1
|
Shukla A, Singh A, Tripathi S. Perturbed Lipid Metabolism Transduction Pathways in SARS-CoV-2 Infection and Their Possible Treating Nutraceuticals. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:614-626. [PMID: 38805016 DOI: 10.1080/27697061.2024.2359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic has evolved into an international public health concern. Its causing agent was SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a lipid bilayer encapsulated virus. Lipids have relevance in the host's viral cycle; additionally; viruses have been speculated to manipulate lipid signaling and production to influence the lipidome of host cells. SARS-CoV-2 engages the host lipid pathways for replication, like fatty acid synthesis activation via upregulation of AKT and SREBP pathway and inhibiting lipid catabolism by AMPK and PPAR deactivation. Consequently, lipoprotein levels are altered in most cases, i.e., raised LDL, TG, VLDL levels and reduced HDL levels like a hyperlipidemic state. Apo lipoproteins, a subsiding structural part of lipoproteins, may also impact viral spike protein binding to host cell receptors. In a few studies conducted on COVID-19 patients, maintaining Apo lipoprotein levels has also shown antiviral activity against SARS-CoV-2 infection. It was speculated that several potent hypolipidemic drugs, such as statins, hydroxychloroquine, and metformin, could be used as add-on treatment in COVID-19 management. Nutraceuticals like Garlic, Fenugreek, and vinegar have the potency to lower the lipid capability acting via these pathways. A link between COVID-19 and post-COVID alteration in lipoprotein levels has not yet been fully understood. In this review, we try to look over the possible modifications in lipid metabolism due to SARS-CoV-2 viral exposure, besides the prospect of focusing on the potential of lipid metabolic processes to interrupt the viral cycle.
Collapse
Affiliation(s)
- Amrita Shukla
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Ankita Singh
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Smriti Tripathi
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| |
Collapse
|
2
|
Palansooriya KN, Dissanayake PD, Igalavithana AD, Tang R, Cai Y, Chang SX. Converting food waste into soil amendments for improving soil sustainability and crop productivity: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163311. [PMID: 37044338 DOI: 10.1016/j.scitotenv.2023.163311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
One-third of the annual food produced globally is wasted and much of the food waste (FW) is unutilized; however, FW can be valorized into value-added industrial products such as biofuel, chemicals, and biomaterials. Converting FW into soil amendments such as compost, vermicompost, anaerobic digestate, biofertilizer, biochar, and engineered biochar is one of the best nutrient recovery and FW reuse approaches. The soil application of FW-based amendments can improve soil fertility, increase crop production, and reduce contaminants by altering soil's chemical, physical, microbial, and faunal properties. However, the efficiency of the amendment for improving ecosystem sustainability depends on the type of FW, conversion method, application rate, soil type, and crop type. Engineered biochar/biochar composite materials produced using FW have been identified as promising amendments for soil remediation, reducing commercial fertilizer usage, and increasing soil nutrient use efficiency. The development of quality standards and implementation of policies and regulations at all stages of the food supply chain are necessary to manage (reduce and re-use) FW.
Collapse
Affiliation(s)
| | | | | | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada.
| |
Collapse
|
3
|
Liu X, Li Q, Sun A, Du Y, Zhao T. A method for efficient conversion of dehydrated cabbage waste liquid into high ester vinegar. Bioprocess Biosyst Eng 2023; 46:119-128. [PMID: 36445480 DOI: 10.1007/s00449-022-02817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
The utilization of wastewater in food processing factory has become one of the foremost essential and challengeable problems. In this study, cabbage wastewater was used for a mixed fermentation to obtain a high ester vinegar. The effect of fermentation conditions on the total acid content and total ester content of vinegar was investigated through single-factor experiments and response surface methodology analysis. Under the optimal fermentation conditions of 10.61% inoculation amount, 4.9% initial alcohol content, 29.62 °C fermentation temperature, 75.21 h fermentation time, and the exogenous esterification addition amount of 0.6%. The blending vinegar has a total acid content of 3.80 g 100 mL-1 and a total ester content of 30.52 mg mL-1. The significant flavor components in the blending vinegar of the ethyl lactate with a pleasant aroma accounted for 22.15% and the ethyl acetate with a strong fruit aroma accounted for 11.37%.
Collapse
Affiliation(s)
- Xiuhe Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qing Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Aonan Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Yamin Du
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.
| |
Collapse
|
4
|
Characterization, Sensory and Oxidative Stability Analysis of Vegetable Mayonnaise Formulated with Olive Leaf Vinegar as an Active Ingredient. Foods 2022; 11:foods11244006. [PMID: 36553748 PMCID: PMC9777809 DOI: 10.3390/foods11244006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Development of novel food products represents a basic meeting point for health and business requirements. Mayonnaise sauce is well-suited to be a healthy and tasty dressing. In this study, mayonnaise was formulated by using unconventional ingredients, such as olive leaf vinegar (OLV), soybean/high oleic sunflower oil blend, and soymilk (as an egg substitute). An 18% alcoholic vinegar was used as the control sample. OLV is a rich source of bioactive substances, especially polyphenols and represents a possible way to enhance the olive oil by-product valorisation. For this new typology of vinegar an high level of phenolic compounds (7.2 mg/mL GAE), especially oleuropein (6.0 mg/mL oleuropein equivalent) was found. OLV mayonnaise had 57% fat, composed of 11%, 64%, and 23% saturated, monounsaturated, and polyunsaturated fatty acids, while linolenic acid was up to 1.7%. The phenol and oleuropein contents were 68 and 52 mg/100 g, respectively. Sensory panellists expressed a moderate overall acceptability for both samples but attested more distinctive and positive sensations for the colour, odour, and taste attributes of OLV mayonnaise. Finally, oxidative stability and shelf life were better in OLV mayonnaise than in the control. Specifically, the peroxide value remained low (around 4.5 meqO2/kg) after 12 months of storage at room and low (4 °C) temperatures.
Collapse
|
5
|
Possible Utilization of Two-Phase Olive Pomace (TPOP) to Formulate Potential Functional Beverages: A Preliminary Study. BEVERAGES 2022. [DOI: 10.3390/beverages8030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The demand for functional beverages is expanding over the world. In this work, a rapid, easy and low-cost procedure was followed to prepare a functional beverage (FB) by directly using two-phase olive pomace (TPOP). Liquid ingredients (water and 6% citric acid), extraction systems (heat and ultrasonic treatment), treatment time (30, 60, 90 min) and drying techniques (freeze and air-dried) were studied. Experimented TPOP had a total phenol content of 7.5 mg/g CAE (caffeic acid equivalent), composed majorly of o-diphenols. Air drying of TPOP caused a 50% depletion of total phenols compared to freeze drying. Conversely, no substantial differences were found in the FB, neither for liquid ingredients nor treatment/time adopted. Both 6% citric acid and water were revealed to be profitable liquid ingredients. A 30-min heating treatment was enough to produce a satisfactory beverage, whereas ultrasound treatment caused a loss of total phenols, especially in the water FB. All FBs appeared just limpid after a simple filtration; the citric acid beverage showed reddish color, while water ones were brownish. Finally, the prepared FBs had an average total phenol of about 600 mg/L CAE (by using 300 g/L fresh pomace), with hydroxytyrosol and related compounds being well represented, which confirmed their potential functionality.
Collapse
|
6
|
Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food Chem Toxicol 2022; 165:113184. [DOI: 10.1016/j.fct.2022.113184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
7
|
Effect of oak chips addition on the phenolic composition of grape vinegar in fermentation process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
De Leonardis A, Macciola V, Iftikhar A, Lopez F. Antioxidant effect of traditional and new vinegars on functional oil/vinegar dressing-based formulations. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03986-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Majumder D, Debnath M, Sharma KN, Shekhawat SS, Prasad GBKS, Maiti D, Ramakrishna S. Olive oil consumption can prevent non-communicable diseases and COVID-19 : Review. Curr Pharm Biotechnol 2021; 23:261-275. [PMID: 33845735 DOI: 10.2174/1389201022666210412143553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
The Mediterranean diet is appraised as the premier dietary regimen and its espousal is correlated with the prevention of degenerative diseases and extended longevity. The consumption of olive oil stands out as the most peculiar feature of the Mediterranean diet. Olive oil rich in various bioactive compounds like oleanolic acid, oleuropein, oleocanthal, and hydroxytyrosol is known for its anti-inflammatory as well as cardioprotective property. Recently in silico studies have indicated that phytochemicals present in olive oil are a potential candidate to act against SARS-CoV-2. Although extensive studies on olive oil and its phytochemical composition; still, some lacunas persist in understanding how the phytochemical composition of olive oil is dependent on upstream processing. The signaling pathways regulated by olive oil in the restriction of various diseases is also not clear. To answer these queries, a detailed search of research and review articles published between 1990 to 2019 were reviewed in this effect. Olive oil consumption was found to be advantageous for various chronic non-communicable diseases. Olive oil's constituents are having potent anti-inflammatory activities and thus restrict the progression of various inflammation-linked diseases ranging from arthritis to cancer. But it is also notable that the amount and nature of phytochemical composition of household olive oil are regulated by its upstream processing and the physicochemical properties of this oil can give a hint regarding the manufacturing method as well as its therapeutic. Moreover, daily uptake of olive oil should be monitored as excessive intake can cause body weight gain and change in the basal metabolic index. So, it can be concluded that olive oil consumption is beneficial for human health, and particularly for the prevention of cardiovascular diseases, breast cancer, and inflammation. The simple way of processing olive oil maintains the polyphenol constituents and provides more protection against non-communicable diseases and SARS-CoV-2.
Collapse
Affiliation(s)
- Debabrata Majumder
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Mousumi Debnath
- Department of Biosciences Manipal University, Jaipur Campus Rajasthan-303007. India
| | - Kamal Nayan Sharma
- Department of Chemistry, Biochemistry and Forensic science Amity University Haryana, Manesar Haryana-122412. India
| | - Surinder Singh Shekhawat
- Rajasthan olive Cultivation limited Campus Agriculture Research Station, Jaipur Rajasthan-302018. India
| | - G B K S Prasad
- Department of Biochemistry Jiwaji University, Gwalior Madhya Pradesh-474001. India
| | - Debasish Maiti
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology National University Singapore. Singapore
| |
Collapse
|
10
|
Karadag A, Bozkurt F, Bekiroglu H, Sagdic O. Use of Principal Component Analysis and Cluster Analysis for Differentiation of Traditionally-Manufactured Vinegars Based on Phenolic and Volatile Profiles, and Antioxidant Activity. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/127399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
El Yamani M, Sakar EH, Boussakouran A, Ghabbour N, Rharrabti Y. Physicochemical and microbiological characterization of olive mill wastewater (OMW) from different regions of northern Morocco. ENVIRONMENTAL TECHNOLOGY 2020; 41:3081-3093. [PMID: 30896341 DOI: 10.1080/09593330.2019.1597926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
This work examined the influence of crop season, extraction system and production site on the composition of fresh olive mill wastewater collected from northern Morocco. ANOVA analysis showed that most of the traits were largely affected by the extraction system (≥60% of total variance). Comparison among extraction systems showed significant differences for all traits, except for chlorides. Three phase centrifugation system (C3) displayed the highest value of total phenols, while all the remaining traits were higher in two phase centrifugation system (C2). Concerning crop seasons, we noticed a general decrease in values of total solids, chemical oxygen demand, chlorides, C/N ratio and total aerobic mesophilic flora, from 2014 to 2016 season; in contrast, an increase in suspended solids, total kjeldahl nitrogen and proteins was detected. OMW with highest total phenols content and then more acidic were collected during 2015 season. Between production sites, Bni Frassen produced OMW with the highest values for salt and total phenols, but the lowest ones were obtained for microbiological traits. OMW from Taza were rich in total kjeldahl nitrogen and proteins. An increase in organic load indicators was observed in Bouchfaa. Principal component analysis (PCA) explained about 82% of total variability: 58%, 16% and 8% for principal component 1 (PC1), PC2 and PC3, respectively. Extraction system fitted the variability of PC1. PC2 was mainly explained by production sites, while PC3 separated crop seasons. Correlation studies showed significant relationships especially among the traits expressing organic load, while microbiological counts were largely associated to total phenols and pH.
Collapse
Affiliation(s)
- Mohamed El Yamani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - El Hassan Sakar
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Abdelali Boussakouran
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Nabil Ghabbour
- Laboratory of Biochemistry and Biotechnology, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Yahia Rharrabti
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| |
Collapse
|
12
|
Antioxidant and Antimicrobial Activity of Polyphenols Extracted after Adsorption onto Natural Clay “Ghassoul”. J CHEM-NY 2020. [DOI: 10.1155/2020/8736721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural polyphenols contained in olive mill wastewaters (OMW) have been usually associated with great bioactive properties as “antioxidants”. In this work, we recovered the polyphenols after adsorption onto natural clay “ghassoul” by different solvents: water, ethyl acetate, and methanol (PPW, PPA, and PPM, respectively) to avoid environmental pollution. Also, we tested the antioxidant activity of the extracted polyphenols by two methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC). Then, we analyzed antimicrobial activity by the microdilution technique to determine at the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The OMW of the Fez-Meknes region has a very acidic pH, considerable amounts of mineral matter, and a high concentration of polyphenols and organic content. The results of the test from DPPH showed good antiradical potential for polyphenols extracted with water, but the TAC showed an important capacity for all extracts unless PPA. The antibacterial activity is not the same on the four bacteria studied (Escherichia coli, Salmonella sp, Staphylococcus aureus, and Enterococcus faecalis), and all extracts inhibit most tested germs that do not have the same MIC and the same sensitivity. Only the PPW showed the minimum bactericidal concentration (MBC) that is equal to 0.290 mg/mL for Salmonella sp and Staphylococcus aureus, which confirms that the extraction by water of the adsorbed polyphenols is an original solution to recover the polyphenols and also to obtain a natural phenolic antioxidant which can be used in the pharmaceutical, nourishment, and cosmetic industry.
Collapse
|
13
|
Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast strain, initial tyrosine concentration and initial must. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Inoculum Strategies and Performances of Malolactic Starter Lactobacillus plantarum M10: Impact on Chemical and Sensorial Characteristics of Fiano Wine. Microorganisms 2020; 8:microorganisms8040516. [PMID: 32260418 PMCID: PMC7232475 DOI: 10.3390/microorganisms8040516] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Malolactic fermentation (MLF) is a biological process that, in addition to deacidifying, also improves biological stability and changes the chemical and sensorial characteristics of wines. However, multiple biotic and abiotic factors, present in must and wine, make the onset and completion of MLF by indigenous malolactic bacteria or added commercial starters difficult. This work illustrates the metabolic and fermentative dynamics in winemaking Fiano wine, using a commercial starter of Saccharomyces cerevisiae and the selected strain Lactobacillus plantarum M10. In particular, an inoculum of malolactic starter was assessed at the beginning of alcoholic fermentation (early co-inoculum), at half alcoholic fermentation (late co-inoculum), and post alcoholic fermentation (sequential inoculum). The malolactic starter, before its use, was pre-adapted in sub-optimal growth conditions (pH 5.0). In sequential inoculum of the Lb. plantarum M10, even in a wine with high acidity, has confirmed its good technological and enzymatic characteristics, completing the MLF and enriching the wine with desirable volatile compounds.
Collapse
|
15
|
Simultaneous vinegar fermentation from a pineapple by-product using the co-inoculation of yeast and thermotolerant acetic acid bacteria and their physiochemical properties. 3 Biotech 2020; 10:115. [PMID: 32117676 DOI: 10.1007/s13205-020-2119-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022] Open
Abstract
In the present study, a potential newly isolated thermotolerant acetic acid bacteria (TH-AAB), Acetobacter pasteurianus FPB2-3, with ethanol and acetic acid-tolerant properties was found to be very effective in the production of vinegar from pineapple peels as an alternative, inexpensive raw material using simultaneous vinegar fermentation (SVF). The results showed that using whole pineapple peel with the addition of diammonium phosphate (DAP) and MgSO4 at an initial pH of 5.5 gave a slightly higher acetic acid content than that produced from the squeezed juice. Subsequently, the effects of sugar concentration and inoculation time of A. pasteurianus FPB2-3 on acetic acid production were examined. The results revealed that an increase in sucrose concentration led to the high production of ethanol, which resulted in the suppression of acetic acid production. Allowing for the inoculated yeast to ferment prior to inoculation of the AAB for 1 or 2 days resulted in a longer lag time for ethanol oxidation. However, acetic acid accumulation commenced after 5 days and gradually increased to the maximum concentration of 7.2% (w/v) within 16 days. Furthermore, scaled-up fermentation in 6 l vessels resulted in slower acetic acid accumulation but still achieved a maximum acetic acid concentration of up to 6.5% (w/v) after 25 days. Furthermore, the antioxidant capacity of the vinegar produced from pineapple peels (PPV) was slightly higher than that produced from the squeezed juice (PJV), which was consistent with the higher total phenolic compound content found in the PPV sample. In addition to acetic acid, a main volatile acid present in vinegars, other volatile compounds, such as alcohols (isobutyl alcohol, isoamyl alcohol, and 2-phenyl ethanol), acids (3-methyl-butanoic acid), and esters (ethyl acetate, 3-methyl butanol acetate, and 2-phenylethyl acetate), were also detected and might have contributed to the observed differences in the odour and aroma of the pineapple vinegars.
Collapse
|
16
|
Use of strain Hanseniaspora guilliermondii BF1 for winemaking process of white grapes Vitis vinifera cv Fiano. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-019-03424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Tufaner F. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1682611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fatih Tufaner
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adiyaman, Turkey
- Environmental Management Application and Research Center, Adıyaman University, Adiyaman, Turkey
| |
Collapse
|
18
|
A study on acetification process to produce olive vinegar from oil mill wastewaters. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03323-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
|
20
|
Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur IS, Nair RB, Pandey A. Conversion of food and kitchen waste to value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:619-630. [PMID: 30885564 DOI: 10.1016/j.jenvman.2019.02.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Food and kitchen waste - omnipresent in every corner of the world serve as an excellent source of value added products owing to high organic content. Regardless of existence of various traditional methods of land filling or biogas production used to harness food waste energy, effective conversion of food to valuable resources is often challenged by its heterogenous nature and high moisture content. The current paper tries to lay down the prospects and consequences associated with food waste management. The various social, economical and environmental concerns associated with food waste management especially in terms of green house gas emission and extended rate of leachate generation also has been discussed. The difficulties in proper collection, storage and bioconversion of food waste to valuable by-products are pointed as a big hurdle in proper waste management. Finally, the wide array of value added products developed from food waste after pretreatment are also enlisted to emphasis the prospects of food waste management.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, GC A3, Station 18, CH, 1015, Lausanne, Switzerland
| | - Sharrel Rebello
- Communicable Disease Research Laboratory, St. Joseph's College, Irinjalakuda, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| |
Collapse
|
21
|
Testa B, Lombardi SJ, Macciola E, Succi M, Tremonte P, Iorizzo M. Efficacy of olive leaf extract ( Olea europaea L. cv Gentile di Larino) in marinated anchovies ( Engraulis encrasicolus, L.) process. Heliyon 2019; 5:e01727. [PMID: 31193311 PMCID: PMC6526228 DOI: 10.1016/j.heliyon.2019.e01727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, the antimicrobial activity and the preservative properties of olive leaf extract (OLE) Olea europaea L. "Gentile di Larino" cultivar, were evaluated. The antibacterial activity was performed in vitro against spoilage bacterial strains: Pseudomonas fluorescens (ATCC 13525), Pseudomonas fragi (ATCC 4973), Pseudomonas putida (ATCC 17514), Brochotrix thermosphacta (ATCC 11509), Clostridium sporogenes (ATCC 11437), and Listeria innocua (ATCC 33090). About the preservative properties of OLE, they were evaluated in the marinating process of anchovy fillets. During the process have been determined the change of sensory characteristics and monitored these chemical parameters: pH, aw, salt content (% NaCl), thiobarbituric acid index (mgMA/Kg), total volatile basic nitrogen (mg/100g), and trimethylamine nitrogen (mg/100g). Moreover, were determined the spoilage bacteria on raw material, after 7 days and at the end of marination process, 22 days. The OLE exhibited an inhibitory effect against the bacteria tested. In marinated anchovy fillets, showed that the extract improves their shelf life without modifying the organoleptic characteristics of the product; this suggests that it could be considered in the food industry as a natural antioxidant and antimicrobial food additive.
Collapse
Affiliation(s)
| | | | | | | | | | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
22
|
Sequential inoculum of Hanseniaspora guilliermondii and Saccharomyces cerevisiae for winemaking Campanino on an industrial scale. World J Microbiol Biotechnol 2018; 34:161. [PMID: 30357477 DOI: 10.1007/s11274-018-2540-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
In this study, the effect of sequential inoculation with non-Saccharomyces (Hanseniaspora guilliermondii) and Saccharomyces cerevisiae yeast on the distinctive characteristics of the Campanino white wine was investigated. For this purpose, three independent winemaking experiments were carried out on an industrial scale (batches A, B and C). In detail, the first one was carried out using the sequential inoculation technique while the other two, using a S. cerevisiae single-strain starter or no inoculation representing the control batches. Microbiological and chemical parameters and sensorial profiles of the wines were defined. Interestingly, the results showed that when sequential cultures (H. guilliermondii in a sequential mixture with S. cerevisiae) were used, a better wine aroma and quality was observed. More specifically, the wine obtained by sequential inoculation showed lower acetic acid values and enhanced volatile profiles than the wine from the control batches. Finally, sensorial analysis confirmed that the sequential cultures led to an improvement in wine flavour. Therefore, results suggest that the sequential inoculation using non-Saccharomyces and Saccharomyces yeast represents a biotechnological practice that can improve the quality features of traditional white wine. It has been shown for the first time that on an industrial scale H. guilliermondii could be used in sequential inoculum with S. cerevisiae in making white Campanino wine.
Collapse
|
23
|
Jing X, Zhang J, Zhu J, Chen Z, Yi L, Wang X. Effervescent-assisted dispersive liquid–liquid microextraction based on the solidification of floating organic droplets for the determination of fungicides in vinegar and juice. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2128-2134. [DOI: 10.1080/19440049.2018.1496281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
- Shanxi Functional Food Research Institute, Taigu, P.R. China
| | - Jiaying Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
| | - Junling Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
| | - Li Yi
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, P.R. China
- Shanxi Functional Food Research Institute, Taigu, P.R. China
| |
Collapse
|