1
|
Alcantara GMRN, Martins LC, Gomes WPC, Dresch D, Rocha FRP, Melchert WR. Effect of roasting on chemical composition of coffee. Food Chem 2025; 477:143169. [PMID: 40010185 DOI: 10.1016/j.foodchem.2025.143169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Roasting coffee involves complex chemical reactions that shape the sensory and chemical traits of the final product. This study examined how different roasting profiles influence coffee color, using the CIELAB system, and chemical composition, analyzing volatile and non-volatile compounds through chromatography techniques. Principal component analysis revealed distinct clusters based on roasting intensity, identifying specific chemical markers. Non-volatile compounds, such as 2-furfural, 5-hydroxymethylfurfural, chlorogenic acids, caffeine, and 3,4-hydroxybenzoic acid, were more abundant in light to medium roasts but degraded significantly in dark roasts, except caffeine. Volatile compounds like acetone and 3-methyl-butanol varied notably with roasting, while diacetyl emerged as a roasting degree marker. CIELAB values correlated with roasting intensity, aiding in quality control. These findings highlight the potential of color-based monitoring, chemometric techniques, and optimized roasting to enhance coffee quality by linking chemical composition to sensory properties.
Collapse
Affiliation(s)
- Gabriela M R N Alcantara
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - Luís Claudio Martins
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - Winston P C Gomes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - Dayane Dresch
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - Fábio R P Rocha
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, 13416-000, Piracicaba, SP, Brazil
| | - Wanessa R Melchert
- Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Box 9, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
2
|
Tu D, Kang J, Li Q, Deng M, Liu M, Liu W, Ming J, Brennan M, Brennan C, You L. Exploring the Core Functional Microbiota Related to Flavor Compounds in Douchi from the Sichuan-Chongqing Region. Foods 2025; 14:810. [PMID: 40077513 PMCID: PMC11898810 DOI: 10.3390/foods14050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Douchi is a traditional Chinese fermented soybean product. In the Sichuan-Chongqing region, Mucor-type douchi was particularly famous for its distinctive flavor. Nevertheless, the association between microorganisms and douchi flavor is still poorly understood. In this study, high-throughput sequencing, amino acid analysis, and gas chromatography-mass spectrometry (GC-MS) were used to investigate the bacterial and fungal profiles as well as the flavor compounds (sixteen amino acids and one-hundred volatile flavor compounds) of seven different types of douchi. High levels of glutamic and aspartic acids were observed. Microbial analysis found that Bacillus, Tetragenococcus, Weissella, Aspergillus, Mucor, and Penicillium were the prime microorganisms. In total, 100 volatile components were detected; however, none of them was common to all the douchi products, although most volatile components had the aromas of flowers, fruits, caramel, and cocoa. An analysis of the flavor compounds was conducted using two-way orthogonal partial least-squares discriminant analysis (O2PLS-DA). Based on the analysis, it was found that Glu had negative correlations with most microorganisms, and Aspergillus had positive correlations with 2-pentylfuran and phenylacetaldehyde. This study provides a theoretical foundation for the regulation and enhancement of douchi flavor.
Collapse
Affiliation(s)
- Dawei Tu
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; (D.T.); (L.Y.)
| | - Junhan Kang
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Qingqing Li
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Meilin Deng
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Meiyan Liu
- Chongqing Wanbiao Testing Technology Ltd., Chongqing 400714, China; (J.K.); (Q.L.); (M.D.); (M.L.)
| | - Wenjun Liu
- College of Food Science, Southwest University, Chongqing 400715, China;
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Margaret Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; (M.B.); (C.B.)
| | - Linfeng You
- School of Food Science and Engineering, Chongqing Technology and Business University, Chongqing 400067, China; (D.T.); (L.Y.)
| |
Collapse
|
3
|
Tian W, Zhao S, Wang Q, Wang W, He J, Dong B, Zhao G. Influence of spatial and temporal diversity and succession of microbial communities on physicochemical properties and flavor substances of soy sauce. Food Chem 2025; 463:141041. [PMID: 39306928 DOI: 10.1016/j.foodchem.2024.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 11/02/2024]
Abstract
In this study, the influence and relationship between the microbial structure composition at different spatial locations during soy sauce fermentation and the quality of soy sauce were investigated. Within 3-7 days of fermentation, the abundance of Chromohalobacter in the surface and upper layers of moromi was initially high but subsequently decreased. In contrast, Tetragenococcus exhibited low abundance on the surface of moromi at the beginning of fermentation but emerged as the absolute dominant bacteria by the end of the fermentation process. Throughout the fermentation period of 3-42 days, Staphylococcus and Bacillus were the predominant bacterial genera observed at the bottom of the moromi. In addition, Halanaerobium was the dominant bacterial genus in the crude soy sauce layer throughout the fermentation process. Tetragenococcus and Zygosaccharomyces were strongly positively correlated with total acid and ammonia nitrogen. Bacillus and Staphylococcus were significantly negatively correlated with the salt content.
Collapse
Affiliation(s)
- Wenhan Tian
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuaiyu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qifeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing He
- COFCO Oils Research and Development Center, Beijing 102209, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Zhou RY, Chua JY, Liu SQ. Growth and metabolism of halophilic Candida versatilis and Tetragenococcus halophilus in simultaneous and sequential fermentation of salted soy whey. Food Microbiol 2025; 125:104627. [PMID: 39448145 DOI: 10.1016/j.fm.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
This study investigated various strategies: mono-, simultaneous and sequential fermentation of halophilic Candida versatilis and Tetragenococcus halophilus to valorize salted whey, a side stream of salted tofu (pressed beancurd) production, with an ultimate goal of creating a soy sauce-like condiment. Growth, glucose, organic acids were monitored throughout fermentation, while free amino acids and volatile compounds were analyzed on the final days. In monoculture fermentation, both C. versatilis and T. halophilus thrived in salted soy whey. However, in co-culture fermentation, an antagonistic relationship was observed, wherein C. versatilis growth was slightly suppressed and T. halophilus was significantly inhibited. In C. versatilis-involved fermentations, no significant (p > 0.05) differences in key volatile and non-volatile chemical components were found among various fermentation modes. Key soy sauce-like volatile compounds, such as 4-ethylguaiacol and 4-ethylphenol, were detected in all C. versatilis-fermented salted soy whey, while T. halophilus primarily functioned as a lactic and acetic acids producer. This study highlights the potential of mixed culture fermentation involving soy sauce yeast and lactic acid bacteria for eventually developing a soy sauce-like condiment from salted soy whey, with C. versatilis playing a crucial role in flavour development. The findings suggest that fermenting of a single culture of C. versatilis in lactic acid-adjusted salted soy whey could be a viable and efficient choice for future production of soy sauce-like condiment.
Collapse
Affiliation(s)
- Rebecca Yinglan Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China.
| |
Collapse
|
5
|
Zhang A, Zhang W, Guo X, Wang J, Liang K, Zhou Y, Lang F, Zheng Y, Wang M. Sequential bioaugmentation of the dominant microorganisms to improve the fermentation and flavor of cereal vinegar. Food Chem X 2025; 25:101952. [PMID: 39850059 PMCID: PMC11754169 DOI: 10.1016/j.fochx.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 01/25/2025] Open
Abstract
Traditional cereal vinegars are fermented by microorganisms that are spontaneously enriched, leading to uncertainty in regulating the fermentation process and flavor. The objective of this study was to elucidate the impact of the predominant microorganisms, provenly Lactobacillus helveticus and Acetobacter pasteurianus, on the solid-state fermentation (SSF) and flavor profile of cereal vinegar by several bioaugmentation strategies. The results indicated that the sequential bioaugmentation of predominant microorganisms improved the utilization of raw material and most key flavor compounds. Through sequential bioaugmentation strategy, bacterial diversity was regulated due to minimizing acetic acid inhibition in the early stages, and the non-volatile acid was targetedly improved by Lactobacillus. Furthermore, the important flavor of non-volatile acid, esters, acetoin, and tetramethyl-pyrazine content was enhanced by sequential bioaugmentation. Therefore, the sensory score on taste and odor were improved. These results provide a reference for the targeted regulation of the SSF and the flavor quality of cereal vinegar.
Collapse
Affiliation(s)
- Ao Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqing Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaorui Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiao Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kai Liang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi, Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
| | - Yaao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fanfan Lang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi, Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi, Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Chin YW, Hong SP, Lim SD, Yi SH. Investigation of Microbial Community of Korean Soy Sauce ( Ganjang) Using Shotgun Metagenomic Sequencing and Its Relationship with Sensory Characteristics. Microorganisms 2024; 12:2559. [PMID: 39770762 PMCID: PMC11678514 DOI: 10.3390/microorganisms12122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The microbial community of a soy sauce is one of the most important factors in determining the sensory characteristics of that soy sauce. In this study, the microbial communities and sensory characteristics of twenty samples of Korean soy sauce (ganjang) were investigated using shotgun metagenome sequencing and descriptive sensory analysis, and their correlations were explored by partial least square (PLS) regression analysis. The metagenome analysis identified 1332 species of bacteria, yeasts, molds, and viruses across 278 genera, of which Tetragenococcus, Bacillus, and Enterococcus accounted for more than 80% of the total community. In the fungal community, Zygosaccharomyces rouxii, Candida versatilis, Rhodotorula taiwanensis, Debaryomyces hansenii, and Aspergillus oryzae were dominant, while the viral community consisted entirely of bacteriophages, with Bacillus phages SIOphi accounting for 93%. According to the results of the PLS analysis, desirable sensory characteristics, such as umami, sweet, and roasted soybean, as well as preference, were associated with Tetragenococcus, Lysinibacillus, Enterococcus, Staphylococcus, Lactobacillus, Pediococcus, and Weissella. The musty flavor, which is a typical property of traditional fermented foods, was related to Halomonas and Psychrobacte, while the bitter, acrid taste and sour smell were closely associated with Chromohalobacter. The results of this study provide comprehensive information on the microbial community of ganjang and may be used to select starter cultures for soy sauces.
Collapse
Affiliation(s)
- Young-Wook Chin
- Traditional Food Research Group, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea; (S.-P.H.); (S.-D.L.); (S.-H.Y.)
| | | | | | | |
Collapse
|
7
|
Yao S, Yang H, Zhang M, Xian J, Zhou R, Jin Y, Huang J, Wu C. Sucrose contributed to the biofilm formation of Tetragenococcus halophilus and changed the biofilm structure. Food Microbiol 2024; 124:104616. [PMID: 39244368 DOI: 10.1016/j.fm.2024.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Abstract
Based on the previous research results that the addition of sucrose in the medium improved the biofilm formation of Tetragenococcus halophilus, the influence of sucrose on biofilm formation was explored. Moreover, the influence of exogenous expression of related genes sacA and galE from T. halophilus on the biofilm formation of L. lactis NZ9000 was investigated. The results showed that the addition of sucrose in the medium improved the biofilm formation, the resistance of biofilm cells to freeze-drying stress, and the contents of exopolysaccharides (EPS) and eDNA in the T. halophilus biofilms. Meanwhile, the addition of sucrose in the medium changed the monosaccharide composition of EPS and increased the proportion of glucose and galactose in the monosaccharide composition. Under 2.5% (m/v) salt stress condition, the expression of gene sacA promoted the biofilm formation and the EPS production of L. lactis NZ9000 with the sucrose addition in the medium and changed the EPS monosaccharide composition. The expression of gene galE up-regulated the proportion of rhamnose, galactose, and arabinose in the monosaccharide composition of EPS, and down-regulated the proportion of glucose and mannose. This study will provide a theoretical basis for regulating the biofilm formation of T. halophilus, and provide a reference for the subsequent research on lactic acid bacteria biofilms.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; GuiZhou XiJiu Co., Ltd, Xishui, Guizhou, 564622, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiao Xian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; GuiZhou XiJiu Co., Ltd, Xishui, Guizhou, 564622, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Mizuno Y, Yoshimura T, Sawada K, Tsuge K, Nagano Y, Yoshizaki Y, Goto M, Kobayashi G. Dynamics of the microbiome and volatile organic compounds during fermentation and aging of soy sauce. J Biosci Bioeng 2024; 138:522-532. [PMID: 39304483 DOI: 10.1016/j.jbiosc.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
A comprehensive analysis of the microbiome and volatile organic compounds (VOC) in the moromi of soy sauce during fermentation and aging was conducted under industrial production. Microbiome analysis using next-generation sequencing revealed the presence and dynamics of microorganisms other than Aspergillus, Tetragenococcus, Zygosaccharomyces, and Wickerhamiella, which were used as starters. The bacterial community of the moromi on the first day of this process was rich in diversity. Staphylococcus, Bacillus, Kurthia, Acinetobacter, Enterococcus, and Macrococcus that grew during koji making were relatively dominant. However, as the fermentation progressed, only Tetragenococcus became dominant in the bacterial communities. In contrast, the fungal community was simple at the beginning of fermentation and aging, with Aspergillus present almost exclusively. After adding Zygosaccharomyces rouxii on day 42, the fungal community changed significantly. At the end of fermentation and aging, the fungal community diversified, with Millerozyma, Wickerhamiella, Yamadazyma, and Saccharomycopsis becoming dominant. The analysis of VOC showed that the VOC profile changed during fermentation and aging, and that the VOC profile changed significantly after adding Z. rouxii. The correlation analysis between the microbiome and VOC showed that Wickerhamiella, Millerozyma, Debaryomyces, Yamadazyma, and Candida had a significant positive correlation with alcohols, esters, and phenols produced in the later stage of fermentation and aging, indicating that not only Z. rouxii but also various fungi may contribute to the formation of the complex aroma profile of soy sauce.
Collapse
Affiliation(s)
- Yuichi Mizuno
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Miyajima Shoyu Co., Ltd., 2318 Funamiya, Karatsu, Saga 847-0062, Japan
| | - Takashi Yoshimura
- Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima, Saga 849-0932, Japan
| | - Kazutaka Sawada
- Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima, Saga 849-0932, Japan
| | - Keisuke Tsuge
- Industrial Technology Center of Saga, 114 Yaemizo, Nabeshima, Saga 849-0932, Japan
| | - Yukio Nagano
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Analytical Research Center for Experimental Sciences, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yumiko Yoshizaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Genta Kobayashi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan.
| |
Collapse
|
9
|
Li Z, Wang M, Yang Z. Analysis of the association between microbiota and flavor formation during Zizhong Dongjian fermentation process. Food Sci Nutr 2024; 12:9493-9510. [PMID: 39619991 PMCID: PMC11606816 DOI: 10.1002/fsn3.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 03/17/2025] Open
Abstract
Zizhong Dongjian (ZZDJ) is one of the most famous and popular fermented vegetables in China. The aim of this study was to explore the microbial communities and volatile flavor compounds of ZZDJ during different fermentation periods, as well as to reveal the potential correlation between microbiota and flavor. A total of 84 volatile flavor compounds were detected in 0-year to 3-year ZZDJ samples. Hydrocarbons were the most abundant flavor compounds in 0-year and 1-year samples, while esters became the predominant flavor components in 2-year and 3-year samples. Furthermore, Loigolactobacillus, Pseudomonas, and Virgibacillus were most predominant bacteria during the fermentation process of ZZDJ. Interestingly, all the fungi identified were yeasts. Among them, Zygosaccharomyces and Symmetrospora dominated alternatively throughout the fermentation process of ZZDJ. Through analysis of relativity between flavor compounds and microorganism of ZZDJ, we found that Uncultured Pseudomonas sp., Virgibacillus sediminis, Zygosaccharomyces rouxii, and Symmetrospora marina might play important roles in flavor information of ZZDJ.
Collapse
Affiliation(s)
- Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Miao Wang
- Laboratory Animal Center, West China School of Basic Medical Science & Forensic MedicineSichuan UniversityChengduChina
| | - Zhirong Yang
- Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
10
|
He WB, Hou S, Zeng LY, Tang HB, Tong X, Wu CZ, Liu X, Tan G, Guo LQ, Lin JF. Proteomics analysis of enzyme systems and pathway changes during the moromi fermentation of soy sauce mash. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5735-5750. [PMID: 38441287 DOI: 10.1002/jsfa.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND During the brewing of soy sauce, the conversion of multiple substances is driven by various microorganisms and their secreted enzyme systems. Soy sauce mash is an important source of enzyme systems during moromi fermentation, but the changes of enzyme systems in soy sauce mash during moromi fermentation are poorly understood. In order to explore the predominant enzyme systems existing during moromi fermentation and to explain the characteristics of the enzyme system changes, an enzymatic activities assay and 4D-label-free proteomics analysis were conducted on soy sauce mash at different stages of fermentation. RESULTS The activities of hydrolytic enzymes in soy sauce mash decreased continuously throughout the fermentation process, while most of the characteristic physicochemical substances in soy sauce mash supernatant had already accumulated at the early stage of fermentation. Four hydrolytic enzymes were found to be positively correlated with important physicochemical indexes by principal component analysis and Pearson correlation analysis. The proteomics analysis revealed three highly upregulated enzymes and two enzymes that were present in important metabolic pathways throughout the fermentation process. Furthermore, it was found that Aspergillus oryzae was able to accumulate various nutrients in the soy sauce mash by downregulating most of its metabolic pathways. CONCLUSION Enzymes present with excellent properties during the moromi fermentation period could be obtained from these results. Meanwhile, the characterization of the metabolic pathways of microorganisms during the moromi fermentation period was revealed. The results provide a basis for more scientific and purposeful improvement of moromi fermentation in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Bin He
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Sha Hou
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Long-Ying Zeng
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Hong-Biao Tang
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Xing Tong
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Chang-Zheng Wu
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Xiang Liu
- Foshan Haitian (Gaoming) Flavouring & Food Co. Ltd, Foshan, China
| | - Ge Tan
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Microecological Agents of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Elhalis H, Chin XH, Chow Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit Rev Food Sci Nutr 2024; 64:7648-7670. [PMID: 36916137 DOI: 10.1080/10408398.2023.2188951] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Fermented soybean products, including Soya sauce, Tempeh, Miso, and Natto have been consumed for decades, mainly in Asian countries. Beans are processed using either solid-state fermentation, submerged fermentation, or a sequential of both methods. Traditional ways are still used to conduct the fermentation processes, which, depending on the fermented products, might take a few days or even years to complete. Diverse microorganisms were detected during fermentation in various processes with Bacillus species or filamentous fungi being the two main dominant functional groups. Microbial activities were essential to increase the bean's digestibility, nutritional value, and sensory quality, as well as lower its antinutritive factors. The scientific understanding of fermentation microbial communities, their enzymes, and their metabolic activities, however, still requires further development. The use of a starter culture is crucial, to control the fermentation process and ensure product consistency. A broad understanding of the spontaneous fermentation ecology, biochemistry, and the current starter culture technology is essential to facilitate further improvement and meet the needs of the current extending and sustainable economy. This review covers what is currently known about these aspects and reveals the limited available information, along with the possible directions for future starter culture design in soybean fermentation.
Collapse
Affiliation(s)
- Hosam Elhalis
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia
| | - Xin Hui Chin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| | - Yvonne Chow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos, Singapore, Singapore
| |
Collapse
|
12
|
Zhao S, Guo T, Yao Y, Dong B, Zhao G. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation. Int J Food Microbiol 2024; 417:110690. [PMID: 38581832 DOI: 10.1016/j.ijfoodmicro.2024.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as β-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.
Collapse
Affiliation(s)
- Shuoshuo Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
14
|
Zhang W, Xiao Z, Gu Z, Deng X, Liu J, Luo X, Song C, Jiang X. Fermentation-promoting effect of three salt-tolerant Staphylococcus and their co-fermentation flavor characteristics with Zygosaccharomyces rouxii in soy sauce brewing. Food Chem 2024; 432:137245. [PMID: 37657348 DOI: 10.1016/j.foodchem.2023.137245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Staphylococcus is the dominant genus in the fermentation process of soy sauce, but its effect on the flavor of soy sauce has not been clearly established. In order to investigate the role of this genus in soy sauce fermentation, individual fermentation with Staphylococcus spp. screened from the moromi and their co-fermentation with an ester-producing yeast of Zygosaccharomyces rouxii were designed. Through the analysis of physicochemical properties, organic acid composition, volatile flavor compounds (VFCs) and sensory characteristics during fermentation, Staphylococcus was confirmed as a contributor to the acidity, ester aroma and alcohol aroma of soy sauce. In their co-fermentation with yeast, the ester aroma of soy sauce was further enhanced. Moreover, pathway enrichment analysis and network construction of key VFCs also revealed potential metabolic networks for formation of characteristic flavor compounds in co-fermentation. This work will help optimize the fermentation functional microbiota to obtain better soy sauce flavor.
Collapse
Affiliation(s)
- Wei Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhangchi Xiao
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zimeng Gu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiang Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Xiaoming Luo
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Chunxiang Song
- Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China
| | - Xuewei Jiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Centre for Condiment Fermentation, Changsha 410600, China.
| |
Collapse
|
15
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
16
|
Cao C, Waterhouse GIN, Sun W, Zhao M, Sun-Waterhouse D, Su G. Effects of Fermentation with Tetragenococcus halophilus and Zygosaccharomyces rouxii on the Volatile Profiles of Soybean Protein Hydrolysates. Foods 2023; 12:4513. [PMID: 38137316 PMCID: PMC10742455 DOI: 10.3390/foods12244513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The effects of fermentation with lactic acid bacteria (LAB) and yeast on the aroma of samples were analyzed in this work. The volatile features of different soybean hydrolysates were investigated using both GC-MS and GC-IMS. Only 47 volatile flavor compounds (VFCs) were detected when using GC-IMS, while a combination of GC-MS and GC-IMS resulted in the identification of 150 compounds. LAB-yeast fermentation could significantly increase the diversity and concentrations of VFCs (p < 0.05), including alcohols, acids, esters, and sulfurs, while reduce the contents of aldehydes and ketones. Hierarchical clustering and orthogonal partial least squares analyses confirmed the impact of fermentation on the VFCs of the hydrolysates. Seven compounds were identified as significant compounds distinguishing the aromas of different groups. The partial least squares regression analysis of the 25 key VFCs (ROAV > 1) and sensory results revealed that the treatment groups positively correlated with aromatic, caramel, sour, overall aroma, and most of the key VFCs. In summary, fermentation effectively reduced the fatty and bean-like flavors of soybean hydrolysates, enhancing the overall flavor quality, with sequential inoculation proving to be more effective than simultaneous inoculation. These findings provided a theoretical basis for improving and assessing the flavor of soybean protein hydrolysates.
Collapse
Affiliation(s)
- Chenchen Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Geoffrey I. N. Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (G.I.N.W.); (M.Z.)
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
17
|
Liu Y, Zhou J, Tan Q, Wang H, Suo H. Effects of aroma enhancement fermentation of Zygosaccharomyces rouxii ZR21 and Debaryomyces hansenii DH06 on the sensory properties and consumer liking of Yongchuan douchi. FOOD SCI TECHNOL INT 2023:10820132231219526. [PMID: 38105435 DOI: 10.1177/10820132231219526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Yongchuan douchi is a well-loved condiment. However, the aroma of rapid Yongchuan douchi is inferior to that of traditional Yongchuan douchi. The objective of this study was to improve the aroma quality of rapid Yongchuan douchi and evaluate the effect of aroma enhancement from the perspective of consumers. The aroma characteristics of samples were analyzed by consumers through flash profile (FP) (n = 15) and rate-all-that-apply (RATA) (n = 75). The results showed improvement in the aroma quality of rapid Yongchuan douchi with the two yeast strains, and consumers could perceive the modification of the aroma characteristics. It shows that the douchi aroma and sour aroma of rapid Yongchuan douchi increased significantly after aroma-enhancing fermentation, while the soy sauce aroma, soybean aroma, and musty aroma decreased. Similar results were obtained from FP and RATA. RATA showed that rapid Yongchuan douchi with aroma-enhancing fermentation aroused higher levels of positive emotions, which may increase the acceptance of consumers to rapid Yongchuan douchi. In summary, the aroma quality and consumer preference of rapid Yongchuan douchi were enhanced. The work provides insights into the quality improvement of rapid Yongchuan douchi from the perspective of consumers.
Collapse
Affiliation(s)
- Yuying Liu
- College of Food Science, Southwest University, Chongqing, PR China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, China
| | - Jian Zhou
- College of Food Science, Southwest University, Chongqing, PR China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, China
| | - Qian Tan
- College of Food Science, Southwest University, Chongqing, PR China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, PR China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, PR China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, China
| |
Collapse
|
18
|
Gao X, Zhao X, Hu F, Fu J, Zhang Z, Liu Z, Wang B, He R, Ma H, Ho CT. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res Int 2023; 173:113407. [PMID: 37803742 DOI: 10.1016/j.foodres.2023.113407] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
As an indispensable soybean-fermented condiment, soy sauce is extensively utilized in catering, daily cooking and food industry in East Asia and Southeast Asia and is becoming popular in the whole world. In the past decade, researchers began to pay great importance to the scientific research of soy sauce, which remarkably promoted the advances on fermentation strains, quality, safety, function and other aspects of soy sauce. Of them, the screening and reconstruction of Aspergillus oryzae with high-yield of salt and acid-tolerant proteases, mechanism of soy sauce flavor formation, improvement of soy sauce quality through the combination of novel physical processing technique and microbial/enzyme, separation and identification of soy sauce functional components are attracting more attention of researchers, and related achievements have been reported continually. Meanwhile, we pointed out the drawbacks of the above research and the future research directions based on published literature and our knowledge. We believe that this review can provide an insightful reference for international related researchers to understand the advances on soy sauce research.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xue Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Feng Hu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhan Liu
- Guangdong Meiweixian Flavoring Foods Co., Ltd., 1 Chubang Road, Zhongshan 5284012, China.
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
19
|
Feng Y, Wu W, Chen T, Huang M, Zhao M. Exploring the core functional microbiota related with flavor compounds in fermented soy sauce from different sources. Food Res Int 2023; 173:113456. [PMID: 37803780 DOI: 10.1016/j.foodres.2023.113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Flavor, the most important quality index of soy sauce, is mostly influenced by the microbiota in fermented food ecosystem, however, the association between microorganisms and soy sauce flavor is still poorly understood. Therefore, the bacterial and fungal profiles, physicochemical parameters, and flavor compounds (9 organic acids, 17 free amino acids and 97 volatile flavor compounds) of 5 different source soy sauce were investigated using high-throughput sequencing, HPLC, amino acid analyzer and SPME/LLE-GC-MS, and their correlations were explored. A total of 3 fungal genera and 12 bacterial genera were identified as potential flavor-producing microorganisms by multivariate data and correlation analysis. Notably, Lactobacillus and Tetragenococcus were strongly positively correlated with succinic acid and lactic acid, respectively. Moreover, not only fungi, but also bacteria were found to be closely correlated with volatiles. Finally, 5 screened potential flavor-producing microorganisms were validated using a rapid fermentation model, with multiple strains showing the potential to improve the soy sauce flavor, with Lactobacillus fermentum being the most significant. Our research will provide a theoretical basis for the regulation and enhancement of soy sauce flavor.
Collapse
Affiliation(s)
- Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Weiyu Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Tao Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
20
|
Li X, Xu X, Wu C, Tong X, Ou S. Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature. Foods 2023; 12:3509. [PMID: 37761218 PMCID: PMC10530138 DOI: 10.3390/foods12183509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China;
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Xinyu Xu
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
| | - Changzheng Wu
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Xing Tong
- Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China
- Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China
- Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China
| | - Shiyi Ou
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China;
| |
Collapse
|
21
|
Wang Y, Chen Q, Li L, Chen S, Zhao Y, Li C, Xiang H, Wu Y, Sun-Waterhouse D. Transforming the fermented fish landscape: Microbiota enable novel, safe, flavorful, and healthy products for modern consumers. Compr Rev Food Sci Food Saf 2023; 22:3560-3601. [PMID: 37458317 DOI: 10.1111/1541-4337.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 09/13/2023]
Abstract
Regular consumption of fish promotes sustainable health while reducing negative environmental impacts. Fermentation has long been used for preserving perishable foods, including fish. Fermented fish products are popular consumer foods of historical and cultural significance owing to their abundant essential nutrients and distinct flavor. This review discusses the recent scientific progress on fermented fish, especially the involved flavor formation processes, microbial metabolic activities, and interconnected biochemical pathways (e.g., enzymatic/non-enzymatic reactions associated with lipids, proteins, and their interactions). The multiple roles of fermentation in preservation of fish, development of desirable flavors, and production of health-promoting nutrients and bioactive substances are also discussed. Finally, prospects for further studies on fermented fish are proposed, including the need of monitoring microorganisms, along with the precise control of a fermentation process to transform the traditional fermented fish to novel, flavorful, healthy, and affordable products for modern consumers. Microbial-enabled innovative fermented fish products that consider both flavor and health benefits are expected to become a significant segment in global food markets. The integration of multi-omics technologies, biotechnology-based approaches (including synthetic biology and metabolic engineering) and sensory and consumer sciences, is crucial for technological innovations related to fermented fish. The findings of this review will provide guidance on future development of new or improved fermented fish products through regulating microbial metabolic processes and enzymatic activities.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Yang H, Wang D, Jin Y, Zhou R, Huang J, Wu C. Arginine deiminase pathway of Tetragenococcus halophilus contributes to improve the acid tolerance of lactic acid bacteria. Food Microbiol 2023; 113:104281. [PMID: 37098426 DOI: 10.1016/j.fm.2023.104281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023]
Abstract
Arginine deiminase pathway, controlled by arginine deiminase, ornithine carbamoyltransferase and carbamate kinase, could affect and modulate the intracellular pH homeostasis of lactic acid bacteria under acid stress. Herein, strategy based on exogenous addition of arginine had been proposed to improve the robustness of Tetragenococcus halophilus during acid stressed condition. Results indicated cells cultured in the presence of arginine acquired high tolerance to acid stress mainly through maintaining the homeostasis of intracellular microenvironment. Additionally, metabolomic analysis and q-PCR showed the content of intracellular metabolites and expression levels of genes involved in ADI pathway significantly increased when cells encountered acid stress with the presence of exogenous arginine. Furthermore, Lactococcus lactis NZ9000 with heterologous overexpression of arcA and arcC from T. halophilus exhibited high stress tolerance to acidic condition. This study may provide an insight into the systematical understanding about the mechanism underlying acid tolerance and improve the fermentation performance of LAB during harsh condition.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Wang Q, Cui R, Liu X, Zheng X, Yao Y, Zhao G. Examining the impact of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Starmerella etchellsii on the quality of soy sauce: a comprehensive review of microbial population dynamics in fermentation. Crit Rev Food Sci Nutr 2023; 64:10873-10884. [PMID: 37395610 DOI: 10.1080/10408398.2023.2230285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Soy sauce is a popular fermented seasoning due to its distinct flavor and rich umami taste. Its traditional production involves two stages: solid-state fermentation and moromi (brine fermentation). During moromi, the dominant microbial population in the soy sauce mash changes, which is called microbial succession and is essential for the formation of soy sauce flavor compounds. Research has identified the sequence of succession, starting with Tetragenococcus halophilus, then Zygosaccharomyces rouxii, and lastly, Starmerella etchellsii. Factors such as the environment, microbial diversity, and interspecies relationships drive this process. Salt and ethanol tolerance influence microbial survival, while nutrients in the soy sauce mash support the cells in resisting external stress. Different microbial strains have varying abilities to survive and respond to external factors during fermentation, which impacts soy sauce quality. In this review, we would examine the factors behind the succession of common microbial populations in the soy sauce mash and explore how microbial succession affects soy sauce quality. The insights gained can help better manage the dynamic changes in microbes during fermentation, leading to improved production efficiency.
Collapse
Affiliation(s)
- Qifeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Rongrong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xueli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xuelian Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
24
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Hu G, Chen J, Du G, Fang F. Moromi mash dysbiosis trigged by salt reduction is relevant to quality and aroma changes of soy sauce. Food Chem 2023; 406:135064. [PMID: 36462362 DOI: 10.1016/j.foodchem.2022.135064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Health concerns related to excessive salt consumption have increased the demand for foods with reduced salt content. However, it is a challenge to perform low salt fermentation of high salt liquid-state (HSL) soy sauce due to the interplay between salt and microorganisms. In this study, ≤12 % (w/v) NaCl led to failed fermentation of HSL soy sauce. At 9 % (w/v) NaCl, amino acid nitrogen decreased to 0.31 g/100 mL, total acid increased to 10.1 g/L, and biogenic amines increased to 904.49 mg/L. With reduced salt, the total number of bacteria (1-2 orders of magnitude) and spoilage bacteria (Bacillus, Kurthia, Staphylococcus saprophyticus, and Lactobacillus pobuzihii) increased, and the total number of functional microorganisms (Weissella, Zygosaccharomyces, and Candida) decreased. Unacceptable volatiles contents were higher in reduced-salt soy sauce than in normal salt soy sauce. Most of the unacceptable volatiles were positively correlated with spoilage bacteria.
Collapse
Affiliation(s)
- Guangyao Hu
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| |
Collapse
|
26
|
Wu W, Chen T, Zhao M, Feng Y. Effect of co-inoculation of different halophilic bacteria and yeast on the flavor of fermented soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Que Z, Jin Y, Huang J, Zhou R, Wu C. Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Chen Z, Song J, Ren L, Wang H, Zhang Y, Suo H. Effect of the succession of the microbial community on physicochemical properties and flavor compounds of Mucor wutungkiao-fermented sufu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Devanthi PVP, Pratama F, Kho K, Taherzadeh MJ, Aslanzadeh S. The Effect of Dekkera bruxellensis Concentration and Inoculation Time on Biochemical Changes and Cellulose Biosynthesis by Komagataeibacter intermedius. J Fungi (Basel) 2022; 8:1206. [PMID: 36422025 PMCID: PMC9697449 DOI: 10.3390/jof8111206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 12/19/2023] Open
Abstract
Bacterial Cellulose (BC) is a biopolymer with numerous applications. The growth of BC-producing bacteria, Komagataeibacter intermedius, could be stimulated by Dekkera bruxellensis, however, the effect on BC yield needs further investigation. This study investigates BC production and biochemical changes in the K. intermedius-D. bruxellensis co-culture system. D. bruxellensis was introduced at various concentrations (103 and 106 CFU/mL) and inoculation times (days 0 and 3). BC yield was ~24% lower when D. bruxellensis was added at 103 CFU/mL compared to K. intermedius alone (0.63 ± 0.11 g/L). The lowest BC yield was observed when 103 CFU/mL yeast was added on day 0, which could be compromised by higher gluconic acid production (10.08 g/L). In contrast, BC yields increased by ~88% when 106 CFU/mL D. bruxellensis was added, regardless of inoculation time. High BC yield might correlate with faster sugar consumption or increased ethanol production when 106 CFU/mL D. bruxellensis was added on day 0. These results suggest that cell concentration and inoculation time have crucial impacts on species interactions in the co-culture system and product yield.
Collapse
Affiliation(s)
| | - Ferren Pratama
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Katherine Kho
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | | | - Solmaz Aslanzadeh
- Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
30
|
Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses. Food Res Int 2022; 161:111817. [DOI: 10.1016/j.foodres.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
31
|
Zhou RY, Huang X, Liu Z, Chua JY, Liu SQ. Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Curr Res Food Sci 2022; 5:1826-1836. [PMID: 36276244 PMCID: PMC9579447 DOI: 10.1016/j.crfs.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
There were two main objectives of this study: (1) to understand the effect of salt concentration on the growth of four lactic acid bacteria (LAB) in soy whey and determine the non-volatile and volatile profiles generated after fermentation; (2) to evaluate the potential of using salted soy whey to develop a sauce-like condiment through LAB fermentation. The four LAB included non-halophilic Lactiplantibacillus plantarum ML Prime, Limosilactobacillus fermentum PCC, Oenococcus oeni Enoferm Beta and halophilic Tetragenococcus halophilus DSM20337. At 2% salt, all LAB grew remarkably from day 0 to day 1, except for T. halophilus, while at 6% salt, the growth of L. plantarum, L. fermentum and O. oeni was suppressed. Conversely, the higher salt concentration enhanced the growth of T. halophilus in soy whey as the cell count only increased from 6.36 to 6.60 log CFU/mL at 2% salt but it elevated from 6.61 to 7.55 log CFU/mL at 6% salt. Similarly, the higher salt content negatively affected the sugar and amino acids metabolism and organic acids production by non-halophilic LAB. L. plantarum and O. oeni generated significantly (p < 0.05) more lactic acid (3.83 g/L and 4.17 g/L, respectively) than L. fermentum and T. halophilus (2.02 g/L and 0 g/L, respectively) at 2% salt. In contrast, a higher amount of acetic acid was generated by L. fermentum (0.72 g/L at 2% salt) and T. halophilus (0.51 g/L at 6% salt). LAB could remove the green and beany off-flavours in soy whey by metabolizing C6 and C7 aldehydes. However, to develop a novel soy sauce-like condiment, yeast fermentation and Maillard reaction may be required to generate more characteristic soy sauce-associated aroma compounds. Soy whey with 2% and 6% NaCl supported the growth of lactic acid bacteria (LAB). At 6% NaCl, T. halophilus grew better while the growth of other LAB was impeded. T. halophilus and L. fermentum produced significant amounts of acetic acid. Through LAB fermentation, green and beany off-odour of soy whey could be removed. Yeast fermentation and heating are required to produce key aroma soy sauce compounds.
Collapse
Affiliation(s)
- Rebecca Yinglan Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Xin Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Zhihao Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore
| | - Jian-Yong Chua
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore,National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu, 215213, China,Corresponding author. Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| |
Collapse
|
32
|
Microbiota and Mycobiota of Soy Sauce-Supplied Lactic Acid Bacteria Treated with High Pressure. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Ethyl carbamate (EC), a byproduct that naturally forms in fermented foods, can cause tumors and cell death and is classified as a probable human carcinogen (Group 2A). EC is naturally formed through the alcoholysis reaction between ethanol and carbamyl compounds. The major precursors and dominantly emerging stages of EC differ with disparate food types, including soy sauce. This work aimed to clarify the formation of EC and its influence factors throughout the soy sauce production process with or without high-pressure process (HPP) treatment. Methods: Tetragenococcus halophilus, Pediococcus acidilactici, Zygosaccharomyces rouxii, and Candida versatilis were added to soy sauce. The levels of citrulline and EC were measured, and a 16S and ITS assay investigated the microbiota. Results: L-citrulline production was found in each group after fermentation for one month. In addition, L-citrulline levels were generated the most in group D (500 MPa treated raw soy sauce with 12% saltwater and mixed fermentation bacteria, including T. halophilus,P. acidilactici,Z. rouxii, and C. versatilis) and group E (soy sauce fermentation with 12% saltwater without HPP treatment) compared to group F (soy sauce fermentation with 18% saltwater without HPP treatment). Conclusions: These results indicated that salt concentration and mixed fermentation bacteria (T. halophilus,P. acidilactici,Z. rouxii,C. versatilis) might not be major factors for L-citrulline production.
Collapse
|
33
|
Jiang J, Zhang M, An T, Zu Z, Song P, Chen M, Yue P, Gao X. Preparation of instant dark tea by liquid-state fermentation using sequential inoculation with Eurotium cristatum and Aspergillus niger: Processes optimization, physiochemical characteristics and antioxidant activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Zheng Y, Zhao C, Li X, Xia M, Wang X, Zhang Q, Yan Y, Lang F, Song J, Wang M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Wang J, Zhao M, Xie N, Huang M, Feng Y. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor. Int J Food Microbiol 2022; 370:109652. [PMID: 35390573 DOI: 10.1016/j.ijfoodmicro.2022.109652] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
Yeast plays an important role in the formation of desirable aroma during soy sauce fermentation. In this study, the structure and diversity of yeast communities in seven different soy sauce residues were investigated by ITS sequencing analysis, and then the aroma characteristics of selected yeast species were examined by a combination of gas chromatography-mass spectrometry (GC-MS), headspace solid-phase microextraction (SPME) and liquid-liquid extraction (LLE). A total of 18 yeast genera were identified in seven soy sauce residues. Among them, Candid and Zygosaccharomyces were detected in all samples, followed by Millerozyma, Wickerhamiella, Meyerozyma, Trichosporon and Wickerhamomyces, which were found in more than two-thirds of the samples. Subsequently, eight representative species, isolated from soy sauce residues, were subjected to environmental stress tolerance tests and aroma production tests. Among them, three isolated species were regarded as potential aroma-enhancing microbes in soy sauce. Wickerhamiella versatilis could increase the contents of ethyl ester compounds and alcohols, thereby improving the fruity and alcoholic aroma of soy sauce. Candida sorbosivorans enhanced sweet and caramel-like aroma of soy sauce by producing 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 3-hydroxy-2-methyl-4h-pyran-4-one (maltol). Starmerella etchellsii could enhance the contents of 2,6-dimethylpyrazine, methyl pyrazine and benzeneacetaldehyde. This study is of great significance for the development and application of flavor functional yeasts in soy sauce fermentation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Mouming Zhao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Nuoyi Xie
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingtao Huang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunzi Feng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China.
| |
Collapse
|
36
|
Gao X, Shan P, Feng T, Zhang L, He P, Ran J, Fu J, Zhou C. Enhancing selenium and key flavor compounds contents in soy sauce using selenium-enriched soybean. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Exploring major variable factors influencing flavor and microbial characteristics of Pixian Doubanjiang. Food Res Int 2022; 152:110920. [DOI: 10.1016/j.foodres.2021.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
|
38
|
Li X, Liu S. Modulation of aroma compounds in yeast and lactic acid bacterium co‐fermented pork hydrolysates by thermal treatment and addition of aroma precursors (cysteine and xylose). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore 117542 Singapore
| | - Shao‐Quan Liu
- Department of Food Science and Technology National University of Singapore Science Drive 2 Singapore 117542 Singapore
- National University of Singapore (Suzhou) Research Institute No. 377 Linquan Street, Suzhou Industrial Park Suzhou 215123 China
| |
Collapse
|
39
|
Zhang L, Huang J, Zhou R, Qi Q, Yang M, Peng C, Wu C, Jin Y. The effects of different coculture patterns with salt-tolerant yeast strains on the microbial community and metabolites of soy sauce moromi. Food Res Int 2021; 150:110747. [PMID: 34865765 DOI: 10.1016/j.foodres.2021.110747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/18/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
Abstract
In this study, the contributions of three strains and different coculture patterns to microbial community diversity and metabolites in the high-salt liquid-state fermentation (HLF) soy sauce moromi were investigated. A comparison of two strains of Zygosaccharomyces rouxii showed that strain QH-25 had a stronger ability to contribute metabolites, including both nonvolatile and volatile types, to the moromi than strain QH-1, except for volatile acids and ketones. Of the various fortification patterns tested, the content of metabolites was significantly increased by inoculating Z. rouxii QH-25 prior to C. versatilis, especially the content of volatiles, including ketones, esters, phenols, and alcohols, which increased 1.61-fold compared with those in the control sample; the contents of these components were increased 3.07-, 1.91-, 1.36-, and 1.22-fold, respectively. In particular, characteristic components such as ethyl octanoate, 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), 4-ethyl-2-methoxy-phenol (4-EG), and 3-methyl-1-butanol were increased 3.99-, 3.29-, 1.63-, and 0.70-fold, respectively. Redundancy analysis (RDA) showed that Staphylococcus, Zygosaccharomyces, and Candida were positively correlated with the unique components described above. In addition, the nodes of the interaction network between Zygosaccharomyces and Candida were increased, and the positive correlation of Zygosaccharomyces with Staphylococcus was enhanced by inoculating Z. rouxii prior to C. versatilis. These results suggested that the unique flavor of soy sauce was closely related to the metabolic characteristics of strains affiliated with Z. rouxii, whether cultured singly or cocultured with C. versatilis. This study also provided a reference method for determining the differences in community structure and metabolites between traditional techniques and modern processes for soy sauce fermentation.
Collapse
Affiliation(s)
- Lin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Qi Qi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Menglu Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Can Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Li X, Liu SQ. Effect of co-inoculation and sequential inoculation of Lactobacillus fermentum and Pichia kluyveri on pork hydrolysates fermentation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Md Zoqratt MZH, Gan HM. The inconsistent microbiota of Budu, the Malaysian fermented anchovy sauce, revealed through 16S amplicon sequencing. PeerJ 2021; 9:e12345. [PMID: 34760368 PMCID: PMC8557686 DOI: 10.7717/peerj.12345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Budu is a Malaysian fermented anchovy sauce produced by immersing small fishes into a brine solution for 6 to 18 months. Microbial enzymes are known to contribute to fermentation; however, not much is known about the microbial community in Budu. Therefore, a better understanding of the Budu microbiome is necessary to improve the quality, consistency, and safety of the Budu products. In this study, we collected 60 samples from 20 bottles of Budu produced by seven manufacturers. We analyzed their microbiota using V3–V4 16S rRNA amplicon sequencing when we first opened the bottle (month 0), as well as 3 and 7 months post-opening (months 3 and 7). Tetragenococcus was the dominant genus in many samples, reaching a maximum proportion of 98.62%, but was found in low abundance, or absent, in other samples. When Budu samples were not dominated by a dominant taxa, we observed a wider genera diversity such as Staphylococcus, Acinetobacter, Halanaerobium and Bacillus. While the taxonomic composition was relatively stable across sampling periods, samples from two brands showed a sudden increase in relative abundance of the genus Chromobacterium at month 7. Based on prediction of metagenome functions, non-Tetragenococcus-dominated samples were predicted to have enriched functional pathways related to amino acid metabolism and purine metabolism compared to Tetragenococcus-dominated samples; these two pathways are fundamental to fermentation quality and health attributes of fish sauce. Among the non-Tetragenococcus-dominated samples, contributions towards amino acid metabolism and purine metabolism were biased towards the dominant taxa when species evenness is low, while in samples with higher species evenness, the contributions towards the two pathways were predicted to be evenly distributed between taxa. Our results demonstrated that the utility of 16S sequencing to assess batch variation in fermented food production. The distinct microbiota was shown to correlate with characteristic metagenome function including functions potentially related to fermented food nutrition and quality.
Collapse
Affiliation(s)
| | - Han Ming Gan
- GeneSEQ Sdn Bhd, Bukit Beruntung, Selangor, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
42
|
Xu D, Wang W, Wang P, Zhang X, Zhang J, Xu C, Wang F. Soy whey as a promising substrate in the fermentation of soy sauce: a study of microbial community and volatile compounds. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Dandan Xu
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Wenping Wang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Peng Wang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Xin Zhang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Jian Zhang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Chunyan Xu
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Fenghuan Wang
- Beijing Laboratory of Food Quality and Safety Beijing Technology and Business University Beijing 100050 China
| |
Collapse
|
43
|
Li X, Eu A, Liu S. Effect of co‐fermentation and sequential fermentation of
Candida versatilis
and
Lactococcus lactis
subsp.
cremoris
on unsalted pork hydrolysates components. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Anastasia Eu
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Shao‐Quan Liu
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
- National University of Singapore (Suzhou) Research Institute No. 377 Linquan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
44
|
Do Kombucha Symbiotic Cultures of Bacteria and Yeast Affect Bacterial Cellulose Yield in Molasses? J Fungi (Basel) 2021; 7:jof7090705. [PMID: 34575743 PMCID: PMC8470359 DOI: 10.3390/jof7090705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a valuable biopolymer typically observed in Kombucha with many potential food applications. Many studies highlight yeast's roles in providing reducing sugars, used by the bacteria to grow and produce BC. However, whether yeast could enhance the BC yields remains unclear. This study investigates the effect of yeast Dekkera bruxellensis on bacteria Komagataeibacter intermedius growth and BC production in molasses medium. The results showed that the co-culture stimulated K. intermedius by ~2 log CFU/mL, which could be attributed to enhanced reducing sugar utilization. However, BC yields decreased by ~24%, suggesting a negative impact of D. bruxellensis on BC production. In contrast to other studies, regardless of D. bruxellensis, K. intermedius increased the pH to ~9.0, favoring the BC production. Furthermore, pH increase was slower in co-culture as compared to single culture cultivation, which could be the reason for lower BC yields. This study indicates that co-culture could promote synergistic growth but results in the BC yield reduction. This knowledge can help design a more controlled fermentation process for optimum bacterial growth and, ultimately, BC production.
Collapse
|
45
|
Li YC, Rao JW, Meng FB, Wang ZW, Liu DY, Yu H. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4288-4297. [PMID: 33417246 DOI: 10.1002/jsfa.11068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The moromi fermentation of high-salt liquid-state fermentation (HLF) soy sauce is usually performed in high-brine solution (17-20%, w/w), which decreases the metabolic activity of aroma-producing yeast. To enhance the soy sauce flavors, increasing the salt tolerance of aroma-producing yeasts is very important for HLF soy sauce fermentation. RESULTS In the present study, atmospheric and room-temperature plasma (ARTP) was first used to mutate the aroma-producing yeast Wickerhamomyces anomalus, and the salt tolerant strains were obtained by selection of synthetic medium with a sodium chloride concentration of 18% (w/w). Furthermore, adaptive laboratory evolution (ALE) was used to improve the salt tolerance of the mutant strains. The results obtained indicated that the combination use of ARTP and ALE markedly increased the NaCl tolerance of the yeast by increasing the cellular accumulation of K+ and removal of cytosolic Na+ , in addition to promoting the production of glycerin and strengthening the integrity of the cell membrane and cell wall. In soy sauce fermentation, the engineered strains improved the physicochemical parameters of HLF soy sauce compared to those produced by the wild-type strain, and the engineered strains also increased the alcohol, acid and aldehyde production, and enriched the types of esters in the soy sauce. CONCLUSION The results of the present study indicated that the combination of ARTP mutagenesis and ALE significantly improved the salt tolerance of the aroma-producing yeast, and also enhanced the production of volatiles of HLF soy sauce. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun-Cheng Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jia-Wei Rao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhong-Wei Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hua Yu
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
46
|
Sassi S, Wan‐Mohtar WAAQI, Jamaludin NS, Ilham Z. Recent progress and advances in soy sauce production technologies: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumaya Sassi
- Functional Omics and Bioprocess Development Laboratory Institute of Biological Sciences Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Biomass Energy Laboratory Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| | - Wan Abd Al Qadr Imad Wan‐Mohtar
- Functional Omics and Bioprocess Development Laboratory Institute of Biological Sciences Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Bioresources and Bioprocessing Research Group Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| | | | - Zul Ilham
- Biomass Energy Laboratory Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
- Bioresources and Bioprocessing Research Group Faculty of Science Universiti Malaya Kuala Lumpur Malaysia
| |
Collapse
|
47
|
Yao D, Xu L, Wu M, Wang X, Wang K, Li Z, Zhang D. Microbial Community Succession and Metabolite Changes During Fermentation of BS Sufu, the Fermented Black Soybean Curd by Rhizopus microsporus, Rhizopus oryzae, and Actinomucor elegans. Front Microbiol 2021; 12:665826. [PMID: 34248874 PMCID: PMC8267895 DOI: 10.3389/fmicb.2021.665826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
BS Sufu is a fermented food that is made by mixed black soybeans and soybeans. Microbial communities and metabolites play an important role for the final product. We characterized microbial diversity of BS Sufu during fermentation by high-throughput DNA sequencing. Meanwhile, volatile compounds were investigated by solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC-MS). The results showed that bacterial diversity was higher than that of fungi in BS Sufu. We found the existence of bacterial and fungal core communities, including Enterococcus, Enterobacter, Rhizopus, and Monascus. Network analysis indicated that bacterial and fungal communities maintain positive and negative interactions, which are important to shape the resident microbial communities in Sufu. In addition, 17 free amino acids (FAAs) were detected at the post-fermentation stage, and umami amino acid mainly contributed to taste of BS Sufu. Furtherly, a total of 79 volatile constituents in BS Sufu, including nine alcohols, 31 esters, and four aldehydes, form synergistically the unique odor of Sufu. Additionally, the correlations between microbiota and metabolites were analyzed. Our results suggested that these microbial taxa and metabolites contribute to the taste and flavor of BS Sufu. This study provided information for analysis of BS Sufu at different fermentation periods in terms of the microbial diversity and metabolites, and this information was important to understand the properties of mixed soybeans Sufu.
Collapse
Affiliation(s)
- Di Yao
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Xu
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengna Wu
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kun Wang
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China.,Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
| | - Dongjie Zhang
- College of Food Science and Engineering, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China.,Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China.,National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
48
|
Yang H, Yao S, Zhang M, Wu C. Heat Adaptation Induced Cross Protection Against Ethanol Stress in Tetragenococcus halophilus: Physiological Characteristics and Proteomic Analysis. Front Microbiol 2021; 12:686672. [PMID: 34220775 PMCID: PMC8249775 DOI: 10.3389/fmicb.2021.686672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022] Open
Abstract
Ethanol is a toxic factor that damages membranes, disturbs metabolism, and may kill the cell. Tetragenococcus halophilus, considered as the cell factory during the manufacture of traditional fermented foods, encounters ethanol stress, which may affect the viability and fermentative performance of cells. In order to improve the ethanol tolerance of T. halophilus, a strategy based on cross protection was proposed in the current study. The results indicated that cross protection induced by heat preadaptation (45°C for 1.5 h) could significantly improve the stress tolerance (7.24-fold increase in survival) of T. halophilus upon exposure to ethanol (10% for 2.5 h). Based on this result, a combined analysis of physiological approaches and TMT-labeled proteomic technology was employed to investigate the protective mechanism of cross protection in T. halophilus. Physiological analysis showed that the heat preadapted cells exhibited a better surface phenotype, higher membrane integrity, and higher amounts of unsaturated fatty acids compared to unadapted cells. Proteomic analysis showed that a total of 163 proteins were differentially expressed in response to heat preadaptation. KEGG enrichment analysis showed that energy metabolism, membrane transport, peptidoglycan biosynthesis, and genetic information processing were the most abundant metabolic pathways after heat preadaptation. Three proteins (GpmA, AtpB, and TpiA) involved in energy metabolism and four proteins (ManM, OpuC, YidC, and HPr) related to membrane transport were up-regulated after heat preadaptation. In all, the results of this study may help understand the protective mechanisms of preadaptation and contribute to the improvement of the stress resistance of T. halophilus during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Yang H, He M, Wu C. Cross protection of lactic acid bacteria during environmental stresses: Stress responses and underlying mechanisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Lu Y, Yang L, Yang G, Chi Y, He Q. Bio-augmented effect of Bacillus amyloliquefaciens and Candida versatilis on microbial community and flavor metabolites during Chinese horse bean-chili-paste fermentation. Int J Food Microbiol 2021; 351:109262. [PMID: 34090033 DOI: 10.1016/j.ijfoodmicro.2021.109262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022]
Abstract
Chinese horse bean-chili-paste (CHCP), a fermented condiment in China, is traditionally manufactured through naturally spontaneous semi-solid fermentation procedures without intentionally inoculated microorganisms. The aim of this study was to investigate the effect on microbiota and quality variations during CHCP fermentation by inoculation of selected autochthonous microorganisms Bacillus amyloliquefaciens and Candida versatilis. The results showed that relative abundance of Bacillus in the samples inoculated with B. amyloliquefaciens were increased from about 0.6% to almost 25%, and the batches bio-augmented with C. versatilis exhibited clearly 0.7 Lg copies/g higher biomass than that of the other samples. By bio-augmentation, six enzyme activities, namely acid protease, leucine aminopeptidase, α-amylase, cellulose, β-glucosidase and esterase, were considerably enhanced. As a result, inoculation of these two strains exhibited significant effect on the volatile profiles of CHCP. B. amyloliquefaciens herein was found to contribute mainly to the accumulation of acids, sulfur-containing compounds and pyrazines, whereas C. versatilis was considerably associated with the formation of alcohols, esters and phenols. This study proved that combination of B. amyloliquefaciens and C. versatilis could obtain more extensive aroma profiles, especially for the enrichment of miso-like and fruity flavors, which could provide a guideline for the tailored control of CHCP fermentation process.
Collapse
Affiliation(s)
- Yunhao Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Guohua Yang
- Sichuan dandan Pixian-douban Co., Ltd., Chengdu 610065, PR China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|