, Australia
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Quan Van Vuong
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, New South Wales, Australia
| |
Collapse
|
2
|
Kato Y, Furutani Y, Nakai H, Takaoka E, Kamizato E, Niwa T. Methyl Syringate Monoglucoside Is a Crucial Intermediate in Leptosperin Biosynthesis in Leptospermum scoparium (ma̅nuka). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2912-2919. [PMID: 39841936 DOI: 10.1021/acs.jafc.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Leptosperin (methyl syringate-4-O-β-d-gentiobioside) serves as a unique marker for ma̅nuka honey, derived from the ma̅nuka plant (Leptospermum scoparium). Despite its importance, the biosynthesis pathway of leptosperin remains unreported. This study investigates the molecular mechanism of leptosperin formation from its aglycone, methyl syringate (MSYR), in ma̅nuka plants. Methyl syringate-4-O-β-d-glucopyranoside (MSYR-glucose) was identified in ma̅nuka flower nectar but not in ma̅nuka honey. MSYR was distributed in the flowers, leaves, branches, and roots of ma̅nuka plants, while MSYR-glucose and leptosperin were only observed in the flowers. By immersing a cut flowering branch in a deuterium-labeled aqueous medium, the formation of deuterated leptosperin (leptosperin-d6) and MSYR-glucose (MSYR-d6-glucose) was analyzed. When MSYR-d6 was added, both MSYR-d6-glucose and leptosperin-d6 were detected. Supplementation with synthetic MSYR-d6-glucose also generated leptosperin-d6, indicating that gentiobioside moiety in leptosperin forms through the conjugation of MSYR with d-glucose, followed by the addition of another d-glucose.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Yuka Furutani
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Hayato Nakai
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Emi Takaoka
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Emiri Kamizato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, Ichinomiya, Aichi 491-0938, Japan
| |
Collapse
|
3
|
Moore G, Brooks P, Pappalardo L, Boufridi A. Phenolic profiles of Australian monofloral Eucalyptus, Corymbia, Macadamia and Lophostemon honeys via HPLC-DAD analysis. Food Chem 2025; 462:140900. [PMID: 39213973 DOI: 10.1016/j.foodchem.2024.140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.
Collapse
Affiliation(s)
- Georgia Moore
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia; Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Linda Pappalardo
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| | - Asmaa Boufridi
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, Queensland 4558, Australia.
| |
Collapse
|
4
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
5
|
Lin B, Nair S, Fellner DMJ, Nasef NA, Singh H, Negron L, Goldstone DC, Brimble MA, Gerrard JA, Domigan L, Evans JC, Stephens JM, Merry TL, Loomes KM. The Leptospermum scoparium (Mānuka)-Specific Nectar and Honey Compound 3,6,7-Trimethyllumazine (Lepteridine TM) That Inhibits Matrix Metalloproteinase 9 (MMP-9) Activity. Foods 2023; 12:4072. [PMID: 38002130 PMCID: PMC10670905 DOI: 10.3390/foods12224072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
3,6,7-trimethyllumazine (Lepteridine™) is a newly discovered natural pteridine derivative unique to Mānuka (Leptospermum scoparium) nectar and honey, with no previously reported biological activity. Pteridine derivative-based medicines, such as methotrexate, are used to treat auto-immune and inflammatory diseases, and Mānuka honey reportedly possesses anti-inflammatory properties and is used topically as a wound dressing. MMP-9 is a potential candidate protein target as it is upregulated in recalcitrant wounds and intestinal inflammation. Using gelatin zymography, 40 μg/mL LepteridineTM inhibited the gelatinase activities of both pro- (22%, p < 0.0001) and activated (59%, p < 0.01) MMP-9 forms. By comparison, LepteridineTM exerted modest (~10%) inhibition against a chromogenic peptide substrate and no effect against a fluorogenic peptide substrate. These findings suggest that LepteridineTM may not interact within the catalytic domain of MMP-9 and exerts a negligible effect on the active site hydrolysis of small soluble peptide substrates. Instead, the findings implicate fibronectin II domain interactions by LepteridineTM which impair gelatinase activity, possibly through perturbed tethering of MMP-9 to the gelatin matrix. Molecular modelling analyses were equivocal over interactions at the S1' pocket versus the fibronectin II domain, while molecular dynamic calculations indicated rapid exchange kinetics. No significant degradation of synthetic or natural LepteridineTM in Mānuka honey occurred during simulated gastrointestinal digestion. MMP-9 regulates skin and gastrointestinal inflammatory responses and extracellular matrix remodelling. These results potentially implicate LepteridineTM bioactivity in Mānuka honey's reported beneficial effects on wound healing via topical application and anti-inflammatory actions in gastrointestinal disorder models via oral consumption.
Collapse
Affiliation(s)
- Bin Lin
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Smitha Nair
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
| | - Daniel M. J. Fellner
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North 4410, New Zealand; (N.A.N.); (H.S.)
| | - Leonardo Negron
- Callaghan Innovation, Gracefield Innovation Quarter, 69 Gracefield Road, Lower Hutt 5010, New Zealand;
| | - David C. Goldstone
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Margaret A. Brimble
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| | - Juliet A. Gerrard
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Laura Domigan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland 1142, New Zealand;
| | - Jackie C. Evans
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Jonathan M. Stephens
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
| | - Troy L. Merry
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
- Comvita NZ Limited, 23 Wilson Road South, Bay of Plenty, Paengaroa 3189, New Zealand; (J.C.E.); (J.M.S.)
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland 1142, New Zealand; (B.L.); (S.N.); (D.C.G.); (M.A.B.); (J.A.G.)
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
6
|
Thierig M, Siegel E, Henle T. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15261-15269. [PMID: 37796058 DOI: 10.1021/acs.jafc.3c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Honey from the nectar of the Manuka tree (Leptospermum scoparium) grown in New Zealand contains high amounts of antibacterial methylglyoxal (MGO). MGO can react with proteins to form peptide-bound Maillard reaction products (MRPs) such as Nε-carboxyethyllysine (CEL) and "methylglyoxal-derived hydroimidazolone 1" (MG-H1). To study the reactions of MGO with honey proteins during storage, three manuka honeys with varying amounts of MGO and a kanuka honey (Kunzea ericoides) spiked with various MGO concentrations up to 700 mg/kg have been stored at 37 °C for 10 weeks, and the formation of protein-bound MRPs has been analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) following isolation of the protein fraction and enzymatic hydrolysis. During storage, contents of protein-bound CEL and MG-H1 increased continuously, directly depending on the MGO content. For honeys with large amounts of MGO, a slower formation of Nε-fructosyllysine (FL) was observed, indicating competing reactions of glucose and MGO with lysine. Furthermore, the lysine modification increased with storage independently from the MGO concentration. Up to 58-61% of the observed lysine modification was explainable with the formation of CEL and FL, indicating that other reactions, most likely the formation of Heyns products from lysine and fructose, may play an important role. Our results can contribute to the authentication of manuka honey.
Collapse
Affiliation(s)
- Marcus Thierig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Eva Siegel
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
7
|
Bong J, Middleditch M, Stephens JM, Loomes KM. Proteomic Analysis of Honey: Peptide Profiling as a Novel Approach for New Zealand Mānuka ( Leptospermum scoparium) Honey Authentication. Foods 2023; 12:foods12101968. [PMID: 37238786 DOI: 10.3390/foods12101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
New Zealand mānuka (Leptospermum scoparium) honey is a premium food product. Unfortunately, its high demand has led to "not true to label" marketed mānuka honey. Robust methods are therefore required to determine authenticity. We previously identified three unique nectar-derived proteins in mānuka honey, detected as twelve tryptic peptide markers, and hypothesized these could be used to determine authenticity. We invoked a targeted proteomic approach based on parallel reaction-monitoring (PRM) to selectively monitor relative abundance of these peptides in sixteen mānuka and twenty six non-mānuka honey samples of various floral origin. We included six tryptic peptide markers derived from three bee-derived major royal jelly proteins as potential internal standards. The twelve mānuka-specific tryptic peptide markers were present in all mānuka honeys with minor regional variation. By comparison, they had negligible presence in non-mānuka honeys. Bee-derived peptides were detected in all honeys with similar relative abundance but with sufficient variation precluding their utility as internal standards. Mānuka honeys displayed an inverse relationship between total protein content and the ratio between nectar- to bee-derived peptide abundance. This trend reveals an association between protein content on possible nectar processing time by bees. Overall, these findings demonstrate the first successful application of peptide profiling as an alternative and potentially more robust approach for mānuka honey authentication.
Collapse
Affiliation(s)
- Jessie Bong
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, Auckland 1010, New Zealand
| | - Martin Middleditch
- Mass Spectrometry Facility, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Jonathan M Stephens
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, Auckland 1010, New Zealand
- Comvita NZ Limited, Wilson South Road, Paengaroa, PB1, Te Puke 3119, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Díaz-Galiano FJ, Heinzen H, Gómez-Ramos MJ, Murcia-Morales M, Fernández-Alba AR. Identification of novel unique mānuka honey markers using high-resolution mass spectrometry-based metabolomics. Talanta 2023; 260:124647. [PMID: 37172434 DOI: 10.1016/j.talanta.2023.124647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Mānuka honey is a valuable commodity produced by bees foraging the flowers of Leptospermum scoparium, a bush native to New Zealand and Australia. Due to its high value and proven health benefits, authenticity fraud in the sale of this food is a significant risk, as recounted in the literature. Four compulsory natural products must be present at minimum concentrations to authenticate mānuka honey (3-phenyllactic acid, 2'-methoxyacetophenone, 2-methoxybenzoic acid, and 4-hydroxyphenyllactic acid). However, spiking other kinds of honey with these compounds and/or the dilution of mānuka honey with other varieties may result in fraud going undetected. In this work, liquid chromatography coupled with high-resolution mass spectrometry and a metabolomics-based strategy has allowed us to tentatively identify 19 natural products -putative mānuka honey markers-, nine of which are reported for the first time. Chemometric models applied to these markers allowed the detection of both spiking and dilution fraud attempts of mānuka honey, even at 75% mānuka honey purity. Thus, the herein-reported methodology can be employed in the prevention and detection of mānuka honey adulteration even at low levels, and the tentatively identified markers presented in this work proved valuable for mānuka honey authentication procedures.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Horacio Heinzen
- Pharmacognosy & Nat. Products, DQO, Facultad de Química Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay
| | - María José Gómez-Ramos
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Murcia-Morales
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
9
|
Thi Dieu Truong H, Reddy P, Reis MM, Archer R. Internal reflectance cell fluorescence measurement combined with multi-way analysis to detect fluorescence signatures of undiluted honeys and a fusion of fluorescence and NIR to enhance predictability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122274. [PMID: 36580751 DOI: 10.1016/j.saa.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Honey is a complex food matrix that contains diverse polyphenolic compounds. Some phenolics exhibit fluorescence signatures which can be used to evaluate honey quality, and authenticity and to determine botanical origin. Mānuka honey contains two unique fluorescence markers: Leptosperin (MM1) and LepteridineTM (MM2) that are derived from Leptospermum scoparium nectar. Fluorescence measurement of supersaturated solutions such as undiluted honeys can be challenged by complex inner filter effects. The current study shows the ability of internal reflectance cell fluorescence measurement and multi-way analysis to detect fluorophores in undiluted honeys. This study scanned honeys from different geographic districts generating excitation emission matrices (250-400/300-600 nm), and by near infrared (NIR) hyperspectral camera (547-1701 nm). PARAFAC and tri-PLS could track two fluorescence markers: MM1 (R2 = 0.82 & RMSEP = 138.65) and MM2 (R2 = 0.82 & RMSEP = 2.75) from undiluted honey fluorescence data with > 80 % accuracy. Classification of mono-floral, multi-floral and non-mānuka honeys achieved 90 % overall accuracy. Fusion of fluorescence data at ƛex 270 & 330 nm and NIR hyperspectral data combined with multi-block PLS analysis enhances predictability of fluorescence markers further. The study revealed the potential of internal reflectance cell fluorescence measurement combined with chemometrics and data fusion for rapid evaluation of honey quality and botanical origin.
Collapse
Affiliation(s)
- Hien Thi Dieu Truong
- School of Food and Advanced Technology, Massey University, Riddet Road, Fitzherbert, Palmerston North 4410, New Zealand.
| | - Pullanagari Reddy
- School of Food and Advanced Technology, Massey University, Riddet Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Marlon M Reis
- Food Informatics, AgResearch, Riddet Road, Massey University Manawatu Tennent Drive, Turitea 4474, New Zealand
| | - Richard Archer
- School of Food and Advanced Technology, Massey University, Riddet Road, Fitzherbert, Palmerston North 4410, New Zealand; Riddet Institute, University Avenue, Fitzherbert, Palmerston North 4474, New Zealand
| |
Collapse
|
10
|
Sinha S, Sehgal A, Ray S, Sehgal R. Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects. Mini Rev Med Chem 2023; 23:1928-1941. [PMID: 37282661 DOI: 10.2174/1389557523666230605120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/08/2023]
Abstract
The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Sehgal
- Department of Obstetrics & Gynaecology, GMCH, Chandigarh, 160030, India
| | - Sudip Ray
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- New Zealand Institute for Minerals to Materials Research, Greymouth, 7805, New Zealand
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
11
|
Truong HTD, Reddy P, Reis MM, Archer R. Quality assessment of mānuka honeys using non-invasive Near Infrared systems. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Vit P, van der Meulen J, Diaz M, Pedro SR, Esperança I, Zakaria R, Beckh G, Maza F, Meccia G, Engel MS. Impact of genus ( Geotrigona, Melipona, Scaptotrigona) in the targeted 1H-NMR organic profile, and authenticity test by interphase emulsion of honey processed in cerumen pots by stingless bees in Ecuador. Curr Res Food Sci 2022; 6:100386. [PMID: 36846470 PMCID: PMC9947262 DOI: 10.1016/j.crfs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
The biodiversity of Ecuadorian stingless bees is almost 200 species. Traditional pot-honey harvest in Ecuador is mostly done from nests of the three genera selected here Geotrigona Moure, 1943, Melipona Illiger, 1806, and Scaptotrigona Moure, 1942. The 20 pot-honey samples collected from cerumen pots and three ethnic honeys "abeja de tierra", "bermejo", and "cushillomishki" were analyzed for qualitative and quantitative targeted 1H-NMR honey profiling, and for the Honey Authenticity Test by Interphase Emulsion (HATIE). Extensive data of targeted organic compounds (41 parameters) were identified, quantified, and described. The three honey types were compared by ANOVA. Amino acids, ethanol, hydroxymethylfurfural, aliphatic organic acids, sugars, and markers of botanical origin. The number of phases observed with the HATIE were one in Scaptotrigona and three in Geotrigona and Melipona honeys. Acetic acid (19.60 ± 1.45 g/kg) and lactic acid (24.30 ± 1.65 g/kg) were particularly high in Geotrigona honey (in contrast to 1.3 g/kg acetic acid and 1.6 g/kg lactic acid in Melipona and Scaptotrigona), and with the lowest fructose + glucose (18.39 ± 1.68) g/100g honey compared to Melipona (52.87 ± 1.75) and Scaptotrigona (52.17 ± 0.60). Three local honeys were tested using PCA (Principal Component Analysis), two were assigned with a correct declared bee origin, but "bermejo" was not a Melipona and grouped with the Scaptotrigona cluster. However after HCA (Hierarchical Cluster Analysis) the three honeys were positioned in the Melipona-Scaptotrigona cluster. This research supports targeted 1H-NMR-based profiling of pot-honey metabolomics approach for multi-parameter visualization of organic compounds, as well as descriptive and pertained multivariate statistics (HCA and PCA) to discriminate the stingless bee genus in a set of Geotrigona, Melipona and Scaptotrigona honey types. The NMR characterization of Ecuadorian honey produced by stingless bees emphasizes the need for regulatory norms. A final note on stingless bee markers in pot-honey metabolites which should be screened for those that may extract phylogenetic signals from nutritional traits of honey. Scaptotrigona vitorum honey revealed biosurfactant activity in the HATIE, originating a fingerprint Honey Biosurfactant Test (HBT) for the genus in this set of pot-honeys.
Collapse
Affiliation(s)
- Patricia Vit
- Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida, 5101, Venezuela
| | | | - Maria Diaz
- Quality Services International GmbH, 28199, Bremen, Germany
| | - Silvia R.M. Pedro
- Biology Department, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Esperança
- Institute of Chemistry, Universidad Federal de Rio de Janeiro, Rio de Janeiro, RJ, 21945970, Brazil
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Gudrun Beckh
- Quality Services International GmbH, 28199, Bremen, Germany
| | - Favian Maza
- Faculty of Agricultural and Livestock Sciences, Universidad Técnica de Machala, Machala, El Oro province, Ecuador
| | - Gina Meccia
- Research Institute, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, KS, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
13
|
The Development and Application of a HPTLC-Derived Database for the Identification of Phenolics in Honey. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196651. [PMID: 36235188 PMCID: PMC9572973 DOI: 10.3390/molecules27196651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
This study reports on the development and validation of a HPTLC-derived database to identify phenolic compounds in honey. Two database sets are developed to contain the profiles of 107 standard compounds. Rich data in the form of Rf values, colour hues (H°) at 254 nm and 366 nm, at 366 nm after derivatising with natural product PEG reagent, and at 366 nm and white light after derivatising with vanillin–sulfuric acid reagent, λ max and λ min values in their fluorescence and λ max values in their UV-Vis spectra as well as λ max values in their fluorescence and UV-Vis spectra after derivatisation are used as filtering parameters to identify potential matches in a honey sample. A spectral overlay system is also developed to confirm these matches. The adopted filtering approach is used to validate the database application using positive and negative controls and also by comparing matches with those identified via HPLC-DAD. Manuka honey is used as the test honey and leptosperine, mandelic acid, kojic acid, lepteridine, gallic acid, epigallocatechin gallate, 2,3,4-trihydroxybenzoic acid, o-anisic acid and methyl syringate are identified in the honey using the HPTLC-derived database.
Collapse
|
14
|
Kasiotis KM, Baira E, Iosifidou S, Bergele K, Manea-Karga E, Theologidis I, Barmpouni T, Tsipi D, Machera K. Characterization of Ikaria Heather Honey by Untargeted Ultrahigh-Performance Liquid Chromatography-High Resolution Mass Spectrometry Metabolomics and Melissopalynological Analysis. Front Chem 2022; 10:924881. [PMID: 35936100 PMCID: PMC9353074 DOI: 10.3389/fchem.2022.924881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Honey represents a valuable food commodity, known since ancient times for its delicate taste and health benefits due to its specific compositional characteristics, mainly the phenolic compound content. "Anama" honey is a monofloral honey produced from the nectar of Erica manipuliflora plant, a heather bush of the Greek island of Ikaria, one of the Mediterranean's longevity regions. "Anama" is characterized by a unique aroma and taste, with a growing demand for consumption and the potential to be included in the list of products with a protected designation of origin. The aim of this study was to determine the chemical and botanical profile of authentic Anama honey samples and find similarities and differences with honey samples of a different botanical origin from the same geographical area. Untargeted Ultrahigh-Performance Liquid Chromatography-Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometry (UHPLC-HRMS) metabolomics study was conducted on authentic heather, pine, and thyme honey samples from Ikaria and neighboring islands. The Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA), and differential analysis were performed using the entire metabolic profile of the samples and allowed the identification of chemical markers for sample discrimination. Thirty-two characteristic secondary metabolites (cinnamic acids, phenolic acids, flavonoids, terpenes) and other bioactive phenolic compounds, some of them not previously reported in a heather honey (aucubin, catalpol, domesticoside, leonuriside A, picein among others), emerged as potential chemical indicators of Anama honey. Melissopalynological analysis was also carried out to decipher the botanical and geographical origin of Anama honey. The relative frequency of the pollen of dominant plants of the Ericaceae family and a multitude of nectariferous and nectarless plants contributing to the botanical profile of Anama was evaluated. The identification of the pollen sources enabled a potential correlation of differentially increased secondary metabolites and chemicals with their botanical origin. The physicochemical profile of Anama was also determined, including the parameters of pH, color, electrical conductivity, diastase, moisture, as well as sugars, supporting the high quality of this heather honey.
Collapse
Affiliation(s)
| | - Eirini Baira
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Styliani Iosifidou
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Bergele
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Electra Manea-Karga
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Ioannis Theologidis
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Theodora Barmpouni
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| | - Despina Tsipi
- General Chemical State Laboratory, Independent Public Revenue Authority (A.A.D.E), Athens, Greece
| | - Kyriaki Machera
- Laboratory of Pesticides’ Toxicology, Benaki Phytopathological Institute, Athens, Greece
| |
Collapse
|
15
|
Zucchetta C, Tangohau W, McCallion A, Hardy DJ, Clavijo McCormick A. Exploring the Chemical Properties and Biological Activity of Four New Zealand Monofloral Honeys to Support the Māori Vision and Aspirations. Molecules 2022; 27:3282. [PMID: 35630758 PMCID: PMC9143981 DOI: 10.3390/molecules27103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Honey production and export are significant contributors to the Aotearoa New Zealand economy, generating over 400 million dollars in revenue. Its main export is mānuka (Leptospermum scoparium) honey, which has a high commercial value due to its medicinal properties that are linked to its unique chemical composition. The compound methylglyoxal (MGO) has been identified as the main floral marker and is used as a quality indicator, often labelled as unique mānuka factor (UMF). However, the high demand for mānuka honey creates pressure on beekeepers and may have negative ecological consequences by favouring extensive mānuka monocultures to the detriment of other native species. There are other honeys native to New Zealand, such as kāmahi (Weinmannia racemosa), kānuka (Kunzea ericoides), rātā (Metrosideros robusta) and rewarewa (Knightia excelsa), that also have medicinal properties; however, they are less well known in the local and global market. Indigenous Māori communities envision the production and commercialization (locally and internationally) of these honeys as an opportunity to generate income and secure a sustainable future in alignment with their worldview (Te Ao Māori) and values (tikanga Māori). Diversifying the market could lead to a more sustainable income for beekeepers and reduce pressure on Māori and the conservation land, while supporting indigenous communities to realize their vision and aspirations. This manuscript provides an extensive review of the scientific literature, technical literature and traditional knowledge databases describing the plants of interest and their traditional medicinal uses (rongoā) and the chemical properties of each honey, potential floral markers and their biological activity. For each honey type, we also identify knowledge gaps and potential research avenues. This information will assist Māori beekeepers, researchers, consumers and other stakeholders in making informed decisions regarding future research and the production, marketing and consumption of these native monofloral honeys.
Collapse
Affiliation(s)
- Claire Zucchetta
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| | - Wally Tangohau
- Te Pumautanga o Te Arawa Trust, 1196 Haupapa Street, Rotorua 3010, New Zealand; (W.T.); (A.M.)
| | - Aaron McCallion
- Te Pumautanga o Te Arawa Trust, 1196 Haupapa Street, Rotorua 3010, New Zealand; (W.T.); (A.M.)
| | - Derrylea J. Hardy
- School of People, Environment and Planning, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| | - Andrea Clavijo McCormick
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| |
Collapse
|
16
|
Lawag IL, Lim LY, Joshi R, Hammer KA, Locher C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022; 11:foods11081152. [PMID: 35454742 PMCID: PMC9025093 DOI: 10.3390/foods11081152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Ranee Joshi
- Centre for Exploration Targeting, School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Katherine A. Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
- Correspondence:
| |
Collapse
|
17
|
Hegazi NM, Elghani GEA, Farag MA. The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 59:2527-2534. [DOI: 10.1007/s13197-021-05181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
|
18
|
Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants (Basel) 2021; 10:antiox10071023. [PMID: 34202118 PMCID: PMC8300703 DOI: 10.3390/antiox10071023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Background: vegetative diversity is based on different climate and geographical origins. In terms of beekeeping, herbal diversity is strongly correlated to the production of a wide variety of honey. Therefore, based on the existing plant diversity in each country, multiple honey varieties are produced with different health characteristics. While beekeeping potential and consumption preferences are reflected in products’ variety, this leads to an increase in the region’s economy and extensive export. In the last years, monofloral honey has gained interest from consumers and especially in the medicinal field due to the presence of phytochemicals which are directly linked to health benefits, wound healing, antioxidant, anticancer and anti-inflammatory activities. Scope and approach: this review aims to highlight the physicochemical properties, mineral profiles and antioxidant activities of selected monofloral honeys based on their botanical and geographical origin. Moreover, this review focuses on the intercorrelation between monofloral honey’s antioxidant compounds and in vitro and in vivo activities, focusing on the apoptosis and cell proliferation inhibition in various cell lines, with a final usage of honey as a potential therapeutic product in the fight towards reducing tumor growth. Key findings and conclusions: multiple studies have demonstrated that monofloral honeys have different physicochemical structures and bioactive compounds. Useful chemical markers to distinguish between monofloral honeys were evidenced, such as: 2-methoxybenzoic acid and trimethoxybenzoic acid are distinctive to Manuka honey while 4-methoxyphenylacetic acid is characteristic to Kanuka honey. Furthermore, resveratrol, epigallocatechin and pinostrobin are markers distinct to Sage honey, whereas carvacrol and thymol are found in Ziziphus honey. Due to their polyphenolic profile, monofloral honeys have significant antioxidant activity, as well as antidiabetic, antimicrobial and anticancer activities. It was demonstrated that Pine honey decreased the MDA and TBARS levels in liver, kidney, heart and brain tissues, whereas Malicia honey reduced the low-density lipoprotein level. Consumption of Clover, Acacia and Gelam honeys reduced the weight and adiposity, as well as trygliceride levels. Furthermore, the antiproliferative effect of chrysin, a natural flavone in Acacia honey, was demonstrated in human (A375) and murine (B16-F1) melanoma cell lines, whereas caffeic acid, a phenolic compound found in Kelulut honey, proves to be significant candidate in the chemoprevention of colon cancer. Based on these features, the use of hiney in the medicinal field (apitherapy), and the widespread usage of natural product consumption, is gaining interest by each year.
Collapse
|
19
|
Santana JEG, Coutinho HDM, da Costa JGM, Menezes JMC, Pereira Teixeira RN. Fluorescent characteristics of bee honey constituents: A brief review. Food Chem 2021; 362:130174. [PMID: 34119949 DOI: 10.1016/j.foodchem.2021.130174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
The eligible articles were obtained from databases such as ScienceDirect, SciELO, PubMed and Springer. The searches were performed using the terms "honey", "vitamins", "fluorescence" and their combinations. The titles and abstracts of the articles found were read and revised to verify their relevance to the review. From the selected titles, it was possible to elaborate the systematic review, based on scientific studies and sources considered faithful and true. The systematic review presented confirms the necessity for studies to identify compounds using fluorescence techniques, using cheaper and more accessible techniques. Few studies are covered in this theme, when treated about Apis mellifera honey, and it has been observed that in the last 12 years, the few researches have only tried to show the viability of using the technique without quantifying the present compounds, while others demonstrate the fluorescent aspects, but performing through techniques considered more expensive.
Collapse
Affiliation(s)
- Jorge Ederson G Santana
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000 Crato, CE, Brazil
| | - Henrique Douglas M Coutinho
- Science and Technology Center, Federal University of Cariri, Av. Tem Raimundo Rocha 1639, 63048080 Juazeiro do Norte, CE, Brazil.
| | - José Galberto M da Costa
- Department of Biological Chemistry, Regional University of Cariri, R. Cel. Antonio Luis 1161, 63105000 Crato, CE, Brazil
| | - Jorge Marcell C Menezes
- Science and Technology Center, Federal University of Cariri, Av. Tem Raimundo Rocha 1639, 63048080 Juazeiro do Norte, CE, Brazil
| | | |
Collapse
|
20
|
Zheng YF, Wu MC, Chien HJ, Wang WC, Kuo CY, Lai CC. Honey proteomic signatures for the identification of honey adulterated with syrup, producing country, and nectar source using SWATH-MS approach. Food Chem 2021; 354:129590. [PMID: 33756333 DOI: 10.1016/j.foodchem.2021.129590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 01/18/2023]
Abstract
Honey is widely consumed by humans, due to its multiple applications as a food constituent and its therapeutic effects. This study reports on the discrimination of honey products from different geographical and botanical sources, as well as honey products containing distinct forms of syrup used in honey adulteration. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS)-based proteomic analysis combined with chemometrics was successfully applied in identifying characteristic proteins that can be used as biomarkers of the original source of honey. Honey samples from different producing regions (Tainan, Changhua, and Taichung), countries (Taiwan and Thailand), and distinct botanical sources (longan and litchi) were clearly distinguished by the developed orthogonal projections to latent structures discriminant analysis (OPLS-DA) model with good fitness and prediction ability. Furthermore, we successfully discriminated the adulteration of honey with syrup in different proportions (even with honey content as low as 20%) with this proteomic SWATH-MS platform.
Collapse
Affiliation(s)
- Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40447, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
21
|
Karasawa K, Takakura M, Kato S, Akatsuka M, Kato M. Simple and Rapid Evaluation of the Unique Manuka Factor in Manuka Honey Using Fluorescence Fingerprints and Principal Component Analysis. Chem Pharm Bull (Tokyo) 2021; 68:762-765. [PMID: 32741917 DOI: 10.1248/cpb.c20-00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The excellent antibacterial activity of manuka honey has been well-documented and is often evaluated according to the unique manuka factor (UMF) index. UMF is determined by an assay based on a bacterial culture, which is time-consuming and does not allow for quantitative analysis. This study developed a simple and rapid method for UMF evaluation using fluorescence fingerprints, principal component analysis (PCA), and partial least squares (PLS) regression. Manuka honey samples were diluted four times with water and fluorescence was observed at three wavelength combinations, namely 260-300 (excitation; ex) to 370 (emission; em) nm, 340 (ex) to 480 nm (em), and 440 (ex) to 520 nm (em), that are mainly attributed to lepteridine, leptosperin, 2-methoxybenzoic acid, and N-methyl phenazinium. Analyzing fluorescence fingerprints using PCA and PLS regression provided a reliable evaluation of the UMF in manuka honey and could be used to differentiate between manufacturers.
Collapse
Affiliation(s)
- Koji Karasawa
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Masatoshi Takakura
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Saori Kato
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Momoha Akatsuka
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa University
| | - Masaru Kato
- Division of Bioanalytical Chemistry, School of Pharmacy, Showa University
| |
Collapse
|
22
|
Schmidt C, Eichelberger K, Rohm H. New Zealand mānuka honey - A review on specific properties and possibilities to distinguish mānuka from kānuka honey. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Bong J, Middleditch M, Loomes KM, Stephens JM. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ mānuka (Leptospermum scoparium) honey. Food Chem 2020; 350:128442. [PMID: 33388180 DOI: 10.1016/j.foodchem.2020.128442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Proteomics is an emerging tool in food authentication that has not been optimised for honey analysis. In this study, we present a qualitative proteomic analysis of New Zealand mānuka (Leptospermum scoparium) honey. A total of fifty bee-derived proteins were identified in the honey, the most predominant being major royal jelly proteins (MRJPs). We also demonstrate for the first time the presence of unique nectar-derived proteins in mānuka honey. A total of 17 mānuka plant proteins were identified, a-third of which were putative pathogenesis-related proteins. Two proteins involved in drought tolerance were also identified. Twelve candidate peptides were selected as potential authentication markers based on their uniqueness to mānuka honey. Nectar analyses confirmed the origin and specificity of these peptides to L. scoparium nectar, thus presenting peptide profiling as a viable and novel approach for mānuka honey authentication. Raw data are available via ProteomeXchange with identifier PXD021730.
Collapse
Affiliation(s)
- Jessie Bong
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand
| | - Martin Middleditch
- Mass Spectrometry Centre, Auckland Science Analytical Service, School of Biological Sciences, University of Auckland, PB92019 Auckland, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, PB92019 Auckland, New Zealand.
| | - Jonathan M Stephens
- School of Biological Sciences and Institute for Innovation in Biotechnology, University of Auckland, PB92019 Auckland, New Zealand.
| |
Collapse
|
24
|
Kato Y, Kishi Y, Okano Y, Kawai M, Shimizu M, Suga N, Yakemoto C, Kato M, Nagata A, Miyoshi N. Methylglyoxal binds to amines in honey matrix and 2'-methoxyacetophenone is released in gaseous form into the headspace on the heating of manuka honey. Food Chem 2020; 337:127789. [PMID: 32795863 DOI: 10.1016/j.foodchem.2020.127789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Reports on the thermal stability of manuka honey in terms of food processing have been few. This study investigated changes in nine characteristic chemicals of manuka honey during heating. Among these, methylglyoxal (MGO) and 2'-methoxyacetophenone (MAP) were significantly decreased by heating at 90 °C. To elucidate the mechanism for this decrease, artificial honey was prepared from sugars and water with MAP or MGO and then heated. The decrease of MGO was enhanced with l-proline, lysine, or arginine derivatives, accompanied by formation of 2-acetyl-1-pyrroline, MGO-derived lysine dimer, or argpyrimidine, respectively, suggesting that an amino-carbonyl reaction is one pathway for the loss of MGO. The decrease of MAP in the artificial honey depended on the volume of headspace in a vessel. MAP from heated manuka honey was also detected in the gas phase, indicating that MAP was vaporized. Heating could thus reduce the beneficial and/or signature molecules in honey.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan.
| | - Yui Kishi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Yayako Okano
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Masaki Kawai
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Michiyo Shimizu
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Naoko Suga
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Chisato Yakemoto
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Mai Kato
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akika Nagata
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
25
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|
26
|
Lin B, Daniels BJ, Middleditch MJ, Furkert DP, Brimble MA, Bong J, Stephens JM, Loomes KM. Utility of the Leptospermum scoparium Compound Lepteridine as a Chemical Marker for Manuka Honey Authenticity. ACS OMEGA 2020; 5:8858-8866. [PMID: 32337448 PMCID: PMC7178798 DOI: 10.1021/acsomega.0c00486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/25/2020] [Indexed: 06/01/2023]
Abstract
Manuka honey is a premium food product with unique antimicrobial bioactivity. Concerns with mislabeled manuka honey require robust assays to determine authenticity. Lepteridine is a Leptospermum-specific fluorescent molecule with potential as an authenticity marker. We describe a mass spectrometry-based assay to measure lepteridine based on an isotopically labeled lepteridine standard. Using this assay, lepteridine concentrations in manuka honey samples strongly correlated with concentrations quantitated by either high-performance liquid chromatography-ultraviolet (HPLC-UV) or fluorescence. A derived minimum lepteridine threshold concentration was compared with the New Zealand regulatory definition for manuka honey to determine "manuka honey" authenticity on a set of commercial samples. Both methods effectively distinguished manuka honey from non-manuka honeys. The regulatory definition excludes lepteridine but otherwise includes the quantification of multiple floral markers together with pollen analysis. Our findings suggest that the quantification of lepteridine alone or in combination with leptosperin could be implemented as an effective screening method to identify manuka honey, likely to achieve an outcome similar to the regulatory definition.
Collapse
Affiliation(s)
- Bin Lin
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
| | - Benjamin J. Daniels
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Martin J. Middleditch
- School
of Biological Sciences, The University of
Auckland, 23 Symonds
Street, Auckland 1010, New Zealand
| | - Daniel P. Furkert
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Jessie Bong
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Comvita
NZ Limited, 23 Wilson
South Road, Paengaroa, PB1, Te Puke 3189, New Zealand
| | - Jonathan M. Stephens
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Comvita
NZ Limited, 23 Wilson
South Road, Paengaroa, PB1, Te Puke 3189, New Zealand
| | - Kerry M. Loomes
- School
of Biological Sciences and Institute for Innovation in Biotechnology, The University of Auckland, Auckland PB92019, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
27
|
Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Honey is a natural pure food produced by honeybees from the nectar of various plants, and its chemical composition includes carbohydrates, water, and some minor compounds, which are very important for honey quality and authentication. Most of honey’s minor components are related to the botanic origin, climate, and geographic diversity. In this work, we report an original case study on monofloral honey samples of twelve different botanic origins produced in Tuscany (Italy) based on the ‘semi-quantitative’ analysis of emission, excitation, and synchronous front-face fluorescence spectra. This is the first front-face fluorescence study of Italian honey samples and, to our knowledge, the first fluorescence investigation of honey from inula (Inula viscosa (L.) Aiton), marruca (Paliurus spina-christi Mill.), lavender (Lavandula L. 1753), sulla (Hedysarum coronarium L.), arbutus (or strawberry tree) (Arbutus unedo L., 1753), and alfalfa (Medicago sativa L.) plants. Results obtained from fluorescence spectroscopy are discussed in terms of characteristic spectral emission profiles typical of honey of different botanic origins. Moreover, the spectral analysis based on the decomposition of the front-face fluorescence (FFF) spectra in terms of single main fluorophores’ components is here proposed to identify several minor compounds, such as amino acids, phenolic acids, vitamins, and other fluorescent bioactive molecules.
Collapse
|
28
|
Combarros-Fuertes P, Estevinho LM, Dias LG, Castro JM, Tomás-Barberán FA, Tornadijo ME, Fresno-Baro JM. Bioactive Components and Antioxidant and Antibacterial Activities of Different Varieties of Honey: A Screening Prior to Clinical Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:688-698. [PMID: 30575387 DOI: 10.1021/acs.jafc.8b05436] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study assessed 16 different honey samples in order to select the best one for therapeutic purposes. First, a study of honey's main bioactive compounds was carried out. Then phenolic profiles were determined and specific compounds quantified using a HPLC system coupled to a mass spectrometer. Then, antioxidant activity, by three in vitro methods, and antibacterial activity against reference strains and clinical isolates were evaluated. Great variability among samples was observed regarding ascorbic acid (between 0.34 ± 0.00 and 75.8 ± 0.41 mg/100 g honey; p < 0.001), total phenolic compounds (between 23.1 ± 0.83 and 158 ± 5.37 mg/100 g honey; p < 0.001), and total flavonoid contents (between 1.65 ± 0.11 and 5.93 ± 0.21 mg/100 g honey; p < 0.001). Forty-nine different phenolic compounds were detected, but only 46 of them were quantified by HPLC. The concentration of phenolic compounds and the phenolic profiles varied widely among samples (between 1.06 ± 0.04 and 18.6 ± 0.73 mg/100 g honey; p < 0.001). Antioxidant activity also varied significantly among the samples. All honey varieties exhibited antibacterial activity against both reference and clinical strains (effective concentrations ranged between 0.05 and 0.40 g/mL depending on the honey sample and bacteria tested). Overall, samples with better combinations of bioactive properties were avocado and chestnut honeys.
Collapse
Affiliation(s)
- Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science , University of León , C/Profesor Pedro Cármenes s/n, Campus de Vegazana, 24007 León , Spain
| | - Leticia M Estevinho
- CIMO, Mountain Research Center , Polytechnic Institute of Bragança , Campus Santa Apolónia, 5301-855 Bragança , Portugal
| | - Luis G Dias
- CIMO, Mountain Research Center , Polytechnic Institute of Bragança , Campus Santa Apolónia, 5301-855 Bragança , Portugal
| | - José M Castro
- Departmentof Molecular Biology, Faculty of Biological and Environmental Sciences , University of León , Campus de Vegazana, s/n, 24007 León , Spain
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods , CEBAS-CSIC . P.O. Box 164, 30100 Espinardo , Murcia , Spain
| | - M Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science , University of León , C/Profesor Pedro Cármenes s/n, Campus de Vegazana, 24007 León , Spain
| | - José M Fresno-Baro
- Department of Food Hygiene and Technology, Faculty of Veterinary Science , University of León , C/Profesor Pedro Cármenes s/n, Campus de Vegazana, 24007 León , Spain
| |
Collapse
|
29
|
Rückriemen J, Henle T. Pilot study on the discrimination of commercial Leptospermum honeys from New Zealand and Australia by HPLC–MS/MS analysis. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3036-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|